3D Printing Unicorn Desktop Metal to Go Public After Reverse Merger Deal

After becoming one of the fastest-growing 3D printing startups, Desktop Metal announced plans to go public following a reverse merger deal with blank check company Trine Acquisitions. The Boston-based metal 3D printing systems manufacturer revealed that the combined companies will be listed on the New York Stock Exchange (NYSE) under the ticker symbol “DM” and are expected to have an estimated post-transaction equity value of up to $2.5 billion.

2020 has seen a surge of company’s opting to go public through special purpose acquisition company (SPAC) merger deals. During the first half of the year, there have been 79 SPAC IPOs that have raised gross proceeds of $32 billion, according to SPACInsider, a sharp increase from last year’s 59 SPAC IPO’s and gross proceeds of $13.6 billion. In fact, Desktop Metal follows in the steps of space tourism startup Virgin Galactic and electric car maker Nikola Corp, drawn to SPAC listings to go public without the risk and complexity of a traditional IPO.

Since coming out of stealth mode in 2017, Desktop Metal has managed to raise over $438 million in funding, becoming one of the fastest companies in US history to achieve unicorn status. Claiming to reinvent the way design and manufacturing teams 3D print metal and continuous carbon fiber parts, the company aims to create the world’s fastest metal 3D printers. Its broad product portfolio already includes an office-friendly metal 3D printing system for low volume production, as well as new mid-volume manufacturing and continuous fiber composite printers, both of which are expected to ship in the fourth quarter of 2020.

With a valuation of $1.5 billion, Desktop Metal is the first major Massachusetts-based 3D printing company to go public. Locally, Desktop Metal competitors include fellow 3D printing technology unicorn Formlabs in Somerville and continuous carbon fiber manufacturing company Markforged in Watertown.

“We are at a major inflection point in the adoption of additive manufacturing, and Desktop Metal is leading the way in this transformation,” said Ric Fulop, Co-founder, Chairman, and CEO of Desktop Metal. “Our solutions are designed for both massive throughput and ease of use, enabling organizations of all sizes to make parts faster, more cost effectively, and with higher levels of complexity and sustainability than ever before. We are energized to make our debut as a publicly traded company and begin our partnership with Trine, which will provide the resources to accelerate our go-to-market efforts and enhance our relentless efforts in R&D.”

Desktop Metal’s Shop System, an additive manufacturing solution targeted at the machine shop market and designed for mid-volume production of customer-ready metal parts. (Image courtesy of Business Wire)

According to Desktop Metal, the deal will generate up to $575 million in gross proceeds, comprised of Trine’s $300 million of cash held in trust, and $275 million from fully committed common stock PIPE (private investment in public equity) at $10.00 per share. The move is expected to provide, what the company considers, an opportunity to build the “first $10 billion additive 2.0 company,” part of an emerging wave of next-generation additive manufacturing (AM) technologies expected to unlock throughput, repeatability and competitive part costs. With solutions featuring key innovations across printers, materials, and software, Desktop Metal anticipates this new trend to pull AM into direct competition with conventional processes used to manufacture $12 trillion in goods every year.

When consulted, 3DPrint.com’s own Executive Editor and Vice President of Consulting at SmarTech Analysis, Joris Peels, considered the deal to be an aggressive valuation when outlined against the current capabilities, technologies, growth and installed base of the firm. Peels explained that at present, he does not think that the transaction is commensurate with revenues or the perceived quality of its offering.

The expert further suggested that “the firm has consistently overstated capabilities. It has also had significant issues with deploying its technology in the field. Competition from firms such as Markforged, HP, and GE will expand the binder jet market considerably, but also offer alternatives to Desktop Metal. New startups such as One Click Metal, Laser Melting Innovations, Aconity3D and ValCUN can also provide alternative solutions. The low-cost metal market is set for rapid growth. These are the types of systems that we could expect in many a machine shop and factory in the years to come. The opportunity is for over 750,000 deployments worldwide, dwarfing the current market. The battle for dominance in this exciting space will yet see more market entrants arrive and we are in the initial stages of a very exciting time.”

Desktop Metal’s Production System is designed to be the fastest way to 3D print metal parts at scale. (Image courtesy of Business Wire)

During a conference call on August 26, 2020 – just after news of Desktop Metal’s SPAC transaction were revealed – legendary technology investor and operator Leo Hindery, Jr., Chairman and CEO of Trine Acquisitions, said that Desktop Metal will be the “only pure-play opportunity available to public market investors in the additive manufacturing 2.0 space.”

Emphasizing his belief that the company is in the process of revolutionizing the industry, and developing a technology that will be a significant step in replacing mass manufacturing base, which has become antiquated, Hindery said this deal will become pivotal to transforming the products and industries that will drive the economy into the 21st century, including electric vehicles, 5G communications, digital supply chains, and space flight.

Both company CEOs suggested that the AM industry is slated to realize explosive growth over the next decade, reaching over ten times the 2019 market size, estimated to surge from $12 billion to $146 billion by 2030 as it shifts from prototyping to mass production.

Desktop Metal printers are used in the automotive industry. (Image courtesy of Desktop Metal)

To better understand the future of the AM metal industry, 3DPrint.com turned to Scott Dunham, SmarTech’s Vice President of Research, who reported on the market conditions today, stating that nothing changes in business without significant pain first.

“The metal additive manufacturing market in 2020 is feeling a combination of ongoing growing pains with difficulties in the sales environment now intensified due to economic effects from COVID-19. General manufacturing companies facing similar challenges, however, and now are faced with the choice of continuing on with the status quo in light of the pandemic exposing weaknesses in their supply chains, or making serious changes to address those weaknesses in the future. Both choices are fraught with risks,” Dunham suggests. “Metal additive manufacturing market stakeholders are hopeful this scenario may catalyze the industry back to strong growth as companies arrive at a decision to invest in new technologies and further develop their capabilities in concert with AM leaders to arrive better prepared for future challenges.”

Despite the current impasse, Dunham insists that the additive industry will ultimately benefit from a renewed push for cost savings, supply chain independence and agility, and a desire for faster manufacturing. Suggesting that not all will make it through the next two years in metal AM, but those which do will likely build the future of manufacturing that experts have anticipated for some time.

Desktop Metal’s innovative 3D printing metal systems used from prototyping through mass production. (Image courtesy of Desktop Metal)

In a quest to speed up technology development Desktop Metal is moving fast. The proposed business combination is expected to be completed by November 2020 and has already been approved by the boards of directors of the two companies. Once finalized, Desktop Metal will have post-deal cash on hand that will enable accelerated growth and product development efforts, especially as a large portion of the $575 million in gross proceeds from the deal will be dedicated to continuous product innovation and to pursue targeted acquisition opportunities.

The post 3D Printing Unicorn Desktop Metal to Go Public After Reverse Merger Deal appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Joyson Safety 3D Prints Functional Airbag Housing Using Windform

Joyson Safety Systems, a leading provider of mobility safety components, systems and technology, recently developed its first functional 3D printed prototype of a Driver Air Bag (DAB) housing, using selective laser sintering (SLS) and Windform composite material from CRP Technology.

Image courtesy CRP Technology

Joyson Safety Systems already has a history of pioneering innovation in mobility safety solutions, such as airbags, seatbelts, safety electronics and more, for automotive and non-automotive markets. Worth noting is the fact that it was the first manufacturer to supply leading OEMs in North America and Europe with steering wheels with Hands on Detection (HOD) for autonomous driving. In this instance, the company’s Core Innovations team looked to quickly develop prototypes for its airbag housing and turned to additive manufacturing to explore new processes and materials.

Image courtesy CRP Technology

Traditionally, the airbag housing is produced using injection molding made up of a material that is polyamide with 40% glass fiber reinforcement, PA6-GF40. The DAB system, which needs to deploy in just 30-50 milliseconds to prevent injury to the driver, consists of the inflator, airbag cushion, cover and housing attached to the steering wheel. The performance of this system is essential, as a critical safety component of the vehicle that needs to have enough strength, impact resistance, and stability under heat and other diverse environmental conditions. Samer Ziadeh and Daniel Alt from the Core Innovations team explain the requirements for the DAB,

“It is to withstand a high amount of dynamic loads in addition to holding the inflator and the airbag cushion fixed in location during and after the deployment of the airbag system. This load is developed due to the pressure required to inflate the airbag, as a result the large stresses will directly be applied on the airbag system and more particularly on the DAB housing. The test procedures are normally conducted within a various range of temperatures between -35°C and 85°C.”

Image courtesy CRP Technology

In looking for the right material for the DAB, the team found CRP Technology’s patented Windform range of high performance SLS materials more than suitable for their requirements:

“…after running some market analysis in order to find out the most suitable material and process that could deliver the required performance, we came across the Windform TOP-LINE family of composite material and, specifically, the Windform SP. Windform SP brought our attention to the fact that it’s a material produced from polyamide PA grades, reinforced with Carbon fiber or fiber-glass, as a powder form material, and it has almost the required and even better performance for our application.”

Windform has emerged as a high performing SLS material which has been applied in sectors such as motorsports, as with Mercedes AMG Petronas, automotive, and aerospace, as with NASA. Windform materials not only meet the stringent requirements for use in aerospace or motorsports, but can also be CNC machined or post-processed with tooling equipment. CRP has become a leader in high-performance AM materials for SLS with Windform, applying its expertise in a range of proven applications from medical to UAVs, satellites to electric motorbikes.

Image courtesy CRP Technology

This application is a first for Joyson Safety Systems in producing, in a short period, a functional prototype of a DAB housing using SLS with composite materials.

The post Joyson Safety 3D Prints Functional Airbag Housing Using Windform appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Carbon Fiber Acrylonitrile Styrene Acrylate Composite (CF-ASA): New Material for Large Format Additive Manufacturing

Researchers from Spain are studying materials for more effective large-scale 3D printing, outlining their findings in the recently published ‘Development of carbon fiber acrylonitrile styrene acrylate composite for large format additive manufacturing.’

While 3D printing on the micro- and nanoscale is extremely popular among researchers today, the authors point out that large format additive manufacturing (LFAM) for the industrial user is usually centered around the fabrication of parts that may reach several cubic meters. For this type of production, 3D printers must be accompanied by optimized materials that are suitable for service requirements yet demonstrate high printability.

Today, acrylonitrile styrene acrylate (ASA) is a thermoplastic often being used in LFAM due to excellence in mechanical properties and wettability. ASA also has very good weather resistance and is already used widely in automotive and outdoor applications. Similar materials such as acrylonitrile butadiene styrene (ABS) are extremely popular too due to strength, stiffness, and processability.

“Other technical materials such as polyphenylene sulfide (PPS), polyphenylsulfone (PPSU), polyamide (PA), polyether ether ketone (PEEK) or polyethylene terephthalate glycol (PETG) have been also tested in these technologies,” state the authors. “However, their high cost and hard processability restrict their employment to few applications.”

Structure of ASA polymer Based on [41].

In this study, the researchers evaluate ASA and carbon fiber (CF) composites for LFAM, comparing neat ASA to AS with 20 wt% carbon fiber. The following samples were 3D printed on an SDiscovery Cartesian printer.

Discovery LFAM device property of Navantia S.A., S.M.E. (placed at Bay of Cadiz Shipyard, Puerto Real, Cádiz, Spain). Adapted from [12].).

Samples printed along the two different configurations studied: a) neat ASA sample printed along X direction outside the printer (XY plane displayed, being the Z-direction perpendicular to the image plane (outwards)); and b) ASA 20CF sample printed along Z direction inside the printer. X, Y and Z directions are indicated at the images.

The following samples were created:

  • Five normalized tensile samples
  • Five flexural test samples
  • Ten non-notched impact pieces
  • Two thermal conductivity discs

Mechanical, rheological and thermal properties of the studied neat ASA and ASA composite.

The composites were examined regarding mechanical, rheological, and thermal properties.

“The mechanical properties were addressed by testing injected tensile, flexural and impact pieces. The melting flow rate (MFR) and the glass transition temperature (Tg), determined by differential scanning calorimetry (DSC), were measured for the two compositions,” explained the authors. “The thermal conductivity was measured using cylindrical injected discs. In a second step, X and Z printed specimens were analyzed by tensile and flexural tests, assessing the influence of the printing orientation in the mechanical properties of both, neat ASA and ASA 20CF.

“Specifically, tensile tested samples were study at the fractured surface of printed specimens aiming to discuss and correlate microstructural features with differentiated mechanical performance of the two materials.”

SEM images show that carbon fibers are well-integrated into the polymer matrix, occurring even after the tensile test.

“A pronounced anisotropy, negligible in injected pieces, is observed in the mechanical properties. A maximum UTS of 60 ± 4 MPa is achieved for X orientation in ASA CF composite, while the flexural tests results are similar, even higher, than for injected parts,” concluded the researchers. “This increase might be attributed to the laminar character of the pieces and the preferential alignment of polymer chains.

“A prealignment of the fibers along the printing deposition direction was observed; likely imposing a physical barrier in Z direction avoiding polymer diffusion and explaining this behavior. The addition of CF results in higher roughness porosity and inner-bead porosity, while reducing the inter-bead porosity. The inner-bead is usually considered as an intrinsic defect of extrusion processes, whereas the observed roughness and inter-bead porosity are characteristic of printing procedures.”

SEM images of the fracture surface of ASA 20CF after a) flexural fracture at liquid nitrogen temperature (without mechanical test); b) tensile test and c) detail of the bonding interface between ASA and CF.

The study of composites continues to expand within the 3D printing realm, as researchers explore a wide variety of materials from bronze PLA composites to products that are bioinspired, to combinations of materials integrated with sensors, and far more.

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source / Images: ‘Development of carbon fiber acrylonitrile styrene acrylate composite for large format additive manufacturing’]

The post Carbon Fiber Acrylonitrile Styrene Acrylate Composite (CF-ASA): New Material for Large Format Additive Manufacturing appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

CIA’s In-Q-Tel Invests in Markforged

Boston-based startup Markforged is growing rapidly, pulling in a whopping $82 million investment in March 2019. Now, the 3D printer manufacturer is getting some additional funds, though this time the amount won’t be disclosed because it comes from the highly secretive In-Q-Tel, Inc., the venture capital arm of the CIA.

Markforged announced that is has signed a strategic investment agreement with In-Q-Tel. The investment company, launched by the CIA in 1999, is involved with (sometimes controversial) projects across the government intelligence and security community. As we discussed in our series on In-Q-Tel, the company does not usually make public how much it invests in startups nor the specific role that it plays with those firms in which it invests.

However, our research suggested that average funds range between $500,000 to $3 million in exchange for equity in the company and an advisory role on the startup’s board. This allows In-Q-Tel to potentially guide product development and learn of any news before the public does.

Quincy Reynolds with the Metal X 3D printer at Camp Kinser in Okinawa, Japan. Image courtesy of Matthew M. Burke/Stars and Stripes.

While Markforged has seen its technology deployed across a variety of industrial sectors, its low-cost metal 3D printing and fiber reinforcement systems have had strong success in the military and weapons sectors. According to the company, the U.S. military has hundreds of Markforged machines in operation, including the “first forward-deployed metal system to support combat operations and now has expanded its support operations to three continents.”

Given the sheer size of the U.S. military, it has funds to explore a wide range of 3D printing applications. Specifically, the III Marine Expeditionary Force is using the Metal X 3D printer as part of its repair services for U.S. occupation in the Asia-Pacific region. Having already worked with the U.S. military, then, it seems natural that Markforged would accept an investment from In-Q-Tel.

In-Q-Tel’s interest in Markforged also seems natural, as the investment vehicle has already provided funds for other startups in the space, including Voxel8, Fuel3D and Arevo. In particular, Arevo develops continuous carbon fiber 3D printing technology, though of a different variety than Markforged’s. Whereas Markforged has so far only released desktop-sized systems capable of continuous fiber reinforcement 3D printing, Arevo is focused on machines capable of printing entire bicycle frames. Moreover, Arevo uses a laser-mounted robotic arm to deposit pre-impregnated fiber reinforcement, while the Markforged process is more akin to traditional desktop FDM/FFF 3D printing.

Guhring UK’s 3D-printed metal tools have been sent to customers for testing new concepts. Image courtesy of Markforged.

The news comes on the heels of other exciting stories from Markforged, that include the recent release of pure copper for Metal X and the use of Metal X for 3D printing custom cutting tools for Guhring UK. At the beginning of February, Markforged became the first and, so far, only AM company to receive the ISO/IEC 27001 security certification, international standards signifying the ability of the company to ensure privacy, confidentiality, integrity, and availability across its product line. This includes its Eiger cloud printing platform, hardware, fleet management software, and information governance policies. Surely the startup was pursuing the certification ahead of its investment by In-Q-Tel, but it likely doesn’t hurt any interest the U.S. intelligence community might have had in Markforged.

The post CIA’s In-Q-Tel Invests in Markforged appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

State of the Art: Carbon Fiber 3D Printing, Part Five

In the first part of our series on carbon fiber 3D printing, we discussed how the material is used in the larger world of manufacturing. As we’ve learned throughout this series, carbon fiber (along with other reinforcement materials) is typically used as a low-cost alternative to metal, given its high strength-to-weight ratio. Though the material is found most frequently in the aerospace industry, it is increasingly used in other sectors, such as automotive, sports and construction.

What’s we’ve focused on a bit less in this report so far is how it has been and will be used in 3D printing.

The Benefits of 3D Printing + Carbon Fiber

All of the additive technologies we’ve explored have their unique benefits and drawbacks, with some processes more limited in geometric complexity and others unable to deliver the same strength and stiffness as the rest. However, the advantage that they all have in common is a high degree of automation.

Traditionally, applying carbon fiber reinforcement is a manual and time-consuming process, which can be expensive in terms of labor hours. When it’s performed using industrial automation technology, as found in large aerospace facilities, it is extremely expensive. The highest of high-end automated fiber placement (AFP) machines can cost millions of dollars.

In contrast, 3D printing is a relatively automatic process. Once a CAD model has been finalized and is appropriately set up for fabrication by a given 3D printer, the additive manufacturing (AM) system itself will do most of the work (except for post-processing, loading up materials, configuring the printer, etc.).

With some desktop continuous carbon fiber 3D printers from Markforged, Desktop Metal and Anisoprint priced between $4,000 and $20,000, small businesses and workshops can have access to an automated method for producing carbon fiber-reinforced parts. For much larger firms, emerging systems, like those from Impossible Objects and Arevo, could make batch production much possible. And in either case, the technology will likely be less expensive than AFP.

Applications

Markforged has been on the market the longest and, therefore, has the most case studies demonstrating the range of uses for continuous carbon fiber 3D printing. That has also given it plenty of time to find use cases running the gamut from prototyping and tooling to end part manufacturing.

For example, Brooks, a publicly-traded automation equipment manufacturer, uses 3D printing to prototype end effectors meant to handle fragile goods like products like semiconductor wafers. The company claimed that its previous 3D printer was not capable of printing robust prototypes, but that carbon-fiber-reinforced designs were thin enough and stiff enough for the application.

A 3D-printed lifting tool, made using Markforged carbon fiber 3D printing. Can lift 960 kg. Image courtesy of Markfoged.

Tooling is a popular application for many Markforged customers, given the strength and durability of reinforced polymer parts. These can vary, including small jigs and fixtures to “the world’s first 3D-printed CE-Certified lifting tool”.

Using the X7 3D printer, Wärtsilä 3D printed a lifting tool for moving heavy ship engine parts, such as pistons. The marine and energy firm believed its typical steel machining process to be too expensive and opted for 3D printing a polymer lifting tool reinforced with carbon fiber. The resulting part was 75 percent lighter while capable of lifting 960kg. Wärtsilä believes that it saved €100,000 in tooling alone by printing the part.

In another case, a Canadian energy services company used Kevlar, high-strength, high-temperature fiberglass, and carbon fiber to reinforce tooling on its manufacturing equipment. Using Markforged’s lowest-cost option, the Mark Two, the firm printed 53 different parts for its pad handling machine, such as fuse covers, motor mounts, end effector laser mounts and more. The company estimated a total of CAD$27,000 in savings.

Robotic arm 3D printed with continuous carbon fiber. Image courtesy of Markforged.

The Boston-based startup has also seen its technology deployed for production of end parts. Haddington Dynamics  is an engineering startup that uses 3D printing to manufacture parts for a 7-axis robotic arm for such customers as NASA, GoogleX and Toshiba. 3D printing allowed the company to reduce part count on the design from 800 to under 70, including custom swappable 3D printed gripper fingers. To produce parts that are more robust, Haddington reinforces a chopped carbon fiber-filled nylon with continuous carbon fiber.

Though still newer to the market, Arevo has also been making a name for itself in mass production. The Silicon Valley firm is partnering with Franco Bicycles to 3D print continuous carbon fiber single-piece unibody frames for a new line of e-Bikes.

Arevo will be 3D printing a unibody bike frame for Franco Bicycles. Image courtesy of Arevo.

Fortify has devoted an entire business line to a very interesting application for its magnetic approach to composites. The startup has a service for the additive fabrication of tooling for the injection molding industry, though Fortify is relying on a proprietary ceramic material for this application. The material is durable enough that mold could last hundreds to thousands of shots, according to the company. Yet, unlike traditional molds, these parts are delivered in just three days and can be much more geometrically complex.

Other firms are a bit too young to go public with how their early customers are using their technologies, but demonstrator parts have been showcased. Desktop Metal, for instance, displays a variety of tooling, jigs and fixtures on its Fiber-dedicated page. Anisoprint has just three case studies up, but one is a research project that demonstrates the firm’s unique approach to reinforcing only the areas of a part that require added strength, reducing the weight of the part even further than traditional composites or other carbon fiber 3D printing approaches have executed.

As the technology begins to make its way into the marketplace, we will definitely see more applications of carbon fiber 3D printing. One area where it should continue to have a big impact is through the production of tooling and, a bit further along in the technology’s development, end parts. In the next part in our series, we’ll take a look at large-scale carbon fiber 3D printing. 

The post State of the Art: Carbon Fiber 3D Printing, Part Five appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

State of the Art: Carbon Fiber 3D Printing, Part Two

In the first part of our series on carbon fiber 3D printing, we really only just got started by providing a background on the material, some of its properties, and how it’s made. Now that that’s out of the way, we can get to the fun stuff: how carbon fiber is currently available in the 3D printing industry.

Carbon Fiber Filaments

The most widely accessible form of carbon fiber in 3D printing is chopped carbon fiber filament. There are a wide variety of chopped carbon fiber blends available, with 3DXTECH offering some of the most diverse types that include high temperature thermoplastics as the matrix material. For instance, it’s possible to buy, PA, PEKK, PEEK, and PEI (ULTEM) filaments filled with chopped carbon fiber.

A manifold made with Innofil3D PET carbon fiber reinforced filament by FFF.

In chopped carbon fiber filament, segments of carbon fiber are mixed with thermoplastic pellets and then extruded into filament suited for extrusion 3D printing. Because the carbon fiber is broken, and not in continuous strands, it only offers the stiffness of carbon fiber at the points where those very small fragments are located.

Nevertheless, the introduction of carbon fiber into thermoplastic filament can improve its strength and stiffness but may also have negative effects, as well. One team of researchers found that, in addition to the desired strength, a PEEK-carbon fiber composite had more porosity and poor adhesion between printed layers. Another group found similar results with chopped carbon fiber in resin for stereolithography, including increased brittleness.

This doesn’t mean that chopped carbon fiber filament (or resin) doesn’t have value in 3D printing, particularly since it is much cheaper than the technologies that we will be going on to discuss. However, we will see in part three of this series how even these materials can be improved with some pretty ingenious thinking.

Continuous Carbon Fiber 3D Printing

In 2014, Markforged introduced continuous filament fabrication (CFF) to the world. In CFF, carbon fiber is pre-impregnated with a thermoplastic nylon, which is deposited from a specialty extruder. This is then used to provide reinforcement for plastic parts, including the firm’s own brand of chopped carbon fiber filament, Onyx.

More recently, a Russian company called Anisoprint has commercialized its own version of continuous carbon fiber printing dubbed composite fiber coextrusion (CFC). Unlike CFF, which features one input and one output for its prepreg material, CFC uses two inputs and one output. One input is dedicated to reinforcement fiber and the other is used for feeding thermoplastic. Dry fiber is fed into the system, where it is impregnated with an extremely liquid thermoset resin. During printing, the thermoset is cured and extruded together with traditional thermoplastic filament. The thermoset matrix permeating the reinforcement fiber then bonds with the filament.

How CFC works.

As a result, not only is there less of a chance of introducing air bubbles or voids in the prepreg material, but it also opens up the variety of thermoplastics that CFC can use (so far, PETG, ABS, PC, PLA and PA).

The rate of deposition can also be controlled in CFC to generate interesting structures and properties not achievable with traditional composite manufacturing, such as lattice shapes. In crossing one strand of carbon tow over another, in traditional circumstances, the thickness of that area is doubled. With CFC, it’s possible to reduce the thermoplastic being extruded, while still depositing the carbon fiber, reducing the amount of plastic in that area.

Strength is evenly distributed around the hole, but not in the entire structure in part one, causing it to sheer. In part two, the entire part is reinforced in a crisscross fashion.

This, in turn, increases what is known as the “fiber volume ratio”, the amount of fiber reinforcement there is in relation to the total volume of the composite. A higher fiber volume ratio usually means improved mechanical properties. So, as these carbon fibers are crisscrossed in a 3D-printed lattice structure, the fiber volume ratio increases, as does the strength.

In aerospace, engineers seek fiber volume ratios of up to 60 percent or so. However, with other carbon fiber 3D printing technologies, the ratio is closer to 30 to 40 percent. Without lattice structures, CFC can achieve about 45 percent, but, at points where carbon fibers overlap, this ratio is doubled—that is, even stronger than available with traditional composites.

With minimal thermoplastic deposition in one direction, this part has less material but improved strength.

In woven carbon fiber, multiple layers of unidirectional fibers crisscross to mimic isotropy, which ends up providing omnidirectional strength at the expense of excess material. However, with CFC, it is possible to only add material and strength where necessary. For this reason, Anisoprint highlights the anisotropy of carbon fiber as a benefit, rather than a weakness—hence the name “Anisoprint.”

Since Markforged and Anisoprint have come to market, a third challenger has appeared with its own form of continuous carbon fiber printing. Ahead of Formnext 2019, Desktop Metal introduced a technology called micro automated fiber replacement (μAFP). μAFP relies on two print heads: one deposits thermoplastic filament and then a tool changer swaps to the other, which lays down prepreg tape, similar to the automated fiber placement technology mentioned briefly in part one.

The carbon fiber-thermoplastic tape is first heated to above the melt temperature of the plastic. Then, a roller presses the tape onto the printed part. The combination of heat, pressure and then the cooling of the printed part, allows the tape the part to fuse.

Desktop Metal is releasing the technology with the Fiber HT and Fiber LT 3D printers. The LT is available as with a $3,495 annual subscription and prints PA6-carbon fiber or PA6-fiberglass tape. The HT ($5,495 per year), can not only print with those tapes, but also PEEK or PEKK combined with carbon fiber or fiberglass. The HT also has two printheads, while the LT has just one.

Additionally, the Fiber HT includes the ability to manage the orientation of the fibers using advanced settings in its software, can achieve less than one percent porosity, and can print with a fiber volume ratio of up to 60 percent.

Large Format and Experimental Carbon Fiber 3D Printing

Also at Formnext, Anisoprint unveiled its production scale CFC system, the Anisoprint ProM IS 500. With a build volume of 600 mm x 420 mm x 300 mm, the system has a heated build chamber capable of printing PEEK and PEI, as well as automated calibration and other production-quality features. With four swappable printheads, it will also be able to combine different composite materials, in addition to carbon fiber. The system will also feature software for optimizing the printing of lattice structures. Anisoprint aims to ship its first ProM IS 500 systems at the end of 2020.

While this is the Russian company’s first production-level carbon fiber 3D printer, it may face some stiff competition. There are a number of other firms that are working on their own unique takes on carbon fiber 3D printing. Because they differ distinctly from the types discussed here, we will explore them in the next chapter of our saga.

The post State of the Art: Carbon Fiber 3D Printing, Part Two appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing Unicorns, Part 3: Desktop Metal

When a privately held startup hits $1 billion in value, it magically transforms from an ugly mare into a beautiful unicorn (or so the legend goes). In the 3D printing space, there are three such creatures and we’ll be profiling each one. This time, we’ll be taking a look at Desktop Metal.

Based in Cambridge, Mass., Desktop Metal was founded in October 2015 with the goal of introducing (comparatively) low-cost, easy-to-use, office-safe metal 3D printing to the world of production. From then until April of 2017, that was just about all that was known to the public about the new startup. Behind closed doors, however, the company was making rounds with some very large investors, raising nearly $100 million in Series A through C funding rounds that included GE Ventures, Saudi Aramco Energy Ventures, BMW iVentures and Lowe’s Ventures. 

Though the first product wasn’t announced until the spring of 2017, investors may have partially been confident about the firm’s leadership team. Desktop Metal was founded by Ric Fulop and six others, mostly hailing from SolidWorks and MIT. Fulop himself was a general partner at North Bridge, leading Series A investments in Onshape and Markforged. Northbridge itself was involved in the Series A funding rounds of numerous successful startups ultimately acquired by larger companies, such as Revit, SolidWorks and SpaceClaim, bought out by Autodesk, Dassault, and Ansys respectively. With his previous firm, A123 Systems, Fulop commercialized technology developed at MIT and left it with a market cap of $1.5 billion (the firm later went bankrupt). 

When it finally did show its hand, Desktop Metal revealed not one but two 3D printing systems: the Studio System and the Production System. The former is a desktop machine that uses a process called Bound Metal Deposition (BMD) to 3D print green parts made from metal powder bound within a plastic matrix. Once printed, the green part is placed in a furnace that burns out the binder, leaving a dense metal part. Support structures are easily removed by hand, no loose powder is ever exposed to the user, and no lasers are involved, making it suitable for office use, according to the company. The required debinding and sintering steps, however, would be difficult to do safely in most offices.

Ric Fulop with the DM Production System

The Production System uses a binder jetting process called Single Pass Jetting (SPJ) in which a binding agent is deposited onto metal powder. It distinguishes itself from technology used by ExOne in that it performs all of the necessary print steps—spreading metal powder, compacting it and depositing binder—in a single pass before reversing direction and printing another layer. During the printing process, “anti sintering agents” are also deposited, making post-processing easier and cheaper. Once complete, the green part or parts are sintered in a microwave furnace. 

Because SJP isn’t wasting time compacting powder with a separate recoating process, the technology reaches speeds of up to four times faster than other binder jetting processes. At Formnext 2018, Desktop Metal announced improvements in its Production System that included a print speed increase of 50 percent and a 225 percent increase in build volume to 750 x 330 x 250 mm.

Both systems rely on metal powder from the metal injection molding (MIM) industry, meaning that there is a potentially much greater supply of materials available for these printers than traditional metal 3D printers. Several hundred alloy types are tentatively printable, though each requires testing before they are officially released by the company. Both systems also cost less than $500,000, with the Studio running for $120,000 and the Production running for $360,000 at the time of release, without the additional equipment included.

Desktop Metal began shipping its Studio Systems at the end of 2017 and delivered its first Production System at the beginning of 2019. Reportedly the firm has had difficulty delivering systems and customers have had issues making parts on the systems. Since then, it has not only announced additional materials, but 3D printing processes as well. 

Ahead of Formnext 2019, the startup unveiled its Fiber platform, a desktop version of automatic fiber placement. Desktop Metal’s micro automated fiber replacement (μAFP) uses two print heads, one for 3D printing thermoplastic and another for laying down fiber reinforcement tape.

Here it’s worth noting that Desktop Metal has troubled history with Markforged, which was the first to market with a carbon fiber 3D printer. As previously mentioned, Fulop sat on the board of Markforged before launching his own 3D printing startup. While the μAFP process offers a distinct take on reinforcement fiber printing, it is notable that a company called Desktop Metal would develop a polymer fiber printing process. BMD meanwhile bears a striking similarity to a technology developed by Markforged called atomic diffusion additive manufacturing (ADAM). 

Both machines print parts using metal infused in a thermoplastic matrix that are then sintered in a furnace to create a fully dense metal part. Desktop Metal first sued Markforged for patent infringement and lost with Markforged launching a countersuit that ended in settlement. Desktop Metal agreed to refrain from disparaging ADAM or face a $100,000 penalty. Markforged then sued again, claiming that Desktop Metal handed out promo materials disparaging its products to over one hundred of its resellers, which would incur a $100,000 fine in each instance. This most recent suit was made public in July 2019 and news of its resolution has not yet been released.

The unicorn continues onward. In its latest and largest funding round (led by Koch Industries), in January 2019, Desktop Metal raised $160 million, bringing its total raised to $438 million. It has also developed a software called Live Parts, designed to automatically generate printable designs. Most recently, at Formnext 2019, the firm introduced its Shop System, a SJP printer that fits between the Studio and Production Systems. With general availability expected in fall 2020, the 4L version (350 x 220 x 50mm) comes in at $150,000, while the 16L (350 x 220 x 200mm) comes in at $225,000. 

Out of all three of our 3D printing unicorns, Desktop Metal is the newest, which means that it has also had the least amount of time on the market, which means that its valuation of over $1.2 billion is perhaps the most based on speculation and least on real-world performance. For some tech unicorns in the past, this has only led to proof that unicorns don’t actually exist. For Desktop Metal, we will have to see if their systems actually do make the production of metal 3D-printed parts as easy, safe and cheap as promised. 

The post 3D Printing Unicorns, Part 3: Desktop Metal appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Interview with Josh Martin the CEO of Fortify on Fiber Reinforced DLP

We’re so used to 3D printing being disruptive that we don’t, in my opinion, worry enough about being disrupted ourselves. Much 3D printing news is a seemingly endless me-too copycat conga line so we need to recognize when someone is doing something original. Fortify is doing something original, something original that is potentially disruptive to the 3D printing industry. The company has come out of obscurity to raise over $13 million for an integrated 3D printing solution for fiber-reinforced parts. Fortify is making strong DLP parts and can even align the fibers in these parts. Through correct fiber alignment inside a part, Fortify could potentially create properties that others could not match. Novel fibers could be used to make parts weakly magnetic but only in certain sections for example. Also tougher, stiffer and more durable DLP resin parts may take a traditionally smooth and detailed technology into new applications. Through better microstructural control the company could outperform other players by a significant margin. Boeing was already trying to put SLA parts on aircraft in the mid-nineties, will Fortify make that a reality? Or will light-cured resins always be brittle with low CSTs no matter how many fibers you put in them? Will their technology find broad adoption? Fortify has the potential to be truly disruptive if they through business development find, conquer and commercialize completely new parts and applications in spaces where their technology wins. Or the company could keep on seeking adoption and find only skepticism for a firm going its own way. Either way the company is going to have a very exciting number of years ahead of it. We interviewed Fortify CEO Josh Martin to find out more.

How did Fortify get started?

Fortify spun out of my research at Northeastern University. I completed my P.hD. under Professor Randall Erb at the DAPS (Directed Assembly of Particles and Suspensions) lab focusing on printing advanced composites. Throughout that process, I linked up with a few other engineers (Scott Goodrich, Andrew Caunter, and Dan Shores) at NEU and we decided to commercialize the technology. Around the same time,  Karlo Delos Reyes (one of Fortify’s Co-Founders) brought funding to the University for graduate students to turn their research and technology into a company (what is now called the Origin Program). We were lucky that the additive manufacturing space was gaining acknowledgement and needed new materials to continue serving a variety of industries. All of these pieces came together and propelled us to join MassChallenge (the largest accelerator for startups) where we were the 2016 Gold Winner. Since 2016, we’ve closed two rounds of Venture Capital financing, totaling $13M.

What is it that you do?

Fortify is creating engineering solutions by leveraging fiber reinforced additive manufacturing. We are commercializing DCM (Digital Composite Manufacturing), a platform that combines software, hardware, and materials for a fully integrated additive solution that will replace many bulk machined parts and enable new levels of performance through 3D printing.

How does it work?

The Digital Composite Manufacturing platform leverages traditional digital light projection technology to print accurate parts with high resolution. Our hardware system leverages new types of processing to print filled UV curable resins. Particle alignment and process control is driven by our software, which can utilize finite element analysis to optimize the end product.

How do you optimize for microstructural control?

Control over the microstructure is driven by our electromagnetic alignment technology – fluxprint. Optimization is reached by simulation based techniques, which allow us to use boundary conditions on a part to predict a best-case alignment protocol.

How do you align the fibers?

Our electromagnetic alignment technology – fluxprint – allows for control over the orientation of our reinforcing additives. Part of our unique value add is the ability to tailor the response of a number of different reinforcing materials.

So these are short fibers? 

In most cases, yes. Using aligned short fibers allows us to strike a unique balance of mechanical performance and processability.

Does this mean that you can also do magnetic parts?

Yes, this would be quite easy for us to accomplish. It’s worth mentioning that we currently tailor our materials so that the end-part has no bulk magnetic response.

How do your parts compare with traditional composites?

Traditional continuous fiber composites involve many labor intensive processes to achieve very high levels of performance. Applications that require large structural components (such as wind turbines and airplanes) will continue to leverage the traditional composite supply chain. However, for smaller and more complex parts, the cost to manufacture traditional composites often outweighs the performance benefit. Fortify is excited to bring our materials into these types of applications. Short fiber-filled engineering materials, such as glass-filled Ultem or PEEK, can be processed into more complex parts while providing valuable performance gains. However, these materials still present challenges that require machining operations and impose design constraints. Fortify is targeting a material performance-processability space that will directly compete with short-fiber filled engineering resins, and bridge the gap between filled engineering polymers and traditional composites.

Which materials can you do?

We are currently focusing our development on a number of ceramic reinforcements. We combine this with engineering thermosets from well known industrial suppliers like Henkel, DSM, and BASF.

Aren’t these DLP materials too brittle?

Thermoset materials used in DLP technologies have made tremendous progress towards improved toughness. Fortify is excited to improve performance measured by fracture and impact toughness using our alignment technology.

Can you produce parts with a lot of cross-sectional area?

Yes, Fortify is not limited to printing latticed parts. Most of our injection mold tools are printed with a fully dense cross-section.

Is it problematic that composites are difficult to recycle?

It has been a focus of the industry for a while now. There are new recyclable thermoset systems coming to the market, but the performance keeps them from competing with the incumbent supply chain. Fortify is keeping an eye on this space, because we believe our additive technology could be used to bridge the gap, enabling fiber reinforced recyclable systems that can compete on a performance basis with traditional materials.

What are some of the emerging applications?

Our beachhead application at the moment is injection mold tooling. This is an application sought after by the 3DP space for a few decades. The relatively low adoption barrier makes it a great entrance into the market to allow us to prove our technology as we develop for production parts. Fortify is excited to develop towards applications that need better performance at temperature, such as electrical connectors, as well as other industries that require precision parts with wear resistance, such as gears and electromechanical components.

Will you sell machines, be a service?

We are looking to provide hardware systems and consumables to OEM’s and contract manufacturers.

Who are you interested in partnering with?

We are actively seeking beta program partners. The perfect partner would be an organization that isn’t completely new to additive, so has some familiar background, and has an exciting application that fits the small, complex geometry, high mechanical application space. This is an exciting time to join the Fortify network as we continue to prove our technology for EUP and streamline production and manufacturing for composites in real world applications. 

What advice do you have for a company new to 3D printing that wants to use it for manufacturing?

Get the right decision makers involved from the beginning when identifying areas of the business that would benefit from the use of additive. Each use case likely has a bias towards a particular technology. Once that technology is identified, it will take dedicated resources to validate and exercise the use case.

The post Interview with Josh Martin the CEO of Fortify on Fiber Reinforced DLP appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Improving Mechanical Properties of 3D Printing with Continuous Carbon Fiber Shape Memory Composites

Researchers Yongsan An and Woon-Ryeol Yu explore improved 3D printing through the study of alternative materials. In the recently published ‘Three-dimensional printing of continuous carbon fiber-reinforced shape memory polymer composites,’ the authors discuss challenges with mechanical properties that plague many industrial users.

In this study, they experiment with continuous carbon fiber reinforced shape memory polymer composites (SMPC), in FDM 3D printing—using both thermoplastics and thermosets.

Mechanical properties of continuous fiber-reinforced polymer composites, short fiber reinforced polymer composites, and polymer matrix fabricated by FDM.

Parameters were tested, and samples were printed, as the researchers learned more about the benefits and limits of smart materials like SMPs—able to change with their environment and then morph back to their normal shape. This type of material borders on the 4D and allows users much greater flexibility in use—across a wide variety of applications. With the addition of carbon composites, the research team hoped to improve fabrication processes.

The team created a customized FDM 3D printer for the study, to fabricate continuous fiber-reinforced SMPC parts. For materials, two different types were chosen for evaluation: PLA and a polyurethane-type of SMP filaments (as the thermoplastic matrices) and an SMP epoxy as the thermoset matrix. The team then added the continuous carbon fibers for reinforcement to the filament.

Schematic diagram of the 3D printing system of continuous carbon fiber-reinforced polymer composites for (a) thermoplastics and (b) thermosets.

They experimented with differences in temperature and print speed in printing out samples to be tested. Mechanical and shape memory properties were then assessed by the team.

3D printing of CF and PLA composites. (a) only PLA, (b) 1.5 mm-diameter nozzle, and (c) 2 mm- diameter nozzle.

“The storage modulus (G’), loss modulus (G’’), and the viscosity of the PLA were decreased around its melting point. The storage modulus was decreased at a larger rate than the loss modulus, resulting in more liquid-like properties of PLA. Therefore, the PLA could be easily extruded from the nozzle of which temperature was 180℃,” the researchers wrote.

“The PLA filament without CF was smoothly extruded from a nozzle whether its diameter was larger than the fusion area or not. However, for a nozzle with 1.5 mm diameter, the PLA matrix was extruded like wrapping the CF helically. It was due to a fact that the PLA was extruded more than the CF because the CF was not stretched during extrusion. In addition, harsh temperature and different extrusion speed caused CF to fail during 3D printing. On the other hand, for a nozzle with 2 mm diameter, the PLA and CF were extruded straightly because their extrusion speeds were synchronized.”

There were numerous challenges—such as the CF not coated completely with PLA. The researchers created an improved printhead for better optimization in terms of supplying speed of PLA and CF and the structure and fusion time of the materials. They also added calendar rolls and a proper tension device.

“The printed SMPC showed good mechanical properties compared to those of conventionally 3D printed polymer in the fiber direction,” stated the researchers.

Strength and stability in mechanical properties are a constant challenge in 3D printing—but there are constant improvements as researchers are determined to perfect the materials and processes of progressive fabrication techniques from testing carbon lattices, to titanium, to examining issues in biocompatibility.

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source / Images: Three-dimensional printing of continuous carbon fiber-reinforced shape memory polymer composites]

The post Improving Mechanical Properties of 3D Printing with Continuous Carbon Fiber Shape Memory Composites appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Swinburne University awarded $1 million for mass produced 3D printed carbon fiber parts

Swinburne University of Technology in Melbourne, and its research partners have been awarded $1 million AUD towards a $3.5 million project to produce 3D printed composites on an industrial scale. Awarded via the Global Innovation Linkages Program, the money will go towards the development and mass 3D printing production of lightweight composite parts like in […]