regenHU CEO: Bioprinting Will Strengthen OrganTrans Project to 3D Print Liver Organoid

The European consortium OrganTrans is preparing to develop a tissue engineering platform capable of generating liver tissue. The proposed automated and standardized disruptive alternative solution to organ donation for patients with liver disease will stand on 3D bioprinting know-how from Swiss biomedical firm regenHU. Coordinated by Swiss research and development center CSEM, the eight partners and two transplantation centers engaged in the consortium will be using regenHU’s 3D bioprinters to produce organoid-based liver constructs with organoid laden bioinks.

In April 2020, we reported that OrganTrans would tackle the important healthcare challenge of end-stage liver disease (ESLD) by capitalizing on advancements in the regenerative medicine field, like using biofabricated liver tissue, to develop an entire value chain from the cell source to tissue engineering, biofabrication, post-processing and testing, and liver transplantation under the “compassionate use exemption” regulation (which provides an important pathway for patients with life-threatening conditions to gain access to unproven human cells and tissue products). To understand the key role of biofabrication in this innovative project, 3DPrint.com asked regenHU’s new CEO, Simon MacKenzie, to tell us more about the challenges that lie ahead for the European consortium and his company.

regenHU CEO Simon MacKenzie (Image courtesy of regenHU)

The project officially began in January 2020, what can we expect when it ends in December 2022?

The current goal of this project is to create a functional biofabricated liver construct that can be implanted into a mouse model. I consider that the OrganTrans team will accelerate new solutions for patients with liver failure. It is challenging, but we do envision successful in vivo trials. Of course, this major achievement will not be the end of the story; significant work and research will still be required to transfer these results to human clinical trials. The major remaining challenges will probably be the process scale-up to produce larger tissue and regulatory aspects.

Will this research be groundbreaking to treat liver disease in the future?

Demonstrating the feasibility of the approach in a mouse model will be groundbreaking for the disease because it will demonstrate its potential as an alternative to transplantation. Diseases like NASH [nonalcoholic steatohepatitis, an aggressive form of fatty liver disease] are increasing dramatically, and likely to be a leading cause of death within the next few years. Moreover, the difficulty of detecting the disease until it is potentially too late leads to significant challenges for therapeutic intervention, meaning transplantation will remain the main option for severely affected patients. This well-recognized need, along with the lack of donor organs will ensure bioprinted livers will continue to be well funded. But the value of the project goes beyond liver disease, as the new technologies developed in the frame of OrganTrans will not be limited to liver applications. They relate to the challenges of biofabrication of any organoid-based tissue, which can potentially be beneficial for a large variety of indications.

Can you tell me more about the role of regenHU within the OrganTrans consortium?

Such a complex and ambitious endeavor needs very different and complementary knowledge and competences. Teamwork will be a central element, first to enable, then to accelerate, these new solutions. With this in mind, we have been reorganizing regenHU to bring better project collaborative capabilities to this project, and others like it that we are engaged in. regenHU is a pioneer and global leader in tissue and organ printing technologies converging digital manufacturing, biomaterials, and biotechnology to lead transformational innovations in healthcare. We focus on delivering advancements in the instruments and software required for tissue engineering, and our technology evolving along with the biological research of our partners. We, therefore, consider these partnerships with the scientific community critical for our development.

An outline of the OrganTrans project (Image courtesy of OrganTrans)

regenHU is one of the largest contributors to this project, is this part of the company’s commitment to regenerative medicine?

We can see the need for biotechnology solutions for a wide range of disease states. Our strengths are in engineering the instruments and software necessary to allow the producers of biomaterials and the suppliers of cells to combine their products to achieve functional tissues and organs. Our commitment is to provide disruptive technologies that will enable the community to make regenerative medicine a reality, with precision and reproducibility in mind, for today’s researchers and tomorrow’s industrial biofabrication needs. One of the key challenges is the current limitation in the scale and volume of bioprinting which is linked to the reproducibility of the print. To progress into the manufacture of medical products, bioprinters will need to operate at a scale beyond current capabilities. We design our instruments with these goals in mind and have assembled a team to solve the many challenges to achieve this.

How advanced is the bioprinting community in Europe?

The 3D bioprinting field is several years behind mainstream 3D printing, with the industrialization of the instruments, biomaterials, and cells required before bioprinting can progress to commercial-scale biofabrication. However, as with continued development seen in 3D printing, the technology convergence required for tissue and organ printing that changes medical treatments will become a reality through the efforts of engineering companies like regenHU, biomaterial developers, and human cell expansion technologies, being combined in projects such as OrganTrans.

As the newly appointed CEO of the company, how do you feel taking on this project?

Successfully entering the OrganTrans consortium is just one part of the company. regenHU investors see my arrival as the catalyst to bring regenHU to the next stage in its evolution. Our goal remains the production of industrial biofabrication instruments capable of delivering the medical potential of bioprinting, novel bioinks, and stem cells. To achieve this, we are enhancing the team and structure of the company, bringing forward the development of new technologies and increasing our global footprint to better support our collaborative partners. I have spent many years in regenerative medicine and pharma and can see the potential of bioprinting to revolutionize many areas of medical science, so joining regenHU was an easy choice. As CEO, my main role is to provide the right support structure to enable our entrepreneurial engineering teams to thrive and be brave enough to push boundaries. Additionally, as we cannot achieve our end goal on our own, I am here to nurture the important connections with our user community. Only by listening to their valuable insights and solving problems with them, we will push the technology onward.

The post regenHU CEO: Bioprinting Will Strengthen OrganTrans Project to 3D Print Liver Organoid appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

POLYLINE Project: Developing Digital Production Line for 3D Printing Spare & Series Automotive Parts

Because 3D printing can ensure complex structures and geometry, mass production of individualized products seems closer than ever. But, since standards are somewhat lacking across process chains, and automated levels of handling and transport processes are low, it’s only possible to achieve horizontal and vertical AM integration in production lines on a limited basis. Additional obstacles include limited monitoring and a lack of transparency across the process chain, due to a non-continuous digital data chain at lots of interfaces. But the potential benefits of integrating AM into assembly and series production lines in the automotive industry are great, which is why the POLYLINE project was launched.

With 10.7 Mio. Euro in funding by the German Federal Ministry of Education and Research (BMBF), this “lighthouse project” is bringing together 15 industrial, science, and research partners from across Germany with the shared goal of creating a digital production line for 3D printed spare and series automotive parts.

The three-year project officially began at a kick-off meeting of the consortium partners this spring at the Krailling headquarters of industrial 3D printing provider EOS, which is leading the project. The other 14 partners are:

BMBF is funding POLYLINE as part of the “Photonics Research Germany – Light with a Future” program in order to set up AM as a solid alternative for series production. The resulting next-generation digital production line will 3D print plastic automotive parts in an aim to complement more traditional production techniques, like casting and machining, with high-throughput systems.

The project is looking to disrupt the digital and physical production line system, and is using an interesting approach to do so that, according to a press release, “takes a holistic view and implements all required processes.” To succeed, all of the quality criteria and central characteristic values from the CAD model to the printed part need to be recorded and documented, and individual production sub-processes, like the selective laser sintering, cooling, and post-processing, will be automated and added to the production line. For the first time, all technological elements of the SLS production chain will be linked as a result.

Schematic representation of a laser sintering production line

Per the application partner’s requirements, the production line will be realized with “a high degree of maturity,” and uses cases for POLYLINE will include large amounts of both serial and customized components.

Each partner will add its own contribution to the POLYLINE project. Beginning with the leader, the EOS P 500 system will have real-time monitoring and automated loading of exchange frames added to its features; the printer will also be embedded in an automatic powder handling system. Premium automotive manufacturer the BMW Group, already familiar with 3D printing, has a massive production network of 31 plants in 15 countries, and is creating a catalog of requirements for the project to make sure that the new line will meet automotive industry standards. Additionally, the demonstrator line will be set up near its Additive Manufacturing Campus, and cause-and-effect relationships will be jointly researched.

Iterations of a BMW Roof Bracket made with 3D printing. (Image: BMW Group)

Industrial process automation specialist Grenzebach will be responsible for material flow and transport between AM processes, as well as helping to develop automated hardware and software interfaces for these processes. 3YOURMIND is setting up a data-driven operating model, which will include “qualified digital parts inventories, orders processing, jobs and post-processing planning and execution, material management, and quality control,” while software solutions developer Additive Marking is focusing on quality management optimization and resource efficiency.

Post-processing specialist DyeMansion will develop a process for certified, UV-stable automotive colors, create Industry 4.0-ready solutions for cleaning and mechanical surface treatment with its PolyShot Surfacing (PSS) process, and contribute its Print-to-Product platform’s MES connectivity. Bernd Olschner GmbH will offer its customer-specific industrial cleaning solutions, Optris will make fast pyrometers and special thermal imaging cameras adapted for plastic SLS 3D printing, and air filter systems manufacturer Krumm-tec will work to upgrade the manual object unpacking process.

(Image: DyeMansion)

Along with other project partners, Paderborn University is “working on the horizontal process chain for the integration of additive manufacturing in a line process,” while the Fraunhofer Institute for Casting, Composite and Processing-Technology IGCV is developing a concept for POLYLINE production planning and control, which will be tested in a simulation study for scalability. The Fraunhofer Institute for Material Flow and Logistics IML will work on “the physical concatenation of process steps,” paying specific attention to flexibly linking the former manual upstream and downstream AM processes.

TU Dortmund University will help apply deep learning, and implicit geometric modeling, for data preparation and analysis, along with online monitoring and quality management, in order to achieve sustainable automation and efficiency for the project. The University of Augsburg’s Chair of Digital Manufacturing works to integrate AM processes into current production methods, and will apply its expertise in this area to the POLYLINE project, helping to develop strong vertical process chains. Finally, the University of Duisburg-Essen will focus on creating quality assurance for the material system, and its laser sintering process.

The consortium of the POLYLINE project (Image: EOS GmbH)

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

The post POLYLINE Project: Developing Digital Production Line for 3D Printing Spare & Series Automotive Parts appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

MIT Launches ADAPT Consortium for Additive Manufacturing

MIT, which has been responsible for several major 3D printing breakthroughs in various departments, has announced that is has formed a new industry-facing consortium called the Center for Additive and Digital Advanced Production Technologies (ADAPT). The consortium’s major focus will be on additive manufacturing, and is based on four key pillars: visionary research, scalable education platforms, actionable strategic insights, and a vibrant academic-industry ecosystem based at MIT.

“Two of the largest barriers to AM adoption are confidence and know-how,” Program Manager Haden Quinlan told 3DPrint.com. “Among other activities, ADAPT is well poised to leverage MIT’s strengths as a global leader in education to help overcome these challenges at scale. ADAPT will build upon the successes of our previous professional coursework – including both our in-person course, Additive Manufacturing: From 3D Printing to the Factory Floor, and our online program, Additive Manufacturing for Innovative Design and Production.”

ADAPT will begin several exploratory research projects involving faculty and graduate students this month. It will also accelerate the establishment of a new advanced additive manufacturing laboratory at MIT and host members-only events and flagship symposia.

“Recognizing that the challenges of implementing digital manufacturing solutions are as challenging as their value propositions are promising, ADAPT’s core research focus resides in multidisciplinary, early-stage research with outsize potential,” Quinlan continued. “Our faculty span Mechanical Engineering, Materials Science, Computation and Artificial Intelligence, and Business Strategy. By pooling membership funds to aggressively address high-value fundamental research across those topic areas, our work will complement and accelerate the important, more applied work of other research entities.”

ADAPT is being directed by Professor A. John Hart, who also leads MIT’s Laboratory for Manufacturing and Productivity and oversees the design and manufacturing facilities in the Department of Mechanical Engineering.

I am thrilled to launch ADAPT to accelerate MIT’s efforts toward enabling a next generation of production technologies, wherein AM is a cornerstone,” he said. “Moreover, AM–and the path toward a responsive, digital manufacturing infrastructure both within and between organizations–requires multidisciplinary expertise at the cutting edge of mechanical engineering, computer science, materials, and other fields. We deeply appreciate the support of our founding members, and look forward to solidifying our research, education, and engagement programs in the coming term.”

ADAPT’s founding members include ArcelorMittal, Autodesk, BigRep, Bosch in North America, Dentsply Sirona, EOS, Formlabs, General Motors, Mimaki Engineering Company, Protolabs, Renishaw and Volkswagen Group.

“ADAPT is still welcoming new companies,” Quinlan told us. “In line with our multidisciplinary research focus, we seek a broad distribution of members positioned across the AM value chain. Importantly, we value diversity of perspectives, as well as seek to engage companies with ambitious internal goals for the future of AM and digital production that align well with ADAPT’s vision.”

The members of the ADAPT consortium celebrated its official kickoff at the formnext exhibition in November, and will meet again at MIT in the spring of 2019.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

UMaine Composites Center Helping Boatbuilders Incorporate Large-Scale 3D Printing with Wood-Filled Materials

This week, the Maine Technology Institute (MTI) awarded the University of Maine Advanced Structures and Composites Center (UMaine Composites Center) a $500,000 grant to form a technology cluster with a very specific purpose – help boatbuilders in Maine gain a competitive advantage in the industry by incorporating large-scale 3D printing with economical wood-filled plastic materials.

L-R: Chris Moran of Compounding Solutions; Kohl Shaw of the UMaine Composites Center; Camerin Seigars of the UMaine Composites Center; Joe Wilson of Compounding Solutions; Nate Thompson of Hodgdon Yachts; James Anderson, UMaine Composites Center senior program manager; Burr Shaw of The Hinckley Company; Kevin Burns of Back Cove/Sabre Yachts; Josh Moore of Lyman-Morse Boatbuilding; Kevin Houghton of Lyman-Morse Boatbuilding; and Habib Dagher, UMaine Composites Center executive director. [Image: the Advanced Structures and Composites Center]

While small and even medium-sized boatbuilders can run into difficulties with the amount of lead time and money it takes to make traditional boat molds and marine tools, UMaine Composites Center researchers say that 3D printing can be used to lower the production time by up to 75%. But even though some companies in the boat and ship industry are using 3D printing, widespread adoption is still slow due to expensive 3D printers and feedstock materials.

That’s why MTI awarded the grant – so the UMaine Composites Center can set up a technology cluster to combine the expertise of marine industry leaders and researchers in order to continue developing and commercializing the technology so boatbuilders in the state can start reaping the benefits.

“The combination of additive manufacturing and cost-effective, bio-filled materials is a potential game-changer for Maine’s boatbuilding industry by reducing the cost of marine tooling by as much as 50 percent. Maine boatbuilders cannot absorb the cost of acquiring a large-scale 3D printer and testing new feedstock materials,” said James Anderson, Senior Research and Development Program Manager at the UMaine Composites Center. “The UMaine Composites Center and the Maine boatbuilding industry share a tradition of innovation. We have the tools and knowledge to help Maine boatbuilders increase productivity, reduce costs and, ultimately, continue their tradition of excellence in the boatbuilding industry.”

Habib Dagher, the center’s executive director, said that for the last 18 years, the center has been busily developing technologies to extrude plastics filled with nanocellulose fibers and wood cellulose; these plastic materials can contain up to 50% wood fiber by weight.

With the help of MTI’s grant, the UMaine Composites Center will address how expensive large-scale 3D printing is, and help to lower the cost, by creating a range of economical wood-filled materials for applications in composite tooling.

“Now, we will use these same stronger and stiffer plastics in very large 3D printers to develop 20- to 100-foot boat molds and other boat parts for Maine boatbuilders. By 3D printing plastics with 50 percent wood, we aim to produce boat molds much faster and cheaper than today’s traditional methods,” said Dagher. “As we learn, we will be working with boatbuilders to incorporate 3D printing in their production process for larger boat parts and, eventually, the boats themselves.”

By using wood-based fillers to 3D print boat molds and parts, the materials’ toughness and stiffness will go up, while the cost will go down. In addition, the materials will help improve recyclability and lower the impact on the environment. The university is also working other companies in Maine to develop a local supply chain for its bio-filled materials, so it’s likely that boatbuilding will not be the only industry to benefit from these research and development efforts.

The consortium put together by the UMaine Composites Center will collectively design and 3D print boat molds and marine tools for testing and evaluation purposes. Also, as part of the 3D printing adoption and commercialization process, the consortium will be putting together a training course for area boatbuilders.

To form the technology cluster of UMaine engineers and researchers, and Maine boatbuilders, the UMaine Composites Center’s $500,000 grant from MTI will be matched by an additional $500,00 from the US Army Natick Soldier Research, Development & Engineering Center. Boatbuilders in the cluster will include Back Cove Yachts in Rockland, Compounding Solutions in Lewiston, Custom Composite Technologies in Bath, Front Street Shipyard in Belfast, Hinckley Yachts in Trenton, Hodgdon Yachts in Boothbay, Kenway Composites in Augusta, Lyman-Morse Boatbuilding in Rockland, and Sabre Yachts in Raymond.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the comments below.

[Source: Boothbay Register]