How Does Thermal Aging Impact 3D Printed Carbon Fiber Parts?

Advances in developing composites for additive manufacturing have accelerated in the last few years, with increasing research and innovation in both, desktop and industrial AM using composites, using chopped or continuous fiber technology, with carbon fibers or nanotubes, or glass fibers most typically used for reinforcement.

3D printed composite materials and sandwich structures (lightweight core sandwiched by thin face sheets) have been the subject of increasing research at universities and national laboratories. But the focus has been more on studying compressive failure, load-carrying capacity, ductility, morphology, tensile or friction properties. This study, published in the Polymer Testing Journal, is a collaboration between researchers at Deakin University (Australia) and University of Siegen (Germany), and the focus was to investigate the impact to performance or properties in 3D printed composite (specifically cores) structures caused by accelerated thermal aging.

The authors chose to focus here due to a lack of investigative research in this area, and more pertinently, because such 3D printed materials/structures will be applied in various temperature conditions, and understanding how temperature impacts their mechanical properties and molecular structures would inform future applications and materials development. Indeed, composite material development and applications using AM are rapidly growing with the market for composites expected to reach $10 billion by 2028, as per SmarTech’s 2018 report, including part production, hardware and materials. Aerospace and medical industry applications are key drivers for composites at present, but that is expected to expand soon into other industries of automotive, construction, energy and consumer products.

FDM (using a FlashForge Creator Pro) was chosen to fabricate two types of composite structure, using ABS and ASA (acrylonitrile styrene acrylate) with carbon fiber face sheets. Two topological structures for the core were fabricated, one truss or triangle-like, and the other, honeycomb or hexagonal. To understand the effects of loading and thermal aging on the structures, compression, tensile and three point bending tests were used to study the mechanical behavior and failure of these components.

   Image Courtesy of Polymer Testing 91 (2020) Journal / Deakin University

The study also hinted toward how continuous fiber reinforcement may provide improved failure load properties over chopped fiber, since initial failure tended to occur at filament intersections within cell walls: “the honeycomb cells had better properties, as there is more continuous filaments between cell walls. The thermal aging also had a greater affect on these joins, as the relaxation and restructuring of the molecules increased the toughness of the join.”

To simulate thermal aging, specimens were ‘aged’ by subjecting them to changing temperatures in a climate test chamber. The max/min temperatures were 60 degrees and 22 degrees Celsius (below the glass temperature of polymers), with an automated, high precision and accuracy device, controlling the rate of temperature change at 1 degree Celsius/minute.

Image Courtesy of Polymer Testing 91 (2020) Journal / Deakin University

It was found that the honeycomb structure with ASA had the higher flexural strength, higher strain-to-load properties, and overall higher load carrying capacity (with ABS or ASA), and that thermal aging increased the maximum strength due to annealing (and molecular structure changes) in specimens with both patterns and materials. The annealing seemed to strengthen the bonds between layers and the print beads. The impacts due to thermal aging could also largely be attributed to aging time, with aging temperature having no significant effect. Thermally aged specimens also had better stiffness and failure load properties, with flexural stress being 15% higher than unaged specimens. In addition, the ASA core failed at a higher strain than the ABS core.

Interestingly, Deakin University is considered to be among the leading research and educational institutions in AM in the country, and worldwide. In 2017, Ian Gibson, Professor of Additive Manufacturing at the university, received the International Freeform and Additive Manufacturing Excellence (FAME) recognizing his lifetime achievements and contributions to 3D printing – which include coauthoring the influential ‘Additive Manufacturing Technologies’ that sold over 300,000 copies, establishing the Rapid Prototyping Journal and the Global Alliance of Rapid Prototyping Associations. Last month, the university launched a research and education program focused on MELD technology, an innovative open-air metal AM technology that can build parts, large or small, without melting any metal. In collaboration with US-based MELD Manufacturing Corporation, the university has placed a MELD machine at its Advanced Metal Manufacture Facility and plans to fund further research into materials, efficiency, and applications for MELD technology.

The post How Does Thermal Aging Impact 3D Printed Carbon Fiber Parts? appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Eco-Friendly 3D Printing Using an Ecostruder, Recycled E-Waste and Solar Power

Electronic devices are a part of daily life for people across the world – laptops, smart phones, tablets, fitness bands, etc. They’re wonderful to have for many reasons, but none of these devices last forever, and when they’re discarded, they can do serious harm to the environment. Recycling programs are springing up that can refurbish and reuse some of the electronics in the devices, but what about all the plastic that left over? In a paper entitled “The Recycling of E-Waste ABS plastics by melt extrusion and 3D printing using solar powered devices as a transformative tool for humanitarian aid,” a group of researchers discusses how they took ABS plastics found in electronic waste and recycled them using 3D printing.

The researchers used waste plastics from discarded electronic devices within Deakin University‘s School of Engineering. These plastics included the outer casing from devices such as old computers, laptop docking stations and desktop telephones. They cleaned the plastic if needed and then broke it down into fragments and fed it into a hand operated granulation device, which was composed of a series of geared, interlocking teeth that could be rotated using a lever arm. The plastic underwent several phases of repeated grinding, after which it was put through a mesh sieve.

The researchers then created their own melt extrusion device, which they named the Ecostruder. The system uses a single screw system and is powered by an internally geared DC motor.

“To ensure that the screw operates at a constant RPM, an encoder is used to measure the rotational velocity, and which is feedback into a PID controller,” the researchers explain. “The screw is also coupled directly to the geared motor, which provides a simple and robust interface where auxiliary chains are not required. Three individually controlled 50W band heaters provide the ability vary the temperature distribution along the barrel, which in turn allows for control of how the fed waste plastic transitions from solid to the liquid phases.”

Once the filament was generated by the Ecostruder, it was 3D printed using a LulzBot Mini. To make the entire process even more eco-friendly, the researchers used a nanogrid system powered by solar energy, via portable photovoltaic (PV) panels.

“In an ideal scenario, the system which we aimed to create would have the capacity to operate solely from the use of the energy generated by the PV’s,” the researchers state. “This would not be realistic in real operational scenarios and so the aim was to create a dynamic system that could operate directly utilising the energy from the PV cells, and divert excess charge to the lithium-ion batteries. Conversely, in times when insufficient electricity is generated to power a respective device, charge from the battery system can be utilised to sustain operations.”

Tests were performed on the nanogrid system to evaluate its charge generation efficiency. Test 1 was performed on a cloudy day, and Test 2 on a sunny day. The average sustained power output was approximately 14W for test 1 and 210W for test 2. Future modifications of the system may include building larger banks of batteries to store excess charge during times of peak generation, for use on days when power generation is suboptimal.

To test the 3D printing performance of the system, the researchers took it to a location with clear exposure to the sun and 3D printed three different parts: a 20x20x20mm cube, a 30mm diameter and 30mm height cylinder and a lattice structure with a cube of 30x30x30mm. The test was completed in approximately 90 minutes, and the solar panels not only adequately powered the 3D printer but held an excess of energy.

“If we assume the same environmental conditions over a typical day of operation, which would comprise running the 3D printer for 8 hours and the Ecostruder for 2 hours, the generated excess energy would accommodate this usage whilst also charging the battery system by an additional 25Ah,” the researchers state.

Tests were also performed to evaluate the quality of the 3D printed recycled material. To do this, the researchers 3D printed a pipe connector. There were a few cosmetic surface defects, but the part was robust. The researchers used the printed part to join a section of piping, and tested it by blocking the end of one piece of tubing, pressurizing the system using a plumbing pressure testing device. The part held the water with no leakage up to a pressure of 5Bar. The results show that the recycled ABS can be used to 3D print functional parts.

Future studies aim to test the system in field conditions to assess its potential for humanitarian aid.

Authors of the paper include Mazher Iqbal Mohammed, Daniel Wilson, Eli Gomez-Kervin, Callum Vidler, Lucas Rosson and Johannes Long.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.