Titomic Signs Agreement with Airbus to Make 3D Printed Metal Demonstrator Parts

Global aerospace leader Airbus develops, creates, and delivers innovative solutions in the commercial aircraft, defense, helicopter, space, and security sectors, and has long been a champion of using additive manufacturing to do so. Airbus installed its first 3D printer back in 2012, and used its first metal 3D printed part – a titanium bracket – in one of its commercial jetliners just two years later. Now, over 1,000 3D printed parts are used in its A350 XWB aircraft.

In order to deliver 3D printed aerospace solutions, the European aircraft manufacturing giant has partnered up with many big names in the industry, from Local Motors and Materialise to Premium AEROTEC and GE Aviation, and just today announced a new collaboration. Australian large-scale, industrial AM company Titomic has just reached a major agreement with Airbus, which will use the Melbourne company’s patented Titomic Kinetic Fusion (TKF) technology to demonstrate high-performance metal parts.

“We are pleased to partner with Airbus for this initial aerospace part made with Titomic Kinetic Fusion® (TKF), the world’s largest and fastest industrial-scale metal additive manufacturing process,” stated Titomic CEO Jeff Lang in a press release. “The TKF process ideally suited to produce near-net shape metal parts for the aerospace industry using our patented process of fusing dissimilar metals that cannot be produced with either traditional fabrication methods or metal-based 3D printers.”

TKF is the result of a Commonwealth Scientific and Industrial Research Organisation (CSIRO) study, when Australia’s government was looking to capitalize on its titanium resources. Titomic’s proprietary TKF technology platform uses a process similar to cold spray, and has no limits in terms of build shape and size. A 6-axis robot arm sprays titanium powder particles, at supersonic speeds, onto a scaffold in order to build up complex parts layer by layer.

Thanks to its unique AM technology, Titomic can provide its customers with production run capabilities, which helps rapidly create excellent products, with decreased material waste, that have lower production inputs.

“3D printing, of which TFK is the leading technology, has the potential to be a game changer post the global COVID-19 pandemic supply chain disruption as aircraft manufacturers look to reduce production costs, increase performance, improve supply chain flexibility and reduce inventory costs, and TKF, co-developed with the CSIRO, can be an integral part of this change,” said Lang.

“Regulations force aerospace manufacturers to provide spare parts for long periods after the sale of an aircraft, so it’s not rocket science to assume they will be early adopters of 3D printing solutions for spare-part management.”

The Titomic Kinetic Fusion process involves a 6-axis robot arm spraying titanium powder particles onto a scaffold at supersonic speeds.

TKF technology could be crucially important for aircraft manufacturers, like Airbus, as the field of aviation is one of the largest customers of titanium alloy products. That’s why Titomic has invested in further developing AM so it can meet the material, process, and design qualification system that’s required by the European Aviation Safety Agency (EASA) and the US Federal Aviation Administration (FAA). The company will work to develop TKF 3D printing material properties and parts process parameters for Airbus.

This agreement, the future delivery of the 3D printed demonstrator parts to Airbus, and a technology review process of said parts, all validate the certification process that Titomic’s government-funded IMCRC research project, with partners RMIT and CSIRO, is currently undergoing.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

The post Titomic Signs Agreement with Airbus to Make 3D Printed Metal Demonstrator Parts appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Boom Supersonic Working with VELO3D to Make Metal 3D Printed Hardware for Supersonic Flight Demonstrator

Metal 3D printing startup VELO3D came out of stealth mode last year with its innovative, support-free laser powder bed fusion process that offers a lot more design freedom than most metal systems. Since the company commercialized in 2018, it’s made known that aerospace manufacturing is one of its largest target markets, and since that time at least two OEMs in that industry are using its Sapphire 3D printing systems to make parts. Now, it has just announced a partnership with Colorado-based Boom Supersonic – the company working to build the fastest supersonic airliner in history.

“Boom is reimagining the entire commercial aircraft experience, from the design, build, and materials used. Our technology is designed to help innovators like Boom rethink what’s possible, empower advanced designs with little or no post-processing, and enable an entirely new approach to production,” said VELO3D’s CEO Benny Buller. “Boom needed more than just prototypes and we’re thrilled to help them create the first 3D-printed metal parts for an aircraft that will move faster than the speed of sound.”

Boom, founded in 2014 and backed by several investors, employs over 130 people to help realize its vision: use supersonic travel to make the world significantly more accessible to the people who live in it. The company wants to bring businesses, families, and cultures closer together, and has recognized that 3D printing will help speed up the process. Recently, Boom renewed its existing partnership with Stratasys in order to create 3D printed parts for its XB-1 supersonic demonstrator aircraft, which is exactly what VELO3D will be doing as well.

“High-speed air travel relies on technology that is proven to be safe, reliable, and efficient, and by partnering with VELO3D we’re aligning ourselves with a leader in additive manufacturing that will print the flight hardware for XB-1. VELO3D helped us understand the capabilities and limitations of metal additive manufacturing and the positive impact it would potentially have on our supersonic aircraft,” said Mike Jagemann, the Head of XB-1 Production for Boom Supersonic. “We look forward to sharing details about the aircraft development and improved system performance once XB-1 takes flight.”

The 55-seat, Mach-2.2 (1,687 mph) aircraft is the first supersonic jet to be independently developed, and is made up of over 3,700 parts, combined with multiple advanced technologies, such as a refined delta wing platform, an efficient variable-geometry propulsion system, and advanced carbon fiber composites. Because the demonstrator aircraft – a validation platform called the “Baby Boom” – has such demanding precision, performance, and functional requirements in order to reliably provide safe and efficient travel, Boom is using VELO3D’s Intelligent Fusion technology to make the metal flight hardware for the jet, as it offers more design freedom, process control, and quality assurance; these qualities are essential in challenging design environments.

Boom is also working with VELO3D in order to leverage its customer support partnership, market expertise, and ability to guarantee consistent production quality. The supersonic flight company hopes that by utilizing metal 3D printing, it will be able to improve system performance and speed up the development of its XB-1 – which should eventually fly at twice the speed of sound – and any future aircraft as well.


The two companies have already conducted validation trials together, which were successful in their accurate performance and achieving the desired results. VELO3D developed two 3D printed titanium flight hardware parts, which will be part of the ECS system and make sure that the supersonic aircraft is able to conduct safe flights in any conditions; these parts will be installed on the prototype aircraft early next year.

In addition, the company also 3D printed some engine “mice” for Boom, which were used to validate the additive process.

Engine “mice” as 3D printed on the VELO3D Sapphire system

“The mice allow for high engine operating line testing, ensuring we can achieve safe flight at all conditions,” Ryan Bocook, a manufacturing engineer at Boom Supersonic, said in a VELO3D blog post.

“The 3D printed mice helped Boom execute the test plan and validate predictions, and furthers the success of the program.”

These mice helped to facilitate testing, which included flow distortion simulation at the inlet, by decreasing the nozzle area in order to help simulate stall conditions while the engine is running from part power to mil power.

Not only did Boom Supersonic receive 3D printed flight hardware out of its partnership with VELO3D, but the company’s engineers also had the chance to familiarize themselves with the limitations and capabilities of 3D printing in terms of supersonic aircraft.

Discuss this story, and other 3D printing topics, at 3DPrintBoard.com, or share your thoughts in the Facebook comments below.

[Source/Images: VELO3D]

Researchers Investigate Applicability of Using 3D Printing for Mass Production of Satellites

[Image: Tomsk Polytechnic University]

As the world works to find faster, more cost-effective ways to get to space, it’s necessary to test out innovative, modern technologies, such as 3D printing, rather than stick to the more conventional but expensive methods. Most current 3D printed thermoplastic satellites are developed as part of academic projects that have a low budget, such as the small Tomsk-TPU-120, and it’s very important to achieve fast, flexible, and automated serial production of reliable satellites for less money.

This is the subject of a paper, titled “Material Characterization of Additively Manufactured PA12 and Design of Multifunctional Satellite Structures,” that was written by a collaborative group of researchers from the the German Aerospace Center (DLR), the Fraunhofer Institute for Manufacturing Engineering and Automation (IPA), and the University of Stuttgart Institute of Space Systems (IRS).

Exploded view of the technology demonstrator with GPS receiver unit.

The abstract reads, “Increasing cost pressure on satellite builders and their suppliers push the motivation to open up for new designs and processes. This paper investigates the applicability of thermoplastic additive manufacturing for mass production of satellites. First, the potential of the cost-effective 3D-printing material Polyamide 12 for space structures is examined. Tests include mechanical and thermal-vacuum properties. In the second step, a multifunctional technology demonstrator is designed and a first qualification test is performed. This demonstrator integrates electronic and thermal management components and shows considerable volume savings. Additionally, the automatable processes used for manufacturing enable further cost reductions in series production.”

The researchers worked to demonstrate the potential of their multifunctional, inexpensive, 3D printed satellite, first by testing how usable PA 12 – an easily processed thermoplastic material – is for mass-produced aerospace applications like satellites, and then by designing and testing a multifunctional demonstrator, which is basically a “sandwich with a 3D-printed honeycomb core.”

“On the one hand, this makes so far unusable design space available,” the researchers said about their demonstrator’s structure. “On the other hand, it can be manufactured by highly automatable and flexible processes, for example by a combination of FFF printing and automated fiber placement (AFP). The demonstrator structure is used to show the possible solutions for integrating functions into the structure by 3D-printing. Furthermore, it demonstrates the potential of multifunctional structures for future satellites. To demonstrate the applied integration concepts, an additional shaker specimen is designed and tested.”

In order to test out both FDM and SLS 3D printing, the team used Stratasys’ carbon fiber-reinforced polymer Nylon 12CF and PA 2200 from EOS for their research, and performed mechanical, outgassing, and thermal vacuum tests on specimens produced in three different orientations in order to measure the Young’s Modulus and tensile strength. In regards to the thermal vacuum cycling test, the mechanical properties of the 3D printed specimens were slightly improved, though elongation at break decreased.

Tensile strength of SLS processed PA 12 and short carbon fiber reinforced FFF
processed PA 12.

“The SLS processed pure PA shows mechanical properties very similar to the manufacturer specifications. It also does not show significant anisotropy with respect to the printing orientation. The carbon fiber reinforced PA, on the other hand, shows a strong anisotropy,” the researchers explained. “Regarding the in plane and sideways specimens, tensile strength is drastically increased by the reinforcement. The standing specimens, on the other hand, show reduced strength. Similar behavior can be observed regarding the Young’s Modulus. Young’s Modulus of the reinforced material, however, is always above the pure PA. Furthermore, it can be noted, that the standard deviation off all tests is less than 5 %.”

Test component for vibration testing; (a) the
printed honeycomb core with integrated electronics; (b) test component mounted on the shaker.

The team concluded that the PA materials do show good potential for inexpensive space applications, though an elaborate test program will be necessary for a true qualification process.

A technology demonstrator, which includes 3D printed cable ducts that integrate coaxial cables and cable bundles, was used to verify both the functionality and feasibility of the 3D printed satellites’ function-integration for electronic, propulsion, and thermal management components, and the researchers determined that, at least in this project, an integration of propulsion components was not feasible.

The researchers produced and submitted a test component, complete with a gyroscope sensor, connector, ultrasonic embedded wire, and other planned functions, to vibration testing. The component was made with a PETG honeycomb core, in order to “ensure that results on the functionality of the concept are available before the optimization of the printing process for the PEI honeycomb core.”

After the vibration test, the team detected no visible damage or change to natural frequency, and could verify the electronic system’s total functionality.

“The technology demonstrator points out the capability of multifunctional sandwich structures for satellites. The concept makes so far unusable design space accessible and can generate considerable volume savings. A First successful vibration test confirms the design,” the team concluded. “A weight reduction, on the other hand, is unlikely since printed honeycomb is not lighter than standard aluminum honeycombs. However, the multifunctional structure offers further cost saving by an automated production suitable for mass production and reduced assembling costs.”

The researchers determined that several additional steps, such as a comprehensive cost analysis, are required in order to present a “holistic evaluation of the presented concept”

Co-authors of the paper are Simon Hümbert, Lukas Gleixner, Emanuel Arce, Patrick Springer, Michael Lengowski, and Isil Sakraker Özmen.

Discuss this research and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.