JCRMRG’s 3D Health Hackathon Aims for Sustainable 3D Printed PPE

As we’ve mentioned many, many times over the last few months, the 3D printing community has really stepped up in a big way to help others as our world got turned upside down due to the COVID-19 pandemic. The crisis hasn’t passed either, and makers are still offering their support in any way they can.

We’ve been telling you about all of the virtual events and webinars taking place in the industry as we struggle to remain connected, including a virtual nationwide 3D Health Hackathon, hosted by the United Way-sponsored Jersey City Rapid Maker Response Group (JCRMRG) and sponsored by several industry partners, including 3DPrint.com.

This all-volunteer collective has an interesting back story. JCRMRG was just formed in April, as the result of a Reddit post regarding personal protective equipment, or PPE. The post was a call to arms for 3D printing hobbyists to organize, in order to create and deliver face shields for medical workers and first responders in New Jersey and New York.

JCRMRG volunteers delivering face shields to hospitals

“I’m creating the jersey city rapid maker response group. calling all local makers and professionals with 3dprinters, laser cutters, etc, to come volunteer remotely…together. It’s time for us to get organized and help supply our local healthcare workers more efficiently, as a group,” the post states.

“if we band together, we will be able to get much more efficient at our production and distribution, and will be able to supply larger numbers to needed places quickly, addressing local needs in a smarter way.”

Since then, the group has engaged over 50 volunteers, responsible for 3D printing 5,000 face shields. JCRMRG has since switched to injection molding, and more than 75,000 face shields have been delivered to healthcare workers all around the US. Now it’s raising the bar with the virtual hackathon, which aims to take on PPE-related wearability, sustainability, and supply chain issues.

“Our goal is to be responsible partners in the eco-system that we are currently a part of, while acting as a catalyst for innovation, and we are the only all volunteer PPE group in the country doing an event like this. We want to pay it forward, and enable our hackers to walk away with enough feedback and support to launch their own successful ventures that can continue to support the battle against COVID, and combat supply chain disruption through maker-led initiatives,” said JCRMRG’s founder Justin Handsman.

JCRMRG’s Laura Sankowich told me that as of now, 25 hackathon teams from around the country have signed up, and the event will kick off at 6 pm on July 10th with a Zoom call between the panelists and judges. Initial design ideas will be presented in one of three categories — sustainable PPE, modular solution labs, and day-to-day PPE — and then the hacking will begin.

“The Jersey City Rapid Maker Response Group is making a huge impact on a local and national level. First by providing PPE to frontline medical workers, and second by engaging people to think about how we can empower the maker movement to continue to address both COVID and future crisis related challenges. As a co-host and advisor of the event, and leader of a tech organization with more than 2,500 members, I am confident that the hackathon will have a positive, long-term impact in terms of the ideas, and potential businesses it will produce,” stated Ben Yurcisin, Founder of the Jersey City Tech Meetup, who is also serving as the event advisor.

A JCRMRG volunteer set his system to 3D print 40 face shield visors at once.

From July 11-12, teams will work on their projects, whether they’re designing PPE for daily use in schools, business, and public transportation, figuring out ways to reduce waste in the PPE production process, or developing mobile manufacturing labs that can be deployed quickly and easily in healthcare, emergent, and even educational settings.  Teams of experienced mentors will support the hackers, offering support and coaching, as well as advice on design and functionality capabilities and creating value propositions for their ideas.

“This hackathon represents the next phase in our mission to use technology for humanitarian causes. Our hackathon is bringing together the brightest minds and leaders in technology, business, and additive manufacturing to help participating teams develop solutions to address the ongoing needs surrounding supply chain disruptions in healthcare and emergent situations,” Handsman said. “We are also focused on encouraging the development of safe, sustainable solutions related to the manufacturing and use of PPE since millions of face shields, masks, and pieces of protective gear are ending up in landfills across the country after a single use.”

In addition to Handsman, there are eight other Hackathon judges:

  • Michael Burghoffer, Founder and CEO of PicoSolutions
  • Alda Leu Dennis, General Partner at early stage VC firm Initialized Capital
  • Christopher Frangione, COO of TechUnited:NJ
  • Thomas Murphy, Sr. Product Manager at Shapeways
  • Rob Rinderman, SCORE Mentor, Founder, Investor
  • Tali Rosman, General Manager and Vice President of 3D Printing, Xerox
  • Nora Toure, Founder of Women in 3D Printing
  • Dr. David Zimmerman, Stevens Venture Center, Director of Technology Commercialization, Stevens Institute of Technology

A variant of the open-source Prusa face shield, modified and produced by JCRMRG

The winning hacks will be announced on July 16th. The third place team will receive $1,500, while second place will get $2,500, and first place is $3,500. Several strategic partners and sponsors are supporting the hackathon, including 3DPrint.com, Asimov Ventures, DesignPoint, Indiegrove, PicoSolutions, Dassault Systèmes, PSE&G, PrusaPrinters, TechUnited, Stevens Venture Center, Devpost, Women in 3D Printing, and the Jersey City Tech Meetup.

Once the hackathon is over, JCRMRG plans to follow and support the teams, as well as the maker community, by connecting makers with resources and mentors, and coming up with more initiatives to use 3D printing and injection molding to make face shields for the brave men and women working on the front lines of the pandemic in the US.

JCRMRG donated 875 face shields to Zufall Health Center in New Jersey

(Source/Images: Jersey City Rapid Maker Response Group)

The post JCRMRG’s 3D Health Hackathon Aims for Sustainable 3D Printed PPE appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Ravensburger launches 3D printable board game character competition

London-based 3D content platform MyMiniFactory, and German game and toy company Ravensburger, have partnered to launch a co-creation 3D printing design competition for the board game, Labyrinth.  In what is said to be a first, the partners, under an IP licensing agreement, are inviting makers to create new monetizable themes and figurine for the game. Chengxi Wang, […]

Wikifactory’s Docubot Challenge Creates a Hardware Solution for Documentation

International startup Wikifactory, established in Hong Kong last June, is a social platform for collaborative product development. Co-founded by four makers and counting 3DPrint.com Editor-in-Chief Joris Peels until recently as a member of its advisory board, Wikifactory also has locations in Madrid and Shenzhen, and is dedicated to makers and DIY projects. It’s an all-in-one workspace designed for open source communities to help connect product developers to useful tools, such as 3D printing.

Recently, the platform launched the Docubot Challenge to help inaugurate the first Distributed Hardware Hackathon in the world. The global open source community was charged with finding a hardware solution for an issue that every maker faces – documentation.

This is a very prevalent issue in the maker community in terms of open knowledge for the purposes of digital fabrication. Documentation makes it possible for community members to gain the necessary knowledge and skills to further contribute to an ever-growing base of information. But just because it’s useful doesn’t mean it’s easy – while documenting fabrication methods may be a necessary evil, it can be a painstaking and tedious process that can slip through the cracks if you’re not meticulous about updating your work.

“Every product developer faces the task of having to document their work, but it’s a painful process. When your hands are full with what you are doing, it’s hard to take a step back and jot down the steps. That’s why documentation is often written after the process has already been completed, so there will always be missing photos or information,” the challenge states.

“We should strive to make the process of documentation easier, because Documentation in itself is an amazing thing. As a resource, it helps a broader community learn the skills and acquire the knowledge to contribute to a growing open source knowledge base.”

The Wikifactory team really wanted to turn the first edition of its Docubot Challenge into a distributed event; it is, after all, tagged as being “designed for makers, by makers.” Due to support from makerspaces around the world – specifically Pumping Station One in Chicago, Makerspace Madrid, and TroubleMaker in Shenzhen, China – this hope became a reality. Wikifactory is a great tool when organizing maker community events like workshops and hackathons, as it makes it simple to bring teams together online so they can contribute before, and even after, the event.

The goal of the challenge was to, according to WikiFactory, “accelerate a solution to a common problem faced by product developers” by collaboratively building a real-time documentation assistant that will take photos and videos on command, and could even convert speech to text. As someone who spends plenty of time transcribing recorded interviews, I want to know when this documentation assistant will be commercially available!

“With a hardware solution, doing documentation can be made into a more interactive, assisted process which can help accelerate engagement and collaboration in open source design and hardware,” the challenge stated.

The Docubot Challenge was originally instigated by Wikifactory members Gianluca Pugliese and Kevin Cheng. The participants were connected through Wikifactory to host project events in their own cities, engage with other teams around the world, and accept feedback and advice from other problem solvers. While it was definitely a learning experience, Docubot is now officially an open source hardware initiative, and great progress has already been made.


The Shenzhen Team developed an app that converts speech to text, the Madrid Team created a fun game that helps makers beat laziness and get documenting, and the Chicago Team created a button that signals a phone to start recording voice messages as well as pictures,” Wikifactory wrote.

The worldwide maker community is invited to get involved and contribute to the Docubot initiative. Whether you’re working on design ideas, developing the app and OS, or the hardware integration, the collaborative project needs your help in further extending the ideas by the team members who originally started it.

“With interactive and intercity sessions, participants will get to build relationships with creative problem solvers from around the world. It is an opportunity to apply skills in digital fabrication machines like 3D printing, hardware, electronics, programming and robotics for a relevant cause.”

Learn more about the Docubot Challenge here.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the comments below.

[Images: Wikifactory]

The post Wikifactory’s Docubot Challenge Creates a Hardware Solution for Documentation appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing News Briefs: June 25, 2019

Recently, HP released its sustainable impact report for 2018, which is the first item we’ll tell you about in our 3D Printing News Briefs. Then it’s on to more good news – the 3D Factory Incubator in Barcelona is reporting a very positive first 100 days in business, while AMUG has named the winners from its Technical Competition. We’ll close with some metal 3D printing – Nanoscribe published a fly-over video that illustrates the design freedom of nano- and microscale 3D printing, and Laser Lines is now a UK reseller for Xact Metal.

HP Releases 2018 Sustainable Impact Report

HP recycling bottle shred: Through its recycling programs, HP is transforming how we design, deliver, recover, repair, and reuse our products and solutions for a circular future.

HP has released its Sustainable Impact Report for 2018, which talks about the company’s latest advancements in achieving more sustainable impact across its business, as well as the communities it serves, in order to create a better green future. Its sustainability programs drove over $900 million in new revenue last year, and the report shows how HP is using 3D printing to drive a sustainable industrial revolution, such as reducing the amount of materials it uses and expanding its recycling program. The report also states new commitments the company set for itself in order to drive a low-carbon, circular economy.

“Companies have critically important roles to play in solving societal challenges, and we continue to reinvent HP to meet the needs of our changing world. This isn’t a nice to do, it’s a business imperative,” explained Dion Weisler, the President and CEO of HP Inc. “Brands that lead with purpose and stand for more than the products they sell will create the most value for customers, shareholders and society as a whole. Together with our partners, we will build on our progress and find innovative new ways to turn the challenges of today into the opportunities of tomorrow.”

To learn more about HP’s efforts to reduce the carbon footprint, such as investing in an initiative to keep post-consumer plastic from entering our waterways and the recycling program it started with new partner SmileDirectClub, visit the company’s dedicated Sustainable Impact website.

Successful First 100 Days at 3D Factory Incubator

On February 11th, 2019, 3D Factory Incubator – the first European incubator of 3D printing – was officially inaugurated in Barcelona. It’s now been over 100 days since the launch, and things are going very well. In that time period, the incubator is reporting a total of 15,000 3D printed pieces, and 20 incubated companies, and still has room for more interested projects, though all its private spaces are now occupied. The original goal is to incubate 100 companies in 5 years, and it seems as if 3D Factory Incubator is well on its way.

Located in the Zona Franca Industrial Estate, the unique initiative is led by El Consorci de Zona Franca de Barcelona (CZFB) and the Fundación LEITAT, and has received an investment of €3 million. The goal of the incubator is promote the growth of 3D printing initiatives, and there are a wide variety of companies hosted there, including consumer goods, a logistics company, healthcare companies, design initiatives, and mobility.

AMUG Technical Competition Winners Announced

(top) Erika Berg’s digitally printed helmet liner components and Riddell’s SpeedFlex Precision Diamond Helmet; (left) Maddie Frank’s cello, and (right) Bill Braune’s Master Chief reproduction.

At the Additive Manufacturing Users Group (AMUG) Conference in April, 17 entries were on display to compete for the gold in the annual Technical Competition of excellence in additive manufacturing. The winners have finally been announced, and it seems like the panel of judges had a hard time deciding – they were unable to break the tie in the Advanced Finishing category. Maddie Frank of the University of Wisconsin, with her 3D printed electric cello, and Bill Braune of Met-L-Flo, with his 30 inch-tall model of “The Master Chief” Halo video game character, are co-winners in this category for their attention to detail and “exceptional execution,” while Erika Berg of Carbon won the Advanced Applications category with her digitally printed helmet liner for Riddell’s SpeedFlex Precision Diamond Helmet.

“The 17 entries in the Technical Competition were amazing in their beauty, innovation, and practicality,” said Mark Barfoot, AMUG past president and coordinator of the Technical Competition. “Our panel of judges deliberated at length to make the final decision.”

The winners each received a commemorative award, as well as complimentary admission to next year’s AMUG Conference.

Nanoscribe Shows off Design Freedom in Fly-Over Video

The versatility sample impressively illustrates the capabilities of Photonic Professional systems in 3D Microfabrication.

German company Nanoscribe, which manufactures and supplies high-resolution 3D printers for the nanoscale and microscale, is showing the world how its systems can up many opportunities in 3D microfabrication, with a new fly-over video, which truly highlights the design freedom it can offer when making 3D microparts with submicron features. The video shows actual scanning electron microscope (SEM) images of extreme filigree structures that were 3D printed on its Photonic Professional GT2.

From a variety of angles, you can see diverse geometries, which show off just how versatile Nanoscribe’s high-resolution 3D printing can be – all 18 of the objects and structures were printed in just over an hour. The company’s microfabrication technology makes it possible to create designs, like undercuts and curved shapes, and customizable topographies that would have been extremely difficult to do otherwise. To streamline the microfabrication process for its customers, Nanoscribe offers ready-to-use Solution Sets for its Photonic Professional GT2 printers, which, according to the company, “are based on the most suitable combination of precision optics, a broad range of materials and sophisticated software recipes for specific applications and scales.”

Xact Metal Names Laser Lines New UK Reseller

Pennsylvaniastartup Xact Metal welcomes Laser Lines – a total solutions provider of 3D printers and laser equipment – as a UK reseller for its metal 3D printers. These machines, which offer extremely compact footprints, are meant for customers in high-performance industries that require high-throughput and print speed, such as medical and aerospace. Laser Lines will immediately begin distributing the Xact Metal XM200C and XM200S systems, as well as the XM300C model once it becomes available next year.

“We are delighted to be the chosen UK supplier for Xact Metal, whose metal printing systems are establishing new levels of price and performance. Making quality metal printing accessible requires innovation. Xact Metal’s printing technology is built on the patent-pending Xact Core – a high speed gantry system platform where light, simple mirrors move quickly and consistently above the powder-bed on an X-Y axis. It’s another step change for our industry and opens a whole range of exciting opportunities,” stated Mark Tyrtania, the Sales Director at Laser Lines.

Discuss these and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

Penn State Creates a Breakthrough 3D Printing Technology for the NASA Housing Challenge

In 2017, just a few months before his death, theoretical physicist Stephen Hawking said humanity only has about 100 years to escape Earth. Even though we have seen the signs alerting us that life on this planet is ailing, with plastic conquering the oceans, thousands of animal species becoming extinct and a shortage of water that affects every continent, the conversion towards a fully sustainable lifestyle that could revert the feeble state of our home is just not happening. So, many are actually paying attention and heeding Hawkins advice, trying to look for other “celestial bodies”, to conquer. One of the first to announce they were looking for volunteers to travel to the red planet was Mars One back in 2013, with over 200,000 people from 140 countries applying for a one-way ticket to join a human settlement on Mars by 2023. Millions of dollars later, Mars One went bankrupt showing us all how challenging developing the technology for Mars would be. Happily, they are not the only ones, four years ago, NASA outlined a plan to land humans on the surface of Mars by 2030, and world-renowned investor Elon Musk already has a timeline for colonizing Mars. The race is on to develop the technology, space shuttles, and medicine that will take the first settlers. One key challenge is housing of course, which is why NASA hosted the 3D printing habitat challenge, a four-part massive event that began in 2015 and created a competition among citizen inventors to use readily available and recyclable materials to print habitats useful for Mars colonization. Additionally, these discoveries in science and technology can also be adapted to improve life on Earth. During the final phase, runner up team Pennsylvania State University of University Park, was awarded $200,000 for their work. The interdisciplinary team of students and faculty from the Colleges of Arts and Architecture, Engineering, Agricultural Sciences, and the Materials Research Institute, have worked arduously during the last few years on this challenge and in the process, they engineered a breakthrough that moves forward 3D printing construction research and pushes the team closer to the goal of creating sustainable housing on Earth.

The four-phase competition requires entrants to develop advanced 3D printing technology, including the mechanical elements of the printer and a cement mixture using indigenous materials, to produce a structurally sound habitat that can be 3D printed by NASA’s space explorers on Mars. During the final phase, which took place on the first week of May, and after 30 hours of 3D printing, with nearly 200 spectators gathered at Caterpillar Edwards Demonstration and Learning Center in Peoria, two teams competed side by side, PennStateDen@Mars (the only university team in the competition) and AI SpaceFactory, culminating with the final print of each team’s structure. And although the Penn State team didn’t win phase-three of the competition, they returned to University Park having developed 3D printed home construction technology that could impact construction or help rebuild areas ravaged by natural disasters.

The Penn State team during the third phase of the NASA challenge (Image: NASA)

“Printing an enclosed roof has never been done before,” said José Duarte, Penn State team leader and director of the Stuckeman Center for Design Computing. “It was an amazing feeling and the success really highlighted the collaborative nature of the team. We had big dreams and because of everyone involved, they became a reality. We definitely feel a sense of social responsibility with this research. We are dealing with an environment quite different than ours.”

NASA’s encounter has generated many experiments, challenges and innovative results, helping 3D technology advance into uncharted territory, and Mars or any other planet humans intend to inhabit in the future will be a difficult endeavour. Mars is a rocky planet with volcanoes, canyons, limited access to water and a very thin atmosphere made of carbon dioxide, nitrogen, and argon. It’s similar to Earth in some ways, but you might need to suit up before wandering around the terrain, let alone try to build your own home. According to NASA it’s a tough place to live, but thanks to the knowledge and understanding gained through these competitions, we might get a little bit closer to conducting live printing experiments on site.

Associate professor of architecture and fellow team leader, Shadi Nazarian, also believes that the technology could be life-changing for many people:

“Imagine an area that was devastated by a tornado; this type of technology could be sent to that area and shelters can be immediately printed for those who lost everything. This thinking drives our research and feels much more attainable with our latest achievement. The applications of the materials and techniques that we and our competitors have developed are many, including immediate possibilities for building with materials that are gentler to the environment, use indigenous and recyclable materials, and withstand harsh conditions here on Earth and beyond,” Nazarian suggested.

The Penn State team, led by Duarte and Nazarian, was originally selected to take part of the competition from an initial entry pool of 77 teams. PennStateDen@Mars was one of only five teams who qualified to participate in the Centennial Challenge. In both phases of the contest, the participants had to 3D print structural habitat pieces in no more than four days, that were evaluated and then crush-tested on site, using some of Caterpillar’s most overwhelming construction machines. During the event, the team faced the challenge of creating robots to build the habitat. The team was very successful, finishing in second place in phase two and second and third place in construction levels one and two of phase three of the competition, generating nearly $300,000 in prize money.

The Penn State team during the second phase of the NASA challenge (Image: NASA)

The PennStateDen@Mars entry to the competition was based on previous research aimed at developing functionally graded materials and verifying the possibility of designing and constructing seamless buildings, which can have a significant impact on architectural language and building processes. They further developed additive-manufacturing technology to 3D print habitats using a specially formulated concrete made from materials that can be found on Mars. But Penn State being selected for this challenge has also a lot to do with their experience and innovation in 3D printing. They have many 3D printing labs on campus, like the Maker Commons, which houses a large-scale printing installation of 32 desktop 3D printers as well as the Invention Studio; university researchers delved into 4D Printing with Wood Composites for architectural applications, while a Penn State startup, Trimatis LLC, hopes to help the planet with recycled filament and the university also created VenturePointe, a new startup incubator for urban campus Penn State Shenango, complete with 3D printers. Both Nazarian and Duarte have been doing research with materials and 3D printing in the past, resulting in the development of innovative and graded material interfaces, which would enable the design of seamless shelters and impermeable bonds between glass and geopolymer concrete to protect individuals and the climate inside the habitat.

“The Mars competition has given us the opportunity to expand our understanding of 3D printing in ways we didn’t consider,” Nazarian said. “The result has been breakthroughs that can fundamentally change concrete construction. For example, 3D printing does not require formwork, which consumes much of the cost and labor in this industry. I’m excited about how this research helps advance the construction technology that is needed to create sustainable housing options.”

Team members focused their efforts in developing a novel concrete formulation, advancing 3D printing processes, and designing the overall 3D printing system necessary to print large structures. According to Penn State, the production of the geopolymer binder used in the formulation of the concrete designed by the team does not emit carbon dioxide into the atmosphere, unlike the production of the most common types of cement. Last year, assistant professor of civil engineering at Penn State, Alexandra Radlinska, along with NASA launched an experiment, the Microgravity Investigation of Cement Solidification – Multi-use Variable-gravity Platform (MICS-MVP), to examine cement samples aboard the International Space Station, which could have significant benefits for humans living on Earth and, eventually, the moon and Mars. Processing the samples provided with the fundamental baseline and insight regarding cement solidification in extraterrestrial bodies such as Mars.

Caterpillar’s Edwards Demonstration and Learning Center in Peoria (Image: NASA)

The 3D Printed Habitat Challenge will resume next year and PennStateDen@Mars team is ready to advance the additive construction technology needed to create sustainable housing. In the meantime, they are looking to showcase their breakthrough in 3D printing for housing on campus, where a 3D printed tiny house could be constructed, which, according to the university, will be a fully sustainable building and offer a glimpse into the future of home construction.

Additive Manufacturing is being used widely to develop sustainable housing options. With countries like Singapore busy at work 3D printing public housing, as well as INNOPrint 3D, a French 3D printer that (unrealistically) claims it can print emergency housing in 30 minutes, looking to print homes for the first settlers to colonize Mars seems like the right direction for the technology. Many innovators, companies and governments are passionate about life on other planets, and Mars has qualities that experts consider similar to Earth, with challenges picking up the pace of 3D printing technologies used in construction, it might not be long before 3D printers are being shipped to Mars for some of the first construction experiences in outer space.

Solvay Announces Winners of 2019 Solvay AM Cup, First Place Winners Take $10K Home

It’s that time of year again, as Italy’s Solvay announces winners for what seems to have become a yearly tradition with their AM Cup. For 2019, students were at the ready, and given an industrial task as they were challenged to use Radel® PPSU AM-ready filament for creating an ASTM D638 Type V size tensile bar in the z-axis, along with a wavy-shaped pressure pipe.

While it may seem like an easy challenge to be given an assignment to print out a couple of parts, there was much more to it than that; in fact, students from three continents participated in this contest, with 35 student teams from 32 universities. Solvay’s ultimate goal in initiating the 2019 Solvay AM Cup was to highlight the impact 3D printing materials can have on different applications today due to the high performance of parts—and the availability of different materials and methods. Solvay’s focus was for the students to explore the disruptive technology and learn more about ‘the art of the possible.’

The teams were judged on their collective enterprise in making the parts, judged on:

  • Creativity in 3D printing
  • Maximum dimensional accuracy
  • Mechanical properties
  • Performance in burst pressure tests and translucency

Each team was provided with a spool of Radel® polyphenylsulfone (PPSU) AM filament and sent on their way to make plans for winning the competition. Those who were successful in their mission have just been announced:

“The team secured the first prize due to its ability to achieve 100 percent z-axis strength in the Type V size tensile bar and its wavy pipe showed overall dimensional accuracy, surface uniformity, and a remarkable mechanical performance by enduring a burst pressure test of 1,400 psi (96.5 bar) for two hours,” states Solvay in their press release, also commenting that there was very little separating the teams who won second and third place regarding performance in strength and ductility of their parts.

The winners won $10,000, $5,000, and $3,000, respectively, with the idea that these funds would be well-invested in activities related to higher learning, or ‘societal or entrepreneurial’ endeavors. The 3D printed parts they submitted for the challenge will be on display at the Rapid + TCT show in Detroit, MI (Booth #747) from May 21-23.

“It was inspiring to see the various approaches to solving the challenges of fused filament fabrication (FFF) such as bed adhesion and chamber temperature management. The winning team demonstrated once more that 3D printed parts can virtually match the performance and quality of conventional injection molded parts, provided material, hardware, and process are optimized together,” said Ryan Hammonds, R&D platform manager for Solvay’s Specialty Polymers global business unit and president of the AM Cup Jury.

“We look forward to sharing with our customers the benefits gained from this edition of the Solvay AM Cup for 3D printing the best possible PPSU parts for applications in various industries such as aerospace, healthcare and industrial.”

Along with inspiring students to explore the infinite opportunities available with 3D design and printing, Solvay has continued their momentum, offering strong opinions on the future of 3D printing, expanding materials within their manufacturing processes, and entering into dynamic partnerships. What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source / Images: Solvay]

3D Printing News Briefs: February 8, 2019

We made it to the weekend! To celebrate, check out our 3D Printing News Briefs today, which covers business, research, and a few other topics as well. PostProcess has signed its 7th channel partner in North America, while GEFERTEC partners with Linde on 3D printing research. Researchers from Purdue and USC are working together to develop new AI technology, and the finalists for Additive World’s Design for Additive Manufacturing 2019 competition have been announced. Finally, Marines in Hawaii used 3D printing to make a long overdue repair part, and Thermwood and Bell teamed up to 3D print a helicopter blade mold.

PostProcess Technologies Signs Latest North American Channel Partner

PostProcess Technologies, which provides automated and intelligent post-printing solutions for additive manufacturing, has announced its seventh North American Channel Partner in the last year: Hawk Ridge Systems, the largest global provider of 3D design and manufacturing solutions. This new partnership will serve as a natural extension of Hawk Ridge Systems’ AM solutions portfolio, and the company will now represent PostProcess Technologies’ solution portfolio in select North American territories.

“Hawk Ridge Systems believes in providing turnkey 3D printers for our customers for use in rapid prototyping, tooling, and production manufacturing. Often overlooked, post-printing is a critical part of all 3D printing processes, including support removal and surface finish refinement,” said Cameron Carson, VP of Engineering at Hawk Ridge Systems. “PostProcess Technologies provides a comprehensive line of equipment that helps our customers lower the cost of labor and achieve more consistent high-quality results for our 3D printing technologies, including SL (Vat polymerization), MJF (Sintered polymer), and ADAM (Metal) printing. We vet our partnerships very closely for consistent values and quality, and I was impressed with PostProcess Technologies’ reputation for reliability and quality – an ideal partnership to bring solutions to our customers.”

GEFERTEC and Linde Working Together on 3D Printing Research

Near-net-shaped part after 3D printing. [Image: GEFERTEC]

In order to investigate the influence of the process gas and the oxygen percentage on 3DMP technology, which combines arc welding with CAD data of metal parts, GEFERTEC GmbH and Linde AG have entered into a joint research project. The two already work closely together – Linde, which is part of the larger Linde Group, uses its worldwide distribution network to supply process gases for 3D printing (especially DMLS/metal 3D printing/LPBF), while GEFERTEC brings its arc machines, which use wire as the starting material to create near-net-shaped parts in layers; conventional milling can be used later to further machine the part after 3D printing is complete.

The 3D printing for this joint project will take place at fellow research partner Fraunhofer IGCV‘s additive manufacturing laboratory, where GEFERTEC will install one of its 3D printers. The last research partner is MT Aerospace AG, which will perform mechanical tests on the 3D printed parts.

Purdue University and USC Researchers Developing New AI Technology

In another joint project, researchers from Purdue University and the University of Southern California (USC) are working to develop new artificial intelligence technology that could potentially use machine learning to enable aircraft parts to fit together more precisely, which means that assembly time can be reduced. The work speaks to a significant challenge in the current AM industry – individual 3D printed parts need a high level of both precision and reproducibility, and the joint team’s AI technology allows users to run software components in their current local network, exposing an API. Then, the software will use machine learning to analyze the product data and build plans to 3D print the specific parts more accurately.

“We’re really taking a giant leap and working on the future of manufacturing. We have developed automated machine learning technology to help improve additive manufacturing. This kind of innovation is heading on the path to essentially allowing anyone to be a manufacturer,” said Arman Sabbaghi, an assistant professor of statistics in Purdue’s College of Science.

“This has applications for many industries, such as aerospace, where exact geometric dimensions are crucial to ensure reliability and safety. This has been the first time where I’ve been able to see my statistical work really make a difference and it’s the most incredible feeling in the world.”

Both 3D Printing and AI are very “hot” right now. Outside of the hype there are many ways that machine learning could be very beneficial for 3D printing in coming years in part prediction, melt pool monitoring and prediction, fault analysis and in layer QA. Purdue’s technology could be a possible step forward to “Intelligent CAD” that does much of the calculation, analysis and part generation for you.

Finalists Announced for Design for Additive Manufacturing Challenge

[Image: Additive Industries]

Additive Industries has announced the finalists for its Additive World Design for Additive Manufacturing Challenge, a yearly competition where contestants redesign an existing, conventionally manufactured part of a machine or product with 3D printing, taking care to use the technology’s unique design capabilities, like custom elements and thin walls. This year, over 121 students and professionals entered the contest, and three finalists were chosen in each category, with two honorable mentions – the Unibody Hydraulic System by from Italy’s Aidro Hydraulics & 3D Printing and the Contirod-Düse from Nina Uppenkam, SMS Group GmbH – in the professional category.

“The redesigns submitted from all over the world and across different fields like automotive, aerospace, medical, tooling, and high tech, demonstrated how product designs can be improved when the freedom of additive manufacturing is applied,” said Daan Kersten, CEO of Additive Industries. “This year again we saw major focus on the elimination of conventional manufacturing difficulties, minimization of assembly and lowering logistical costs. There are also interesting potential business cases within both categories.”

The finalist designs are listed below, and can be seen in the image above, left to right, top to bottom:

  • “Hyper-performance suspension upright” from Revannth Narmatha Murugesan, Carbon Performance Limited (United Kingdom, professional)
  • “Cutting dough knife” from Jaap Bulsink, K3D (The Netherlands, professional)
  • “Cold Finger” from Kartheek Raghu, Wipro3D (India, professional)
  • “Brake Caliper” from Nanyang Technological University team (Singapore, student)
  • “Cubesat Propellant Tank” from Abraham Mathew, the McMaster University (Canada, student)
  • “Twin Spark Connecting Rod” from Obasogie Okpamen, the Landmark University (Nigeria, student)

Marines 3D Printed Repair Part 

US Marine Corps Lance Cpl. Tracey Taylor, a computer technician with 7th Communications Battalion, aboard Marine Corps Base Camp Hansen in Okinawa, Japan, is one of the Marines that utilize 3D printing technology to expand capabilities within the unit. [Photo: US Marine Corps Cpl. George Melendez]

To save time by moving past the lengthy requisitioning process, 3D printing was used at Marine Corps Base Hawaii, Kaneohe Bay, to create a repair part that would help fix a critical component to increase unit readiness. This winter, Support Company, Combat Logistics Battalion (CLB) 3 fabricated the part for the Electronic Maintenance (EM) Platoon, 3rd Radion Battalion, and both EM technicians and members of CLB-3 worked together to design, develop, and 3D print the part, then repaired the component, within just one month, after having spent almost a year trying to get around delays to fix it.

US Marine Cpl. Anthony Farrington, designer, CLB-3, said that it took about three hours to design the replacement part prototype, and an average between five to six hours to 3D print it, before it was used to restore the unit to full capability.

“With the use of 3D printing, Marines are empowered to create solutions to immediate and imminent challenges through additive manufacturing innovation,” said subject matter expert US Marine Chief Warrant Officer 3 Waldo Buitrago, CLB-3.

“We need to embrace 3D printing and encourage our Marines to express their creativity, which in turn, could lead to solutions in garrison and combat such as in this case study.”

3D Printed Helicopter Blade Mold

Thermwood and Bell recently worked together to create a 3D printed tool, but not just any 3D printed tool. Thermwood believes that the 3D printed helicopter blade mold is the largest ever 3D printed autoclave-capable tool. Bell, frustrated with expensive tooling that took a long lead time, reached out to Thermwood for help, and the company suggested its LSAM system, with new 60 mm melt core technology. Bell then provided Thermwood with a 20-foot-long, 17-inch-high, 14-inch-wide closed cavity blade mold, and upon receiving both the model and Bell’s tooling requirements, Thermwood began printing the tool with Techmer PM’s 25% carbon fiber reinforced PESU material (formulated specifically for its LSAM additive printing) in a continuous run. The new melt core can achieve a high print rate, even when processing high temperature material, which was great news for Bell.

Glenn Isbell, Vice President of Rapid Prototyping and Manufacturing Innovation at Bell, said, “Thermwood’s aggressive approach to pushing the boundaries and limitations of traditional 3D printing and machining is exactly what we were looking for.”

The final bond tool was able to maintain the vacuum standards required by Bell for autoclave processing right off the printer, without needing a seal coating. Thermwood will soon 3D print the second half of the blade mold, and both teams will complete further testing on PESU 3D printed molds for the purpose of continued innovation.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

3D Printing News Briefs: August 24, 2018

We’re sharing some business news in today’s 3D Printing News Briefs, followed by some interesting research and a cool 3D printed statue. Meld was listed as a finalist in the R&D 100 Awards, and Renishaw has introduced 3D printed versions to its styli range, while there’s an ongoing Digital Construction Grant competition happening in the UK. A researcher from Seoul Tech published a paper about in situ hydrogel in the field of click chemistry, while researchers in Canada focused on the Al10SiMg alloy for their study. Finally, an Arcam technician tested the Q20plus EBM 3D printer by making a unique titanium statue of Thomas Edison.

Meld is R&D 100 Awards Finalist

The global R&D 100 Awards have gone on for 56 years, highlighting the top 100 innovations each year in categories including Process/Prototyping, IT/Electrical, Mechanical Devices/Materials, Analytical/Test, and Software/Services, in addition to Special Recognition Awards for things like Green Tech and Market Disruptor Products. This year, over 50 judges from various industries selected finalists for the awards, one of which is MELD Manufacturing, an already award-winning company with a unique, patented no-melt process for altering, coating, joining, repairing, and 3D printing metal.

“Our mission with MELD is to revolutionize manufacturing and enable the design and manufacture of products not previously possible. MELD is a whole new category of additive manufacturing,” said MELD Manufacturing Corporation CEO Nanci Hardwick. “For example, we’re able to work with unweldable materials, operate our equipment in open-atmosphere, produce much larger parts that other additive processes, and avoid the many issues associated with melt-based technologies.”

The winners will be announced during a ceremony at the Waldorf Astoria in Orlando on November 16th.

Renishaw Introduces 3D Printed Styli

This month, Renishaw introduced a 3D printed stylus version to its already wide range of available styli. The company uses its metal powder bed fusion technology to provide customers with complex, turnkey styli solutions in-house, with the ability to access part features that other styli can’t reach. 3D printing helps to decrease the lead time for custom styli, and can manufacture strong but lightweight titanium styli with complex structures and shapes. Female titanium threads (M2/M3/M4/M5) can be added to fit any additional stylus from Renishaw’s range, and adding a curved 3D printed stylus to its REVO 5-axis inspection system provides flexibility when accessing a component’s critical features. Components with larger features need a larger stylus tip, which Renishaw can now provide in a 3D printed version.

“For precision metrology, there is no substitute for touching the critical features of a component to gather precise surface data,” Renishaw wrote. “Complex parts often demand custom styli to inspect difficult-to-access features. AM styli can access features of parts that other styli cannot reach, providing a flexible, high-performance solution to complex inspection challenges.”

Digital Construction Grant Competition

Recently, a competition opened up in the UK for organizations in need of funding to help increase productivity, performance, and quality in the construction sector. As part of UK Research and Innovation, the organization Innovate UK – a fan of 3D printing – will invest up to £12.5 million on innovative projects meant to help improve and transform construction in the UK. Projects must be led by a for-profit business in the UK, begin this December and end up December of 2020, and address the objectives of the Industrial Strategy Challenge Fund on Transforming Construction. The competition is looking specifically for projects that can improve the construction lifecycle’s three main stages:

  • Designing and managing buildings through digitally-enabled performance management
  • Constructing quality buildings using a manufacturing approach
  • Powering buildings with active energy components and improving build quality

Projects that demonstrate scalable solutions and cross-sector collaboration will be prioritized, and results should lead to a more streamlined process that decreases delays, saves on costs, and improves outputs, productivity, and collaborations. The competition closes at noon on Wednesday, September 19. You can find more information here.

Click Bioprinting Research

Researcher Janarthanan Gopinathan with the Seoul University of Science Technology (Seoul Tech) published a study about click chemistry, which can be used to create multifunctional hydrogel biomaterials for bioprinting ink and tissue engineering applications. These materials can form 3D printable hydrogels that are able to retain live cells, even under a swollen state, without losing their mechanical integrity. In the paper, titled “Click Chemistry-Based Injectable Hydrogels and Bioprinting Inks for Tissue Engineering Applications,” Gopinathan says that regenerative medicine and tissue engineering applications need biomaterials that can be quickly and easily reproduced, are able to generate complex 3D structures that mimic native tissue, and be biodegradable and biocompatible.

“In this review, we present the recent developments of in situ hydrogel in the field of click chemistry reported for the tissue engineering and 3D bioinks applications, by mainly covering the diverse types of click chemistry methods such as Diels–Alder reaction, strain-promoted azide-alkyne cycloaddition reactions, thiol-ene reactions, oxime reactions and other interrelated reactions, excluding enzyme-based reactions,” the paper states.

“Interestingly, the emergence of click chemistry reactions in bioink synthesis for 3D bioprinting have shown the massive potential of these reaction methods in creating 3D tissue constructs. However, the limitations and challenges involved in the click chemistry reactions should be analyzed and bettered to be applied to tissue engineering and 3D bioinks. The future scope of these materials is promising, including their applications in in situ 3D bioprinting for tissue or organ regeneration.”

Analysis of Solidification Patterns and Microstructural Developments for Al10SiMg Alloy

a) Secondary SEM surface shot of Al10SiMg powder starting stock, (b) optical micrograph and (c) high-magnification secondary SEM image of the cross-sectional view of the internal microstructure with the corresponding inset shown in (ci); (d) the printed sample and schematic representation of scanning strategy; The bi-directional scan vectors in Layer n+1 are rotated by 67° counter clockwise with respect to those at Layer n.

A group of researchers from Queen’s University and McGill University, both in Canada, explain the complex solidification pattern that occurs during laser powder bed fusion 3D printing of the Al10SiMg alloy in a new paper, titled “Solidification pattern, microstructure and texture development in Laser Powder Bed Fusion (LPBF) of Al10SiMg alloy.”

The paper also characterizes the evolution of the α-Al cellular network, grain structure and texture development, and brought to light many interesting facts, including that the grains’ orientation will align with that of the α-Al cells.

The abstract reads, “A comprehensive analysis of solidification patterns and microstructural development is presented for an Al10SiMg sample produced by Laser Powder Bed Fusion (LPBF). Utilizing a novel scanning strategy that involves counter-clockwise rotation of the scan vector by 67° upon completion of each layer, a relatively randomized cusp-like pattern of protruding/overlapping scan tracks has been produced along the build direction. We show that such a distribution of scan tracks, as well as enhancing densification during LPBF, reduces the overall crystallographic texture in the sample, as opposed to those normally achieved by commonly-used bidirectional or island-based scanning regimes with 90° rotation. It is shown that, under directional solidification conditions present in LPBF, the grain structure is strictly columnar throughout the sample and that the grains’ orientation aligns well with that of the α-Al cells. The size evolution of cells and grains within the melt pools, however, is shown to follow opposite patterns. The cells’/grains’ size distribution and texture in the sample are explained via use of analytical models of cellular solidification as well as the overall heat flow direction and local solidification conditions in relation to the LPBF processing conditions. Such a knowledge of the mechanisms upon which microstructural features evolve throughout a complex solidification process is critical for process optimization and control of mechanical properties in LPBF.”

Co-authors include Hong Qin, Vahid Fallah, Qingshan Dong, Mathieu Brochu, Mark R. Daymond, and Mark Gallerneault.

3D Printed Titanium Thomas Edison Statue

Thomas Edison statue, stacked and time lapse build

Oskar Zielinski, a research and development technician at Arcam EBM, a GE Additive company, is responsible for maintaining, repairing, and modifying the company’s electron beam melting (EBM) 3D printers. Zielinski decided that he wanted to test out the Arcam EBM Q20plus 3D printer, but not with just any old benchmark test. Instead, he decided to create and 3D print a titanium (Ti64) statue of Thomas Edison, the founder of GE. He created 25 pieces and different free-floating net structures inside each of the layers, in order to test out the 3D printer’s capabilities. All 4,300 of the statue’s 90-micron layers were 3D printed in one build over a total of 90 hours, with just minimal support between the slices’ outer skins.

The statue stands 387 mm tall, and its interior net structures show off the kind of complicated filigree work that EBM 3D printing is capable of producing. In addition, Zielinski also captured a time lapse, using an Arcam LayerQam, from inside the 3D printer of the statue being printed.

“I am really happy with the result; this final piece is huge,” Zielinski said. “I keep wondering though what Thomas Edison would have thought if someone would have told him during the 19th century about the technology that exists today.”

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

Another Chance to Win Amazon Gift Cards from 3DPrint.com!

 3D printing is an investment. Even after you’ve bought your 3D printer, the costs don’t end there – filament needs to consistently be replenished, particularly if you 3D print often, and there are things like post-processing tools and bed adhesives that add up as well. At 3DPrint.com, we understand that 3D printing can get expensive, so we do our best to help out our readers whenever we get a chance. That’s why we’re once again giving away $100 worth of Amazon gift cards in our latest giveaway.

Amazon has gone from being an online bookseller to an online repository of just about everything, and that includes 3D printers and 3D printing supplies. We’re giving away three gift cards – one for $50, one for $30 and one for $20 – and there are plenty of ways that you can enter to win. All you have to do is any of the following:

It’s easy to enter, and you can enter multiple times for a better chance at winning. If you win, it’s up to you what you want to use your gift card for – you can stock up on your favorite filament, or try a new experimental type of filament that you’ve always been interested in but never wanted to spend the money to try before. If you’ve been saving up for a new 3D printer, then a gift card can give you the extra funding boost that you need. Of course, you don’t have to spend it on 3D printing at all – you can buy a new paper shredder if you like! Exciting, yes? (That was the last thing I looked at on Amazon, because I need one.) Or you can be old-fashioned and buy some books, Kindle or otherwise. Whatever you decide to do with them, gift cards are nice to have, and you have just under three weeks to enter. So get clicking! And as always, remember that you can link directly to Amazon through our online shop.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

INTAMSYS Launches Jigs and Fixtures-Themed Industrial 3D Printing Global Competition

Shanghai-based 3D printer manufacturer INTAMSYS, which stands for Intelligent Additive Manufacturing Systems, often makes the headlines for its reliable, industrial-grade FUNMAT 3D printers‘ capabilities in providing 3D printing solutions with tough, functional, high-performance, and high-temperature materials, such as PEEK and PEKK, ULTEM 1010 and ULTEM 9085, PSU, and PPSU, thanks to heated build plates, high-temperature nozzles, and breakthrough thermal technologies on active heated chambers.

INTAMSYS, which partners with many well-known companies around the world, operates several manufacturing and research facilities, and runs its own 3D printing service, provides solutions for many applications, ranging from medical, as in the case of this innovative PEEK knee brace, to industrial, such as making end-use parts, tools, jigs, and fixtures. The company is focusing on the latter for an exciting new event – INTAMSYS is hosting its very first competition this summer.

The Industrial 3D Printing Global Competition for Industry 4.0, focusing on a theme of Jigs and Fixtures, has officially launched, with entries being accepted up until August 31st, 2018. Over $10,000 in cash and prizes are at stake, so you should start preparing your entry soon.

Chun Pin Lim, the Marketing Director of INTAMSYS, said, “During our business visits in the USA, Europe and China, we’ve learned first-hand from our customers and partners that 3D printed jigs and fixtures in polycarbonate, nylon and PEEK have significantly improved lead time, worker safety and costs on their production floors.”

The aim of INTAMSYS’ new Industrial 3D Printing Global Competition is to identify and reward participants who can, as the company puts it, “best exemplify” the use of 3D printing solutions in terms of manufacturing jigs and fixtures, in order to achieve the best possible manufacturing lead time and cost savings.

This competition is open to any and all organizations, companies, and research and educational institutions around the world that currently use 3D printing to manufacture jigs and fixtures. When entering, participants must submit the following:

  • Full name of entity
  • First and last name(s) of team’s main contact person
  • Email and phone number, for award notification purposes only
  • Full address
  • Main purposes of the 3D printed jig or fixture and its dimensions in millimeters
  • Types of material used to 3D print fig or fixture

Competition entries must also include details regarding the cost, durability, lead time, and any other benefits of 3D printing the jig or fixture when compared to previously used fabrication methods. Additionally, entrants must include three photos – one of the jig or fixture being 3D printed, a photo of the fully printed object, and one of it while being used; check out this link to see sample photos.

The three competition winners will be announced on this site, and informed via either email or phone, on September 14th, 2018. The second runner-up will receive US$1,000, while the first runner-up will be awarded a prize of $2,000.

The winner of the competition will receive the grand prize: $2,000, a FUNMAT HT 3D printer, and 2 kg each of INTAMSYS nylon, PEEK, and polycarbonate filaments – all together, this prize is worth a total of $10,000, including global shipping costs for the 3D printer and filaments, which INTAMSYS will provide. Prizes are not exchangeable.

What do you think of this news? Discuss advanced manufacturing competitions, challenges, and contests, and other 3D printing topics, at 3DPrintBoard.com or share your thoughts in the Facebook comments below.