3D Printed Prosthetics, Surgical Planning, and Modeling at AMS 2019

The second annual Additive Manufacturing Strategies (AMS) summit, “The Future of 3D Printing in Medicine and Dentistry,” was co-hosted by 3DPrint.com and SmarTech Markets Publishing and held in Boston just two short weeks ago. In addition to two separate tracks for medical and dental 3D printing, keynote presentations on the democratization of medicine and 3D printed medical devices, two pre-conference workshops, and a startup showdown, there was also an exhibition floor at the event with about a dozen booths to visit.

“It’s great,” a representative at the Trimech booth told me when I stopped by to ask how the event was going on the first full day of the summit. “So far really exciting, good conversations happening.”

The table at Trimech’s booth had all sorts of prints sitting out, including a colorful, detailed human skull featuring brains and veins that I was told had been 3D printed on the Stratasys J750.

Ultimaker‘s booth was busy, and I was told that there had been plenty of “good quality” conversations at the booth. On the first day of the summit, the Ultimaker team had been 3D printing a uterus model in white material, with fibroids printed in red material; however, they ran out of white by the second day and so were instead 3D printing a bone model in red.

I stopped by the Trumpf booth, which had some examples of 3D printed dental solutions on display, to speak with the representatives there for a few minutes.

“Of course medical in additive is a big thing,” Trumpf’s Technical Sales Manager Dave Locke told me. “So we’re interested in participating in these activities.”

Graham at the SLM Solutions booth also confirmed that good conversations were being had in the exhibition hall at the summit, and showed me some of the dental applications that they had on display…I saw a lot of 3D printed teeth made out of cobalt chrome in Boston.

While the r.Pod desktop dental 3D printer at the Arfona booth had been busily 3D printing dentures on the previous day, it was just on display during the last day of the event due to a small thing that needed to be fixed.

“We have a few different materials that are all for dental applications, but kind of the core product is this nylon, which we use for partial dentures. So this is a long term dental nylon,” the Arfona rep told me, showing me some completed dentures that had been through post-processing. “Those are all using just procedures that are kind of typical for a dental lab technician.”

I learned that Arfona could 3D print a set of dentures in about two hours, and finish the necessary post-processing in about another 20-30 minutes.

“It’s pretty fast. I mean, that’s something that typically would be spread out over…I mean, using conventional processes, over 4 or 5 dental appointments. And now it can be done in two.”

Anything that reduces the amount of time one has to sit in the dentist’s chair is aces, in my humble opinion.

I attended a few other sessions during AMS 2019, including one on 3D printed prosthetics that was moderated by Asimov Ventures’ Tyler Benster. Matthew Griffin, the Director of Community for Ultimaker North America, and Maria Esquela, the founder of 501c3 non-profit Alliance for Project Based Learning Solutions (APBLS or e-NABLE Alliance), both spoke on the topic.

Griffin shared a short clip from a 2017 Ultimaker video for “Hands for Haiti” about setting up 3D printing workshops in developing countries so the community can benefit from high-tech, 3D printed prosthetics. He also discussed how e-NABLE is not an organization, but a movement, and then Esquela “picked up Matt’s story a bit,” noting that she and her daughter were actually volunteers #71 and #72 for the heartwarming prosthetics network, which now has over 11,000 volunteers that work to provide 3D printed prosthetics to the millions of people who don’t have access to this kind of care.

Benster moderated the question session, but also asked one of his own. He wanted to know if Griffin and Esquela had any tips or suggestions for attendees with a business background about how to harness this type of creativity without feeling threatened by it. Griffin noted that there are lots of opportunities in the healthcare industry for testing out ideas earlier, and that people are “leaning on things,” such as community-based projects, in order to solve a problem, which then incites a feeling of empathy, “which you can then build on” when working to tackle a problem together.

I stayed on the medical track to attend a panel on 3D printing being used in surgical planning and modeling, which was moderated by SmarTech’s Scott Dunham. Alyssa Glennon, a Principal Engineer for Business Development at Materialise, and Carolyn DeVasto, the Global Vice President of Communications at medtech company BIOMODEX, were the speakers on the panel.

Glennon presented a case where a surgical team used 3D printed guides and bone models to test out different surgical options for an adult. This helped the virtual plan translate better in the operating room, and as a result, the patient was able to bend his arm just ten days after the surgery, which he had not been able to do for seven years.

Glennon detailed some of the many benefits of using 3D printing in a medical setting, such as interdisciplinary collaboration and better surgical preparation, but also noted that the regulatory environment is a major challenge for the medical 3D printing industry.

Glennon asked, “So how is Materialise providing a safe environment in hospitals for medical 3D printing?”

The answer: a solid understanding of the regulatory environment. The company offers an FDA-approved certification program for 3D printer manufacturers to have their products tested and validated for use with Materialise’s FDA-cleared Mimics inPrint software, which converts medical images into 3D print-ready files.

DeVasto, who explained that BIOMODEX is focused on the neurovascular field, stated that there are many challenges when it comes to biomechanics, since human tissue is so complex. According to her presentation, 36% of operating room errors could be avoided with the help of planning, which is what drives the company.

She noted that surgeons rely on sight and touch. The company’s algorithm builds 3D printable composite materials  that are designed specifically to provide important tactile feedback. DeVasto explained that 3D printing is so important in healthcare planning because it can help enable better patient outcomes.

During the Q&A, Dunham asked if they saw any specific niches where a specific type of planning or rehearsal model could match with a specific method of 3D printing. Glennon said that this came down to two specific factors: cost and purpose.

“The guides and models I showed are sintered nylon orthopedic parts,” Glennon said, explaining that short-term, low value parts used in surgery need to be made out of material that can hold up in an autoclave, but also be cost-effective.

DeVasto said that the answer to Dunham’s question “comes down to materials,” noting that BIOMODEX is very specific in what its algorithm can print with.

Don’t forget, the third annual Additive Manufacturing Strategies summit will be held from January 29-30, 2020 and will include a metal 3D printing track. To keep up to date on registration information and everything else for AMS 2020, sign up for our newsletter here.

Discuss this news and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the comments below.

[Images: Sarah Saunders]

Interview with Carolyn DeVasto Global VP of Commercialization at BIOMODEX

Organ twins, 3D prints made from CT scans, 3D printed parts helping doctors train or do complex surgeries is something we hear about all of the time. BIOMODEX is hoping that we’ll see many more of these cases in the years to come. The France and US based firm is trying to make true organ twins for a large selection of medical cases. This could change medical training and have impacts on preoperative planning. They also hope to 3D print these organ replicas in such a way that they feel and interact with the doctor in a realistic way. We interviewed BIOMODEX‘s VP Of Commercialization Carolyn deVasto to find out what their plans are.

What is BIOMODEX?

We are a medical technology company based in Paris and Boston, using 3D printing technology to produce synthetic organ twins from patient-specific images for physician advanced training and patient-specific rehearsal. Our 3D-printed organ twins with haptic feedback similar to that of a patient, paired with our stations offer a unique end to end, clinical training experience.
When and why did you get started with 3D printing?

3D printing allows for manufacturing complex shapes, with accuracy, repeatability and short turnaround time. When working in the medical field you need all. There was an unmet need in providing a realistic way for physicians (people of hands) to train on organs that provide haptic feedback similar to that perceived during a real operation, which is extremely important. With FEA modeling and using multi-material printing, which gives us the ability to control down to the micron level in the production process, we have been able to leverage our technology to disrupt clinical practice and experience.

What is INVIVOTECH?

INVIVOTECH is our patented technology to “functionalize” additive manufacturing. Our proprietary algorithms embed the biomechanics of the organ and surrounding tissue, providing realistic haptic feedback.”

How are these parts made?

“Our process is very detailed. First, we receive patient specific data from medical imaging, then we utilize a number of software programs for CAD, segmentation, FEA modeling and INVIVOTECH implementation… next we 3D print. After printing we have a very detailed post processing methodology to ensure the quality and integrity of each print.”

Who uses them?

Today we work with Medical Device companies globally. They can train physicians on how to use their products and do patient specific procedure rehearsal’s. We recently opened our US Headquarters in Quincy, MA to better serve the US and increase our printing capacity as we are projecting over 2000 organs to be printed globally in 2019. In the future, our vision is to work directly with hospitals and physician to improve the pre-operative planning practice.

What is the advantage of using them?

A huge differentiator for us is the haptic feedback because of INVIVOTECH, physicians love it. We also provide the most clinically relevant experience, allowing physicians to use our solution in the lab under fluoroscopy and in some cases using TEE (trans esophageal echocardiography) or ICE (Intra Cardiac echography). The industry loves it because it is compact, portable and easy to use.

What types of parts do you have?

Today we focus on Hemorrhagic Stroke in the Neurovascular space and Left Atrial Appendage Closure in the Structural Heart space with more to come…
BIOMODEX’s technology is a platform that can address any clinical indication where hands on training and preoperative rehearsal is critical.

What is a station?

The station is where the 3D printed organ twin is plugged. Each station is developed to provide blood simulation (same density, viscosity and temperature as blood), and access to the 3d printed region of interest. We have paid special attention to creating a compact, portable and quick to set up and take down solution… so easy my 8 year old can do it!

How do you see the future of your market evolving?

Our future vision is all about improving procedure safety and clinical outcomes by revolutionizing preoperative planning. The patient is our focus, so in the future any time a physician feels it will be beneficial they will be able to use BIOMODEX to test drive a procedure and develop the best strategy for the patient and their specific anatomy.

Why should I choose you to work with?

Today we have revolutionized training, tomorrow we will do the same for preoperative planning. You could choose to work with us because of our innovation, clinical expertise, quick turnaround time, service and clinical specialists in the field but at the end of the day you should choose to work with us because we both agree that it’s all about the patient!

3D Printing News Briefs: October 7, 2018

We’ve got a shorter edition of 3D Printing News Briefs for you today. Siemens Corporate Technology is working on process simulation for additive manufacturing. BIOMODEX is launching a realistic, 3D printed new training product, and an orthopedic surgeon is using 3D printing to repair bone fractures. Finally, several companies are collaborating and using metal 3D printing to make a customized component for the upcoming Ironman race.

Siemens Working on 3D Printing Process Simulation

Often in metal 3D printing, all kinds of defects can occur, such as distortion and local overheating. Getting the 3D print right the first time around is the goal that experts of Siemens Corporate Technology are working to achieve. Process simulation for additive manufacturing is a pretty important step on the way to industrializing the technology, as getting complex geometries correct at the beginning of the process could save time and money down the line.

“Our vision is to develop this additive manufacturing process in such a way that we can actually print a model created in the CAD system, getting it right the first time and printing it perfectly,” said Ursus Kruger of Siemens Corporate Technology in Berlin. “We call this the first-time-right principle, which we want to achieve here.”

Learn more about Siemens’ work in the video below:

BIOMODEX Launching New 3D Printed Training Product

The Left Atrial Appendage Closure Solution (LAACS) station

With the launch of its new training product, medical technology startup BIOMODEX is officially entering the interventional cardiology space. Its new Left Atrial Appendage Closure Solution (LAACS) lets physicians work on their skills using a super realistic, 3D printed multi-material heart. The startup’s patented INVIVOTECH technology makes it possible to create 3D printed organs based on a patient’s medical imaging, like CT scans. It’s also possible to reproduce an organ’s surrounding tissue and biomechanics as well.

“Our mission is to provide as realistic an experience as possible for physician training,” said Carolyn DeVasto, the Vice President of Global Commercialization at BIOMODEX. “Our advancements in patient specific 3D printing using INVIVOTECH and ECHOTECH allow physicians to train in a clinical setting using the same techniques they use in an actual procedure.  Ultimately, we want to provide the physicians an opportunity to test drive any procedure on our solution to improve safety and clinical outcomes.”

BIOMODEX’s patented ECHOTECH also allows physicians to observe the 3D printed heart using fluoroscopy, or any TEE ultrasound system. This means that they will be training with the same techniques they’ll be using in real life procedures, which is invaluable in the operating room.

Repairing Fractures with 3D Printing

Nathan Skelley, MD, an orthopaedic surgeon and sports medicine specialist at the Missouri Orthopaedic Institute, is working on a research project about a specific issue related to trauma orthopaedics – reducing and fixing bone fractures.

“In the United States, we’re very fortunate that I have an almost endless supply of plates and screws,” Dr. Skelley said. “I’ve never been in a situation in the OR where I don’t have another screw or I don’t have another plate to fix one of these fractures. But in the developing world or in rural environments, those resources are not always the case.”

Dr. Skelley and his team are testing if they can easily replicate the plates, screws, and tools they use so often in these types of common trauma and sports procedures with 3D printing, so physicians in areas not quite as developed as the US can perform necessary orthopaedic surgery. You can learn more about his work in the video below:

Metal 3D Printing for Ironman World Championship

Next week, the Ironman World Championship, a yearly culmination of several Ironman triathlon qualification races held around the world, begins in Hawaii. For this particular race, Canyon, Swiss Side, and Sauber Engineering are working together on Project 101 for Patrick Lange, last year’s Ironman World Champion. The goal is to make the Lange, the fastest Ironman, even faster, by using metal 3D printing to fabricate a customized aero cockpit that fits Lange’s arm shape and position perfectly. CFD (Computational Fluid Dynamics) simulations were used to confirm that his tri-bar extensions were producing a decent amount of drag, so the project partners worked out a design to integrate them into Lange’s arms.

Swiss Side 3D printed the first concept and tested it back in May, and Lange’s arms were scanned at Sauber to ensure the perfect fit. Canyon and Swiss Side designed and optimized the aerodynamics for the new aero cockpit, and using FEM (Finite Element Method) structural analysis, the parts were optimized for weight and stiffness. The most recent iteration was 3D printed in plastic and tested in another wind tunnel session so Lange could approve its performance. Then, Sauber used titanium to 3D print the final parts; aluminum was used to create ultra-light shells for the elbow pads.

“While working on Project 101, we did something that has never been done before in triathlon,” Lange said. “I am very proud to be part of this project. We tested my new aero cockpit in the wind tunnel and the results confirmed a significance performance improvement. This will have a direct impact on my bike-splits in Kona. I can’t wait to show the world my new aero cockpit and deliver a strong performance on October 13th at the big race in Kona, Hawaii.”

What do you think? Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

BIOMODEX Continues to Build Momentum in 3D Printed Medical Models

The 3D printing of medical models is something of an art form, and it’s one that startup BIOMODEX does well. Based in Paris and Boston, the company provides 3D printed anatomical models to surgeons, helping them prepare for complex and difficult surgeries. BIOMODEX has seen a lot of forward momentum lately, raising $15 million in Series A funding at the end of May and recently sharing perspective on the growth of additive manufacturing. In 2017, BIOMODEX 3D printed 1,000 medical models and is on track to print five times that number in 2018. The company’s approach to 3D printed medical models is an innovative and exciting one, based on a patented algorithm that forms the core of its INVIVOTECH technology.

“It is the algorithm that builds the composite material and that will distribute the different materials at a micron level; we can control every single drop of the material to match the mechanical target we have,” said BIOMODEX CEO Thomas Marchand. “We are inventing new composite materials thanks to this algorithm.”

What sets BIOMODEX apart from other 3D printed medical model companies is that in addition to matching the exact shape of the organ to be operated on, BIOMODEX adds its functionality. This adds an extra layer to the benefits that such models provide, enabling surgeons to operate with greater accuracy and efficiency.

“The vision is that our personalized, 3D printed patient-specific models will enable surgeons to gain a better understanding of their patient’s unique anatomy – so they will be able to plan the most complex procedures in an optimal way,” Marchand told Stratasys’ Mary Christie. “Our goal is to help surgeons choose the best medical device and operating strategy to reduce risks and improve medical and financial outcomes.”

[Image via Stratasys]

Current estimates suggest that one out of every six surgeries in the United States experiences a complication – a frightening statistic. Policy initiatives are appearing that would hold hospitals accountable for the costs of complications, and reduce Medicare payments for hospitals with high readmission rates, poor patient satisfaction, and high incidences of hospital-acquired conditions, including through surgical complications.

3D printed models can reduce the risk of complications by allowing the surgeons to plan and practice their exact procedure before the patient ever gets on the table. This results in quicker surgeries, less risk to the patient, and lower exposure to anesthesia and radiation.

“The first $3.6M fundraising in 2016 allowed us to develop EVIAS, a unique product in the field of interventional neuroradiology, aimed at reducing operational risks during the treatment of intracranial aneurysms,” Marchand said. “The latest financing will be used to develop new products in the interventional cardiology space and enable the opening of a new manufacturing facility outside Boston, Massachusetts. Boston is an ideal location for us with its mecca of world renowned medical centers and high concentration of medical device companies as we evolve and grow from our entrepreneurial roots.”

[Image: BIOMODEX via Facebook]

In the near future, BIOMODEX will be introducing its first cardiovascular product: LAACS, a software program unique to left atrial appendage patient-specific models. It will be introduced at the Transcatheter Cardiovascular Therapeutics (TCT) meeting in September, and will be available for purchase in 2019.

Marchand and BIOMODEX are also considering opening a service bureau for PolyJet users to send their imaging files, like MRIs and CTs, for file optimization prior to 3D printing.

“This would certainly bolster the use of 3D printing for pre-surgical planning where technical expertise at segmentation and file preparation are lacking or availability is constrained,” said Marchand.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

 

Expert Discussion Looks to the Future of 3D Printing, Supply Chain, Democratization

During the Additive Manufacturing Symposium at this week’s Science in the Age of Experience held in Boston, Dassault Systèmes brought together a well-curated group of industry experts to share a depth of experience and insights. With plenary session and breakout presentations targeting both broad and deep dives into applications and real-world adoption, attendees were treated to discussions focusing on progress and challenges as well as application-specific issues in industrial 3D printing.

L-R: Eduardo Barocio, Thomas Marchand, Andy Kalambi, John Laureto, Shawn Ehrstein, SeanMcCluskey

A panel discussion closed out the engaging Additive Manufacturing Symposium plenary session, featuring a conversation moderated by Dassault Systèmes’ Subham Sett with

Sett began the chat by asking where 3D printing is going, turning first to Kalambi for the manufacturer’s perspective.

“The first way is the easiest: take what you’re doing in subtractive and design it for additive; that’s the low-hanging fruit. The real value is in what we’re hearing in this conference: reduce complexity, change the supply chain. How do you print the parts as close as possible to the point of consumption? We’re looking at a digital supply chain, and taking additive into that, driving business model innovation,” Kalambi said, highlighting the new partnership between Rize and Azoth for indirect supply focus. “That’s where the biggest value is.”

There is great value in bringing additive manufacturing into business strategies, but barriers to adoption remain. Sett asked McCluskey for his perspective regarding these. Tracing back to a “small history lesson” in mistrust in the industry following high-profile acquisitions and failures to deliver, McCluskey noted that there are “still remnants of mistrust today” that are negatively impacting potential adoption.

“The single biggest gap, the shortcoming that will interfere with getting to these goals is that information and innovation happening is isolated; because of that mistrust, it’s being hoarded,” he explained. “We need to bridge those gaps, to bring innovation to the public space to work on the same problems with the same information. Hoarding information — and I’m using hoarding as a negative, though it’s not necessarily; look at IP — but good or bad, it’s slowing us down.”

Another barrier, Ehrstein added, comes in the form of regulation. Particularly for highly regulated industries such as aerospace and medical, parts qualification is a major hurdle to overcome.

“Getting the FAA to accept 3D printed parts on a critical structure is important. We saw Airbus, and obviously we use these parts; people want to use these parts even more. Getting those processes developed is a barrier,” he said. “In addition, we’re facing supply chain issues. If it starts getting bigger, who’s going to be out there supplying? If it starts getting bigger, will we have the supply chain to do it? And where is the workforce coming from? Where are the people who know how to design for these processes, to run the machines?”

Also highly sensitive to qualification and regulation is the medical sector, as Marchand weighed in.

“Certification is important. Looking at ISO standards, at reaching consistent quality, it’s pretty challenging,” he said. “Certifications in the medical space are as complicated as the aviation market.”

Sett kept the conversation moving amidst attendees

In addition to these barriers, discussion touched on simulation as a driver for evolution of technology and for eventual certification, as Barocio noted, in many respects representing a journey that has just started. Continuing to look forward, Sett asked about new technologies, and Kalambi touched on 3D printing as a platform with three “stacks”: hardware, software, and materials.

“For hardware, we see more and more hybridization will happen. Singular technologies are not solving all the big problems; hybridization will be the only way to solve some of these problems,” Kalambi said. “In software, there is a need for us to move forward, to digitally connect. Looking at materials, in polymers alone there are 60,000 plastics in the world. Focus has to be about innovating on the material, to mimic as wide a spectrum as possible to address possible use cases. Innovation is happening at each of these three levels.”

In the face of this “boatload of new technology coming out,” Sett asked, is the workforce keeping up? How can it? What steps ahead are necessary?

Workforce is certainly a critical issue facing the growing additive manufacturing industry, as companies and professional organizations are well aware. Education and training are imperative to upskill the workforce and prepare the next generation of engineers and designers, along with every other personnel aspect of manufacturing, for these new technologies.

“Workforce is an issue throughout engineering anyway,” Ehrstein remarked, “and on top of that with the oncoming technology of additive manufacturing as it keeps advancing faster than software can keep up with, than people can keep up with, workforce will remain an issue.

“We’re not the only school focusing on workforce; high schools are focusing on additive and growing up with additive. Everyone’s aware of additive manufacturing coming up. I have students whose first thought is, ‘I can just go print it,’ and that’s something I had to get used to thinking and other engineers had to get used to thinking. The problem is, with new technologies coming out every day, with new companies coming out with new technologies: what is the student actually learning?”

He continued, noting that the specifics of what can be done on each machine vary between technologies and between different system models. In order to meet the needs of the industry, he said, we need to find out what the industry is doing on these machines, which poses an ongoing challenge. Progams are in place, including at the WSU-affiliated NIAR, and these are constantly evolving.

All of the changes in the shape of industry impact the broader supply chain as well, Sett noted, moving the conversation forward. The main issue here, McCluskey said, comes in terms of volume. With advanced technologies come advanced materials; McCluskey used the example of polypropylene, which is commercially available at about 71 cents per pound. In contrast, he pointed to the equivalent supply of resin for a Carbon system at “more like $71 per pound,” adding that it wasn’t a perfect compoarison, but helps to get the point across. There are not, he summed up, enough tier one suppliers to supply all these materials right now.

Kalambi discussing supply chain strategy during Rize’s press conference with new partner Azoth

Kalambi additionally pointed to the supply chain issue of building in trust. While many companies are increasingly focusing on blockchain and other advanced solutions for ensuring that IP remains secure, there is certainly much more work to be done in this area. The fast-moving industrial 3D printing market requires more solutions, and needs them soon.

“Today has had a lot of bubble-popping moments,” McCluskey said. “Here’s topology optimization; it’s great, but let’s pop that bubble. A lot of these issues aren’t new — look at anisotropy. It’s the same issues. They take time, absolutely… and it’s the same problem we’ve had forever. We need to address this on a much faster time scale for this process. We have the tools to address them, it just takes time.”

To wrap up the conversation, Sett turned to a much-used term being bandied about in 3D printing: democratization.

3D printing is frequently said to be democratizing manufacturing, putting manufacturing capabilities in the hands of a broader potential user base and enabling more in terms of agility. He turned to each panelist to ask for their final thoughts on this topic. McCluskey began, looking at the issue philosophically.

“Did the internet democratize data, or did it make it harder to find the information we need?” he asked. “You can put 3D printers in everyone’s garage, but the limiting factor is still the democratization of information and how to use it. For me, the journey has been about finding the right balance — yes, there are all these holy grail things additive manufacturing offers… We need to look how to address it in the short- mid- and long-term.”

Ehrstein continued, touching on a popular misconception lingering around 3D printing.

“There’s a lot of thinking out there that you just set out your machine and press print, and boom. There are a lot of processes, there are a lot of machines, and it takes someone a year of experience before they can legitimately create consistently good parts on that machine. You have to make the investment on training, the investment on time and experience. If you’re a small company thinking about going additive, before you make that investment into these machines that can go into a million-plus dollars, I personally think you’re better off using the supply network out there first. See how the parts work, how much the parts work, before you make that investment,” he said. “There’s the thinking that when I have that machine I can just have him print that part out over there, and the truth is if you’re not running those machines every day, it takes some time before you get to that point.”

Laureto discussing powder bed metal technology during a manufacturing breakout session

Laureto picked up from there, noting that at Renishaw, they constantly deal with the cost of entry as a barrier to adoption. This is of course not limited only to initial investment, but to continuing costs of operation.

“Economic analysis is needed,” he reaffirmed. “Do all that work up front. Try to work with everyone to find that type of solution. Because not only do you buy that machine, you fill it with $60,000 worth of titanium monthly.”

Another barrier stands in the way of the typical requirements for industrial machinery, including safety equipment, proper ventilation, and the necessary physical footprint. Kalambi addressed this issue from the perspective of an industrial desktop 3D printer manufacturer known for its ease of use and environmental friendliness.

“That question is why we’re in business: to democratize, to take industrial additive manufacturing to where it has not been before. I have seen that this business has not scaled because of this question,” he said. “Working with masks and gloves limits who can go there, and this limits adoption. We have a machine that requires no venting, and can run safely on the floor here; we believe that it should be like what was mentioned here, pervasive enough that people can set up microfactories. This is where 3D printing has to go.”

Turning to the medical sector, we see that issues are a bit more specialized. Speaking to the life science point of view, Marchand noted that hospitals have a huge need, as 3D printing can be applied to synthetic organs, to prostheses, and more.

“Every hospital would like to have a 3D printing lab, and some do. The thing is, it’s painful to have a 3D printing lab. We know that because we have two, one in the US, and one in France,” he said. “We had to go to market this way, and had no one to help us this way, to manufacture up to standards all the time. We are seeing democratization of 3D printing in hospitals, but many machines right now are not very reliable, post-processing is a problem, and you need the right people. There are still many problems to tackle.”

Barocio had the final word in the discussion of democratization, and took the opportunity to offer some advice.

“My recommendation for the additive manufacturing journey is: simulation could be a heavy investment, and something in the long term will help to come up to speed faster, also lowering the costs of trials and errors,” he said. “I really recommend to use simulation, not only hardware.”

The overall tone of the discussion remained conversational, as these various perspectives came together to offer a quick picture of a fast-growing industry and technology still enduring its growing pains. The points raised offered plenty of food for thought — among many great minds in hardware, software, materials, and end-use applications set to continue driving advances apace.

Discuss Dassault Systèmes, industry challenges, and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

[All photos: Sarah Goehrke]