CSIRO 3D Prints First Self-Expandable Stents from Shape-Memory Alloy Nitinol

Peripheral Arterial Disease (PAD) is a condition which sees fatty deposits collect and lower the blood flow in arteries outside of the heart, most commonly in the legs. Those suffering from PAD will often experience pain while walking, and could even develop gangrene if the case is serious enough. Over 10 percent of people in Australia are afflicted with this painful condition. To treat it, a stent can be temporarily inserted inside the blood vessel to keep it open.

We’ve seen 3D printing used to fabricate stents before, which can help improve sizing options and allow for patient-specific diameters and shapes. But ,until now, there hasn’t been a way to print a self-expandable stent made of shape-memory nickel and titanium alloy nitinol. The material is superelastic, and metallurgists have had a difficult time trying to figure out a way to 3D print a self-expandable nitinol stent without compromising the unique properties of the metal alloy.

But researchers from Australia’s national science agency, the Commonwealth Scientific and Industrial Research Organisation (CSIRO), together with its Wollongong-based partner, the Medical Innovation Hub, have finally made it possible.

Vascular surgeon Dr. Arthur Stanton, the Chief Executive of Medical Innovation Hub, explained, “Currently, surgeons use off-the-shelf stents, and although they come in various shapes and sizes, overall there are limitations to the range of stents available. We believe our new 3D-printed self-expanding nitinol stents offer an improved patient experience through better fitting devices, better conformity to blood vessel and improved recovery times. There is also the opportunity for the technology to be used for mass production of stents, potentially at lower cost.”

Stent model

The first 3D-printed nitinol stent is a major medical breakthrough for PAD patients, as surgeons have had to use off-the-shelf, non-custom stents for these procedures in the past. But with 3D printing, individual nitinol stents can be made right at the hospital, with the surgeon there to offer instructions—saving time and money, and reducing inventory, as well.

According to Australia’s Minister for Industry, Science and Technology, Karen Andrews, 3D printing could mark a major paradigm shift in the $16 billion worldwide stent manufacturing industry:

“This is a great example of industry working with our researchers to develop an innovative product that addresses a global need and builds on our sovereign capability.”

The proof-of-concept stents offer the potential for customization to individual patient requirements, but are equally as suitable for mass production.

Back in 2015, CSIRO opened the Lab22 Innovation Center. The specialist researchers there are focused on creating value for Australia’s manufacturing industry by developing future developments in metal additive manufacturing. CSIRO’s Lab22 collaborates with industry partners, like the Medical Innovation Hub, to build important biomedical parts, like the first 3D-printed sternum and titanium heel, and now the first 3D-printed nitinol stent.

CSIRO Principal Research Scientist Dr Sri Lathabai said, “Nitinol is a shape-memory alloy with superelastic properties. It’s a tricky alloy to work with in 3D printing conditions, due to its sensitivity to stress and heat. We had to select the right 3D-printing parameters to get the ultra-fine mesh structure needed for an endovascular stent, as well as carefully manage heat treatments so the finished product can expand as needed, once inside the body.”

The team used selective laser melting (SLM) technology to successfully fabricate the complex mesh stent structures. Due to the level of geometric accuracy that 3D printing achieves, the stents can be made for specific patients, and nitinol allows them to expand once inside the body. CSIRO has established a new technology company, Flex Memory Ventures (FMV), to help commercialize the technology.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

The post CSIRO 3D Prints First Self-Expandable Stents from Shape-Memory Alloy Nitinol appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

ANCA working with CSIRO to develop hybrid additive manufacturing platform

ANCA, a Melbourne-based manufacturer of CNC grinding machines, has developed a hybrid 3D printing system for manufacturing custom-designed machining tools.  Prior to taking its new platform to market, ANCA will collaborate with Australia’s Commonwealth Scientific and Industrial Research Organisation (CSIRO) and Sutton Tools to improve the 3D printing process. It will also receive support and […]

RMIT proves 3D printed titanium alloys can be enhanced by addition of copper

Researchers at Royal Melbourne Institute of Technology (RMIT) in Australia have trialled a new material for metal 3D printing that combines titanium alloy with copper.  Developed by RMIT’s School of Engineering, titanium-copper alloys were created in a bid to prevent cracking and distortion that can affect titanium when 3D printing. RMIT states that the material […]

Australia: Titomic Unveils Largest 3D Printed UAV, Over 1.8 Meters in Diameter

Titomic, is unveiling what they claim to be the largest titanium 3D printed unmanned aerial vehicle (UAV) at over 1.8 meters in diameter (almost six feet). Created at Titomic’s research and development facility in Melbourne, Australia, the UAV was printed on the TKF 9000, with their proprietary technology, Titomic Kinetic Fusion™ (TKF), using titanium as the material for a rugged vehicle prototype meant for future applications in the military or law enforcement.

The UAV, benefiting from all the advantages of 3D printing with metal, is both strong and lightweight and can be easily fortified for live combat situations offering both durability and protection for soldiers. Drones are a common type of unmanned vehicle, often directed by remote control or a computer which may be located on board.

Potential is expanding for UAVS rapidly, although their uses have been primarily military. With metal 3D printing, companies and organizations like the military can make armaments on demand, and quickly. With the use of titanium for this endeavor, Titomic is demonstrating how their new technology can integrate materials historically known to be challenging due to affordability issues and size limits.

“Besides a relatively high melting point, titanium’s corrosion resistance and strength-to-density ratio is the highest of any metallic element. Titanium is also 60% denser than aluminum and twice as strong,” states Titomic on their website.

This should be encouraging to other companies interested in taking advantage of this material, although they may have been previously restricted to the use of more fragile plastic or heavier metal. With TKF, titanium powder particles are sprayed at supersonic speed, fusing together and consequently, forming enormous 3D printed parts.

“We’re excited to be working with the global defense industry to combine Australian resources, manufacturing and innovation which will increase our sovereign capability to provide further modern technology for Australia and its defense force,” said Titomic Managing Director Jeff Lang.

TKF came onto the industrial market a couple of years ago, and in that time, Titomic has not only continued to expand commercialization, but they have also secured patents in both the US and Australia. Co-developed and licensed with the Commonwealth Scientific and Industrial Research Organisation (CSIRO), this unique process is behind the manufacturing of metal parts, and also surface coatings like nickel, copper, scandium, and other alloys like stainless steel. Numerous metals and materials can be melded into singular, high-performance parts.

3D printing brings something to nearly every industry today, from furthering aerospace endeavors to helping fashion designers and creators around the world break artistic barriers. But when it comes to fabrication with metal, users—often larger industrial companies—are looking forward to power. And this is demonstrated in the additive manufacturing hardware, a vast array of metal powders offering strength, as well as new techniques allowing companies to produce strong yet lightweight parts that may not have been possible previously.

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source / Images: Titomic]

Titomic Licenses Two CSIRO Patents for 3D Printing Titanium Piping, Signs Acquisition Agreement with FTT

CSIRO’s Keith McLean, Titomic’s Jeff Lang, and FTT’s Peter Mews sign agreement

Renowned for its metal Kinetic Fusion (TKF) technology, Australian 3D printing company Titomic recently signed an MoU with China’s largest manufacturer and global exporter of titanium powder in order to secure a high quality supply of low-cost, commercially pure titanium powders. It’s clear that the company is continuing to focus on titanium resources – it has licensed two new patents from the Commonwealth Scientific and Industrial Research Organisation (CSIRO) for the production of titanium pipe and continuous pipe. This Exclusive License Agreement with CSIRO gives Titomic global rights to the patents, which will significantly open the company’s revenue opportunities in several industries, like defense, marine and mining, and oil and gas.

Additionally, Titomic has signed an Acquisition Agreement with Future Titanium Technologies (FTT). The company is now entitled to over eight years of exclusive 3D printing techniques and background IP relating to the production of pipes and their components.

“This is a significant expansion of Titomic’s IP and associated revenue opportunities. By adding these two new patents we are broadening our footprint in the Titanium and Titanium Alloys Additive Manufacturing space to firmly secure our future market segments,” said Titomic’s Managing Director Jeff Lang.

“Our fundamental strategy has been well timed and managed to perfectly combine the securing of cost-effective metal powder supply chain, with the expansion of our IP portfolio positioning Titomic as the global leader in viable metal Additive Manufacturing.

“To capitalise on the significant $300+ Billion global interest Titomic has received from the Oil & Gas, Mining, and Marine industries to provide more sustainable and cost-effective AM manufacturing, these new TKF technologies enable Titomic to provide viable digital manufacturing capabilities leading to significant short, mid and long-term revenue opportunities.”

Titomic’s fast 3D printing technology, which is actually the result of a CSIRO study, can now be used by industries looking to access next generation, dual-wall materials to 3D print metal pipe without having to worry about profile or size constraints.

For instance, the oil and gas industry is uses plenty of valves, but their lifecycle can be negatively impacted by abrasive matter like rock, sand, and sediments that run through pipes during extraction. Using these newly licensed patents, Titomic can use its technology to produce metal pipes with higher corrosion and wear resistant properties; additionally, the process can also fuse dissimilar metals together to make fitting components and pipes.

“Working with companies like Titomic shows that manufacturing remains a key driver in the Australian economy,” said Stefan Gulizia, Research Group Leader at CSIRO. “We are pleased that Titomic are licensing the rights to utilise and further commercialise CSIRO research in developing new products and processes that go towards supporting productivity gains, boosting sustainability and helping capture emerging opportunities in local and global markets.”

Thanks to the important performance factors like cost, quality, scale, speed, and sustainability, Titomic will now be able to commercially exploit its TKF technology. Pipe and fitting component consumers will be able to save on both time and money, as maintenance costs and down time will decrease and parts will have longer life cycles. Additionally, TKF can also be used to 3D print valves, fitting components, and pipes with new superalloys, and can even combine them with polymers, composites, ceramics, and alloys to achieve high performance properties.

McLean, Lang, and Mews holding the sprayed pipe section.

The most important transaction terms of the new Acquisition Agreement with FTT include Titomic allotting $400,000 worth of its shares to FTT shareholders for $2.00 per share, half of which will be escrowed for a year. For every two shares, Titomic will also issue one new option to FTT shareholders, at an excerisable price set at a 130% premium to the share price with a two-year life.

In terms of its Exclusive License Agreement with CSIRO, Titomic will pay the following minimum annual royalties to CSIRO:

  • $50,000 for 2018-2019
  • $75,000 for 2019-2020 and 2020-2021
  • $150,000 for 4th year of agreement, and each subsequent agreement year until the end of the license term

CSIROs Keith McLean, Titomic’s Jeff Lang, and FTT’s Peter Mews celebrate the collaboration.

Additionally, Titomic will pay CSIRO an upfront fee of $125,000 cash for licensing the technologies.

To hear the rest of the terms, visit Titomic’s website.

Discuss this news and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

[Images provided by Titomic]

Titomic licenses two exclusive CSIRO patents for pipe additive manufacturing

Metal additive manufacturing company Titomic, that owns the exclusive rights to the Titomic Kinetic Fusion (TKF) process, has licensed two new patents from the Australian Government’s Commonwealth Scientific and Industrial Research Organisation (CSIRO). The new IP relates to the additive production of titanium pipes, valves and continuous pipelines for oil & gas, petrochemical, water, power, mining […]

Australia science agency report identifies additive manufacturing as key for Space 2.0

Australia’s Commonwealth Scientific and Industrial Research Organisation (CSIRO) has set out a strategy for, “unlocking future growth opportunities for Australia.” The newly published report joins the earlier CSIRO’s Advanced Manufacturing Roadmap in highlighting the importance of additive manufacturing for the development of the space sector. Australia hopes to benefit from the growing Space industry, enabled […]

Titomic Provides A Closer Look at New Metal 3D Printer, and Its Unique Kinetic Fusion 3D Printing Process

Less than a year ago, Australian industrial 3D printing company Titomic introduced its innovative Kinetic Fusion process for the first time. Since then, the company has been busy commercializing the technology with various MOUs and other agreements, and was able to secure patents for Kinetic Fusion in both Australia and the US. All of this activity culminated in May, with news that the company had introduced a new metal 3D printer, said to be the largest and fastest in the world. Now, the world is finally getting a closer look at Titomic’s new machine…and its unique technology.

Jeffrey Lang, the Founding Director and CTO of Titomic, told Manufacturers’ Monthly, “We are challenging the traditional core of manufacturing.

“While most metal printing processes use an electron beam laser to melt the metal, there is no melting involved in our process. Therefore there are no heat-related distortions and the materials retain their properties.

“This also means that we are not limited by size. Because melting metals in the conventional 3D printing processes causes them to oxidise, the conventional metal 3D printing needs to take place inside a vacuum chamber. Lack of melting in our process means that we are not limited by size.”

Titomic’s Kinetic Fusion process involves a 6-axis robot arm spraying titanium powder particles onto a scaffold at supersonic speeds.

Titomic’s new metal 3D printer has a build area that’s 9 m long by 3 m wide and 1.5 m high, though it’s not constrained to booth size and requires no gas shielding. The company’s Kinetic Fusion process sprays titanium powder particles at supersonic speeds of about 1 km per second, using a 6-axis robot arm, onto a scaffold. These particles move so fast that when they collide on the scaffold, they fuse together mechanically to produce huge, load-bearing 3D forms.

Kinetic Fusion is also far faster than other forms of 3D printing.

“Depending on the complexity of the metal parts, we can deposit between 20-45 kilograms of metal per hour. That’s just with one spray head. We are working on a new system where we could operate a series of robots that connect multi- head robots. That would enable us to deposit up to 200 kilograms of material per hour,” Lang said.

“To put that into perspective, the normal 3D printers can usually deposit about one kilogram in 20 hours. So we are really bringing volume into the additive manufacturing market.”

Titomic’s 3D metal printer.

This unique technology resulted from a Commonwealth Scientific and Industrial Research Organisation (CSIRO) study, at a time when the country’s government was looking to capitalize on its titanium resources.

“The Federal Government did a IndustryFOCUS including putting linings on jet study in 2007 with this idea that while Australia is not a large resource of titanium, we have a large amount of mineral sands that contain titanium,” Lang explained. “The government wanted to find ways to utilise that resource instead of just selling it off, like we always do in Australia.

“I was invited to be a part of the project and look at the ways by which we could use large volumes of titanium powder. We started thinking about how to develop titanium powder from that vast resource and build a whole industry around it.”

Lang and his colleagues were finding that current AM methods were too restrictive for industrial-scale projects…and then they found the cold spray coatings process, which was developed in Russia 30 years ago for high-level metal coatings for aerospace engines; the method was also used in Asia to fabricate high-quality frying pans with copper-coated bases and scratch-proof rice cookers.

Lang said, “What no one had realised was the potential applications of the process in additive manufacturing.

“We haven’t found any scientists who can clearly explain the theory behind the process, but the technique is currently being reviewed at the army labs in the USA. The US Army has already validated the process for doing aluminium repairs on aircraft wings, etc. There are also a couple of big global companies using the technology for defence applications.”

Titomic founding director and CTO, Jeffrey Lang, and Titomic chairman, Philip Vafiadis, at the launch of Titomic’s 3D metal printer in Melbourne.

Together with Professor Richard Fox, Lang began working on how to build a 3D object by incorporating cold spray onto a scaffold, and the two co-inventors asked that CSIRO patent and licence the innovative technology to Force Industries, its composite sporting goods company. Thus, Titomic was founded four years ago and owns the exclusive rights to commercialize the proprietary process.

“These are exciting times. We started the whole project with the view of developing sovereign capabilities for Australia,” Lang said. “But the technology does not benefit just one country. It’s about securing a better future for all humanity and future generations on this planet.”

The technology does need to go through a validation process before being used in industries like aerospace, but the company is also working to 3D print parts for other industries, like defence, sports equipment, mining, and shipbuilding.

“The shipbuilding industry is currently using 50-year old technologies. Nothing much has changed in that area over the past years,” Lang explained. “Our machine can be installed on a gantry system to coat the whole hull of the ship. That shows the significant scale of what we can do.”

The technology is also not strictly limited to 3D printing and could be used to create advanced composite materials by fusing together dissimilar materials, or in the seamless coating of large industrial parts.

“Probably the most exciting advantage of Titomic Kinetic Fusion process is that it enables us to fuse dissimilar materials that could not be fused in any other way,” said Lang. “This puts us at the forefront of pioneering new smart materials that can be specifically designed for different components and parts.”

Lang believes that early adopters in any industry, but especially aerospace, can save on time and material waste with its Kinetic Fusion, in addition to gaining a competitive advantage. The aviation sector is one of the largest customers of titanium alloy products, and according to Lang, Airbus, one of the bigger fans of 3D printing in the industry, loses 50 tons of raw titanium each day to produce only 8 tons of traditionally manufactured parts…a materials loss of about 90%.

“If we could make those parts as near net shape components, that is to create the final shape of the part and then add just a little bit extra burden of the material on it, we could reduce that machining time in some instances by 80 per cent,” Lang said.

“We are not saying this technology can jumpstart now and replace the current aerospace process. But our process is currently one of the most significant processes that those aerospace companies are looking at. We have come up with additional solutions to remove a small amount of porosity to achieve aerospace grade.

“For one of the aerospace components, which can be up to $4 million in cost, we can reduce production time from 200 hours down to 6 hours.”

That’s why Titomic is currently working with a few Tier 1 aerospace companies that are interested in developing carbon fiber parts with a middle structure made of titanium.

However, Lang also says that, while 3D printing titanium is useful for making complex parts, the price will eventually start to go up and match conventional methods of manufacturing.

“The nitrogen and electricity costs for running the machines are not very high,” Lang said. “Our biggest cost restriction at the moment is the cost of metal powders. Titanium powder can be prohibitive for high volume, low value industries.”

But, as we continue to develop more applications for titanium and the demand increases, he believes the cost will go back down.

“When you look back at 150 years ago, the most expensive material in the world was aluminium. And that is now only $2-3 per kilogram,” said Lang. “Things change based on demand. The demand for titanium powder in Australia hasn’t been great until Titomic came along. Now we are in the position where we are securing the supply chain from larger suppliers.”

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.