3D Printing News Briefs: June 27, 2019

In today’s 3D Printing News Briefs, we’re starting with a couple of stories from the recent Paris Air Show: TUSAS Engine Industries has invested in GE Additive technology, and ARMOR explained its AM materials partnership with Airbus. Moving on, Formlabs just hosted some live webinars, and PostProcess Technologies released a whitepaper on surface finishing metal 3D printed parts. Modix is sharing a lot of news, including four new 3D printer models, and finally, FormFutura has introduced sustainable packaging.

TEI Invests in GE Additive Technology

TUSAŞ Engine Industries, Inc. (TEI), founded in Turkey as a joint venture in 1985, has invested in GE Additive‘s direct metal laser melting (DMLM) technology. GE Additive announced at the recent Paris Air Show that TEI had purchased two of its M LINE factory systems and two M2 cusing machines. While the financial terms of the investment were not disclosed, the 3D printers will be installed at TEI’s Eskişehir headquarters, joining its current fleet of laser and Arcam EBM printers.

Professor Dr. Mahmut Faruk Akşit, President and CEO of TEI, said, “Today, we invest in TEI’s future by investing in additive manufacturing, ‘the future of manufacturing.’ Our longstanding partnership and collaboration with GE is now broadening with GE Additive’s machine portfolio.”

Armor and Airbus Partner Up for Aerospace 3D Printing

Air pipe prototype printed using the Kimya PLA HI (Photo: ProtoSpace Airbus)

Continuing with news from the Paris Air Show, ARMOR Group – a French multinational company – was also at the event, exhibiting its Kimya materials and a miniFactory printer, as well as its new aeronautics filament, PEI-9085. While there, ARMOR also met up with Airbus, which has frequently used 3D printing to create parts and prototypes, such as an air nozzle for the climate control system of its 330neo passenger cabin. The company has now requested ARMOR’s expertise in better qualifying its materials in order to standardize its own AM process.

“We have qualified the PLA-HI and PETG-S. We are currently testing more technical materials, such as the PETG Carbon before moving on to the PEI and PEEK. We have requested a specific preparation to make it easier to use them in our machines,” Marc Carré, who is responsible for innovation at Airbus ProtoSpace in Saint-Nazaire,

“We expect to be able to make prototypes quickly and of high quality in terms of tolerances, aesthetics and resistance.

“Thanks to ARMOR and its Kimya range and services, we have found a partner we can share our issues with and jointly find solutions. It is very important for us to be able to rely on a competent and responsive supplier.”

Webinars by Formlabs: Product Demo and Advanced Hybrid Workflows

Recently, Formlabs hosted a couple of informative webinars, and the first was a live product demonstration of its Form 3. 3D printing expert Faris Sheikh explained the technology behind the company’s Low Force Stereolithography (LFS) 3D printing, walked through the Form 3’s step-by-step-workflow, and participated in a live Q&A session with attendees. Speaking of workflows, Formlabs also held a webinar titled “Metal, Ceramic, and Silicone: Using 3D Printed Molds in Advanced Hybrid Workflows” that was led by Applications Engineering Lead Jennifer Milne.

“Hybrid workflows can help you reduce cost per part and scale to meet demand, while taking advantage of a wider range of materials in the production of end-use parts,” Formlabs wrote. “Tune in for some inspiration on new ways of working to advance your own process or to stay on top of trends and capabilities across the ever-growing range of printable materials.”

PostProcess Whitepaper on 3D Print Surface Finishing

PostProcess Technologies has released its new whitepaper, titled “Considerations for Optimizing Surface Finishing of 3D Printed Inconel 718.” The paper discusses a novel approach to help improve surface finish results by combining a patent-pending chemistry solution and software-driven automation. Using this new approach, PostProcess reports increased consistency and productivity, as well as decreased technician touch time. The whitepaper focuses on surface finishing 3D prints made with alloys and metals, but especially zeroes in on nickel superalloy Inconel 718, 3D printed with DMLS technology.

“With current surface finishing techniques used that are largely expensive, can require significant manual labor, or require the use of hazardous chemicals, this paper analyzes the benefits of a novel alternative method for post-printing the part’s surface,” PostProcess wrote. “Key considerations are reviewed including part density and hardness, corrosion (chemical) resistance, grain structure, as well as manufacturing factors including the impact of print technology and print orientation on the surface profile.”

You can download the new whitepaper here.

Modix Announces New 3D Printers, Reseller Program, and Executive

Israel-based Modix, which develops large-format 3D printers, has plenty of news to share – first, the company has come out with four new 3D printer models based on its modular design. The new models, which should be available as soon as Q3 2019, are the 1000 x 1000 x 600 mm Big-1000, the 600 x 600 x 1200 mm Big-120Z, the 1800 x 600 x 600 mm Big-180X, and the 400 x 400 x 600 mm Big-40. Additionally, the company has launched a reseller program, where resellers can offer Modix printers to current customers of smaller printers as the “best next 3D printer.” Finally, Modix has appointed 3D printing veteran John Van El as its new Chief Commercial Officer; he will help build up the company’s partner program.

“We are proud to have John with us,” said Modix CEO Shachar Gafni. “John brings aboard unique capabilities and experiences strengthening Modix’s current momentum on the path to become a global leader in the large scale 3D printing market.”

FormFutura Presents Recyclable Cardboard Packaging

Dutch filament supplier FormFutura wants to set an example for the rest of the industry by not only raising awareness about sustainability, but also by stepping up its own efforts. That’s why the company has moved completely to cardboard packaging – all of its filaments up to one kilogram will now be spooled onto fully recyclable cardboard spools, which will also come in cardboard boxes. All of FormFutura’s cardboard spools and boxes are manufactured in its home country of the Netherlands, which helps reduce its carbon footprint in terms of travel distance, and the material is also a natural drying agent, so it will better protect filament against humidity.

“Over the past couple of months we’ve been brainstorming a lot on how we can make FormFutura more sustainable and help renew our branding. As over this period we have received feedback from the market about helping to find a viable solution to the empty plastic spools, we started setting up a plan to reduce our carbon footprint through cardboard spools,” said Arnold Medenblik, the CEO of FormFutura. “But as we got to working on realizing rolling out cardboard spools, we’ve also expanded the scope of the project to include boxes and logistics.”

Because the company still has some warehoused stock on plastic spools, customers may receive both types of packaging during the transition.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

GE Additive Customer Uses DMLM 3D Printing to Manufacture Blades for Medical Cutting Device

endoCupcut

As the population continues to age, the number of necessary hip replacements rise, which means we’re seeing more 3D printed hip implants and hip cups. Implanting a hip cup is fairly straightforward these days, but removing one, for reasons ranging from abrasion and infection to loosening, is another story. Surgeons typically have to use a hammer and chisel for this, which can damage tissue and bone and make it hard to reinsert a new implant.

Germany medical device company Endocon, a GE Additive customer, is using additive manufacturing to make it easier for surgeons to remove hip replacement cups. The company isn’t 3D printing the cups, but instead created a new device, called an acetabular cut cutter, with 3D printed blades. This product has improved not only the surgical experience for the patient and physician, but the cost savings and product reliability as well.

“We’ve also been able to reduce the cost per blade by around forty to forty-five percent. That means cost savings for us and in turn for our customers,” said Klaus Notarbartolo, the General Manager at Endocon. “When you combine that with a reduction in product development time, higher efficiency and lower rejection rates, then the business case for additive really becomes attractive.”

Typically, traditional casting is used to manufacture cutting blades, but for an end product that comes in a variety of shapes and sizes, it could take up to three and a half months to produce a single batch of blades. Casted blades can also have a rejection rate of about 30% due to issues like non-repeatable quality, corrosion, and consistent hardness.

The company called on GE Additive’s Concept Laser Mlab Cusing 100R, which uses direct metal laser melting (DMLM) technology, to 3D print the blades for its endoCupcut in 17-4 PH stainless steel. This reusable device allows surgeons to quickly loosen and extract cementless hip cups without damaging the surrounding bone, as its blades allow for more precise cutting along the edge of the acetabular cup. Additionally, it can be combined with up to 15 different 3D printed stainless steel blades in sizes ranging from 44 mm to 72 mm, and makes it possible to implant the same size cup that was originally there.

The 3D printed blades for the endoCupcut, which had only minimal changes from the original model, can be available in just three weeks, including post-processing. The device now has a rejection rate of less than 3%, can achieve consistent outcomes, and the 3D printed blades show excellent corrosion resistance. Rather than cracking after 600 N, the blades show a plastic deformation after applying 1,8 kN, and their hardness level has improved to 42+-2 HRC, compared to 32 HRC.

“Endocon’s ability to solve multiple challenges using additive is impressive example of how it can have a positive impact for smaller companies targeting the orthopedic industry,” said Stephan Zeidler, Business Development Manager Medical for GE Additive. “What started with the need for a reduced time-to-market in terms of product development and flexible production of various shapes and sizes has resulted in a smart, innovative medical product that enhances patient outcomes.

“Moving the entire production process from casting to additive manufacturing was a logical step and that shift continues to provide inspiration for future projects.”

Metal 3D printing specialist and service bureau Weber-KP manages the entire process, including data preparation, build platform orientation, 3D printing, surface finishing, hardening, and bead blasting, for Endocon. The company has even improved the manufacturing process of the blades in order to, as GE Additive put it, “maximize the best possible outcome” and can fit between two and six blades on the Mlab Cusing 100R’s build platform, depending on orientation and size.

Using DMLM technology to 3D print the blades has improved their mechanical properties, and also ensures high density and accuracy. By using stronger, harder, and more reliable blades on the endoCupcut, the device performs better for the surgeon in the operating room, and also makes things safer for the patient by lowering the risk of breakage and splinters being embedded in their tissue. Using this device, surgery time has been decreased from 30 minutes to just three, and its precise cutting method preserves the highest possible amount of bone substance, which “supports an accelerated healing process for the patient.”

Other benefits of fabricating the endoCupcut blades with DMLM 3D printing include:

  • High-fitting accuracy of blades through modular system of ball-shaped heads
  • Perfect fitting of ball-shaped heads in a 38-60 mm width
  • Reusable for multiple operations
  • Wear-resistant and easy to sterilize

Lowering surgical risk saves hospitals money and time, and the world is definitely taking notice of Endocon’s innovative work. The endoCupcut is already being used by several medical professionals around Germany, and the company itself is a finalist in the TCT Awards next week.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

[Images provided by GE Additive]

GE Additive Partnering Up with Honda and Triumph Group for 3D Printing Acceleration

GE Additive, which is attending the Farnborough International Airshow this week, has been busily dropping announcements from the trade fair, the latest of which is centered around its AddWorks additive consulting service provider. GE Additive and AddWorks were chosen by the Honda R&D Co., Ltd, Aircraft Engine R&D Center in Japan to help increase the development of 3D printed aerospace applications for its future generation aircraft engines.

SmarTech Publishing stated that over $280 billion will be invested in additive manufacturing over the next decade, and GE Additive wants in. Last spring, the company announced that it would be increasing its focus on additive manufacturing, planning to sell 10,000 3D printers by 2026 and become a $1 billion business by 2020. This announcement was followed by setting up operations in Japan this winter, and announcing that more commercial offerings would be available last month. Now, it’s continuing to increase its commercial efforts in Japan by focusing on important industries like automotive and aerospace.

“We are pleased that Honda Aircraft Engine R&D Center has selected GE Additive to be its vendor in providing AddWorks consulting services to further the use of this transformative technology in its future generation aircraft engines,” said Thomas Pang, the Director of GE Additive in Japan. “We are in the best position to share our learnings from our own additive journey, having started from prototyping to successfully applying it to mass production for aviation engine parts.”

Honda R&D Headquarters

GE and Honda have been partnering together in the aviation industry for over ten years, first setting up the joint venture GE Honda Aero Engines LLC in 2004 between Honda Aero and GE Aviation, and then creating the GE Honda HF120 jet engine for use on lighter business jet aircraft like the successful HondaJet – the most delivered in its category last year.

To assist customers in adding 3D printing to their business workflows, GE Additive provides materials, 3D printers, and the engineering consultancy services of AddWorks; these consultants use their AM expertise to help clients figure out if adopting 3D printing will be beneficial in terms of performance and cost. GE Additive is hopeful that AddWorks will help Honda Aircraft Engine R&D Center, and ultimately lead to further growth of its partnership with the company and increased AM adoption in aerospace.

At its Japan location, GE Additive will sell Concept Laser and Arcam EBM 3D printers, along with materials, both directly and through local resellers to customers in the country that focus on heavy industry, automotive, and aerospace.

In addition to the partnership with Honda, Pennsylvania-headquartered Triumph Group, a leader in the aerospace industry, is working to further its own AM strategy by selecting two of GE Additive’s 3D printers and a variety of AddWorks design and engineering consultancy service packages. Triumph hopes that these new additions will help to support both its commercial objectives and its R&D initiatives.

“I really admire Triumph’s smart and progressive strategy in adopting a multimodality approach to their additive journey. And when you add to that the deep experience and divergent thinking of our AddWork’s team, I look forward to seeing the results of what I hope will be a long and rewarding relationship,” said Jason Oliver, the President and CEO of GE Additive.

Triumph works in all levels of the aerospace supply chain, ranging from single components and complex systems to aerospace structures, in order to offer solutions for an aircraft’s entire product life cycle. The company enjoys a competitive advantage over similar businesses thanks to its ability to integrate several capabilities and products.

The aerospace company chose an M2 Cusing Multilaser DMLM system from Concept Laser, as well as an Arcam EBM Q20plus system, both of which should be fully installed at its Seattle R&D facility within Q3 of 2018.

“Triumph Group is excited to work with GE Additive to broaden Triumph’s utilization of additive manufacturing technology. Thus far we have successfully used additive manufacturing for prototyping, and we are rapidly growing its use for design competency,” said Dan Crowley, the President and CEO of Triumph Group. “This partnership with GE Additive will strengthen our additive manufacturing capability, accelerating our ability to design and develop future on-wing solutions for our customers.”

L-R: Gary Tenison, VP Strategy & Business Development, Triumph Group; Jason Oliver, President & CEO, GE Additive; Dan Rowley, President & CEO, Triumph Group; David Joyce, Vice Chair of GE and President and CEO, GE Aviation; Tom Holzthum, EVP Integrated Systems, Triumph Group; Ryan Martin, Sales Leader Americas, GE Additive

Right from the beginning, GE Additive’s AddWorks team will work with Triumph in multiple areas, such as advising on prototyping strategies, discovery workshops, and materials selection.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the comments below. 

[Images provided by GE Additive]