DNA Biosensing with 3D Printing

Biosensor Structure

3D printing is useful in how it makes tools for us humans. Tools are the gateway to innovation within our world. 3D Printing helps different industries because of cost reductions and material waste. We are going to look into a specific industry application and how it is leveraging 3D printing technology.

A biosensor is an analytical device, used for the detection of a chemical substance, that combines a biological component with a physicochemical detector. The sensitive biological element, e.g. tissue, microorganisms, organelles, cell receptors, enzymes, antibodies, nucleic acids, etc., is a biologically derived material or biomimetic component that interacts, binds, or recognizes with the analyte under study.

How DNA Biosensors Work

We are particularly interested in DNA biosensors. DNA biosensors can theoretically be used for medical diagnostics, forensic science, agriculture, or even environmental clean-up efforts. No external monitoring is needed for DNA-based sensing devices. Typically these machines were very large and expensive devices that were only for research purposes. DNA biosensors are now becoming complicated mini-machines—consisting of sensing elements, micro lasers, and a signal generator.  This means that DIY construction of such a device will lead to better public health implications for makers. DNA biosensors function on the fact that two strands of DNA stick to each other through chemical attractive forces. Only an exact fit—that is, two strands that match up at every nucleotide position leads to a fluorescent signal that is then transmitted to a signal generator.

The field of biosensors has developed extensively and now has become one of the essential state of the art technologies in laboratory medicine. The idea of biosensors has revolutionized the concept of self-testing by the patient in many clinical conditions. Quick diagnosis and early prevention are critical for the control of disease status. Some commercial biosensors on the market include the following:

So why are 3D printers important in the field of biosensing? In terms of tool creation, it is vital for biotech companies and researchers to build new prototypes and mini machines for biosensing. In order to rapidly make advances within this type of technology, 3D printing is used to cut down costs, as well as iterate designs. This helps to streamline innovation and develop new methods to reduce the production of biosensors.

Researchers currently are working on the potential of adopting 3D printing technology for electrochemical DNA biosensing applications. Some groups have created helical-shaped stainless steel electrodes that are vital for biosensing. An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit (e.g. a semiconductor, an electrolyte, a vacuum or air). This connection is vital for signal processing and seeing whether or not DNA can be identified within a biosensor.

These can be designed and 3D printed through the use of a selective laser melting (SLM) method, which fuses a fine metal powder on a printing stage with a high intensity laser beam, in a layer-by-layer manner. SLM is also called Laser Powder Bed Fusion and is similar to DMLS or Direct Metal Laser Sintering while commonly being called metal 3D printing. It is important to use metal printing for a biosensor because specific chemical and electrical reactions occur with the use of different metal groups.

SLM method

The future of biotech is oriented towards how devices can be made quickly and cheaply. With 3D printing, a maker who is curious has a lot of tools and the ability to make devices efficiently. This leads to projects and innovations when one is open to iterating and experimenting. More importantly one should learn how to create their own devices. Health care as a whole is leaning toward preventative measures. It is important to have tools that can diagnose complications that we are not aware of. It also is important due to the fact that healthcare will be more expensive as time continues. For underdeveloped nations, having access to open source solutions to biotechnology projects can lead to better maintenance of their citizens and their general health.

The future of health is reliant on different technologies, and 3D printing is a very essential part of the equation. With 3D printing, we are able to create tools that were previously only accessible to industry experts. Now a common consumer with an interest can create medical tools such as a biosensor to assist them in their own general health. What will we as makers do to help that?

New Research Could Lead to DNA 3D Printer

Technology is capable of amazing things, but it doesn’t mean those things are easy. It’s incredible that scientists can produce DNA in a lab, but the process is difficult, lengthy and requires toxic chemicals. Imagine, however, if they could simply print it, the way that you would 3D print anything else. That could be the future, after scientists at UC Berkeley and Lawrence Berkeley National Laboratory developed a new way to synthesize DNA. The method could lead to DNA printers, similar to ordinary 3D printers, that could produce DNA strands that are more accurate and 10 times longer than the strands produced with today’s methods – more quickly and easily, and without the use of toxic chemicals.

“If you’re a mechanical engineer, it’s really nice to have a 3D printer in your shop that can print out a part overnight so you can test it the next morning,” said UC Berkeley graduate student Dan Arlow. “If you’re a researcher or bioengineer and you have an instrument that streamlines DNA synthesis, a ‘DNA printer,’ you can test your ideas faster and try out more new ideas. I think it will lead to a lot of innovation.”

The research was led by Arlow and PhD student Sebastian Palluk, a doctoral student at the Technische Universität Darmstadt in Germany and a visiting student at Berkeley Lab. It is published in a paper entitled “De novo DNA synthesis using polymerase-nucleotide conjugates,” which you can access here. The research was conducted at the Department of Energy’s Joint BioEnergy Institute (JBEI).

“I personally think Dan and Sebastian’s new method could revolutionize how we make DNA,” said Jay Keasling, a UC Berkeley professor of chemical and biomolecular engineering, senior faculty scientist at Berkeley Lab and Chief Executive Officer of JBEI.

Keasling and JBEI scientists specialize specialize in adding genes to microbes, typically yeast and bacteria, to sustainably produce useful products. Palluk came from Germany specifically to work with Arlow in Keasling’s lab.

L to R: Dan Arlow, Sebastian Palluk and Jay Keasling

“We believe that increased access to DNA constructs will speed up the development of new cures for diseases and simplify the production of new medicines,” Palluk said.

The synthesis of DNA is a growing business; companies are ordering custom-made genes so that they can produce chemicals, biologic drugs or industrial enzymes. Researchers purchase synthetic genes to engineer plants and animals or try out new CRISPR-based disease therapies. Some scientists have even researched storing information in DNA, but that would require much larger quantities of DNA than are currently synthesized. All of these applications require that synthesis produce the desired sequence of nucleotides or bases, the building blocks of DNA, in each of millions or billions of copies of DNA molecules.

Current DNA synthesis is limited to producing oligonucleotides about 200 bases long, because errors in the process lead to a low yield of correct sequences as the length increases. To assemble even a small gene, scientists have to stitch together segments of about 200 bases long. The turnaround time for a small gene of 1,500 bases long can be two weeks at a cost of $300, limiting the experiments that scientists can do. Synthetic biologists like Arlow, Palluk and Keasling often insert a dozen different genes at once into a microbe to get it to produce a chemical, and each gene presents its own synthesis problems.

“As a student in Germany, I was part of an international synthetic biology competition, iGEM, where we tried to get E. coli bacteria to degrade plastic waste,” said Palluk. “But I soon realized that most of the research time was spent just getting all the DNA together, not doing the experiments to see if the engineered cells could break down the plastic. This really motivated me to look into the DNA synthesis process.”

The technology developed by Palluk, Arlow, Keasling and their team relies on a DNA-synthesizing enzyme found in cells of the immune system that has the natural ability to add nucleotides to an existing DNA molecule in water, where DNA is most stable. The technology results in increased precision, allowing synthesis of DNA strands several thousand bases long – a medium-sized gene.

“We have come up with a novel way to synthesize DNA that harnesses the machinery that nature itself uses to make DNA,” Palluk said. “This approach is promising because enzymes have evolved for millions of years to perform this exact chemistry.”

Cells create DNA by copying it with the help of several different polymerase enzymes that build on DNA already in the cell. But in the 1960s, scientists discovered a polymerase that doesn’t rely on an existing DNA template but instead randomly adds nucleotides to genes that make antibodies for the immune system. The enzyme, called terminal deoxynucleotidyl transferase (TdT), creates random variation in these genes, resulting in antibody proteins that are better able to attack new types of invaders.

TdT is fast and does not have side-reactions that could affect the resulting molecule. Scientists over the years have tried to use the enzyme to synthesize DNA sequences, but it was hard to control. The key is to find a way to get the enzyme to add one nucleotide and then stop, so that the sequence can be synthesized one base at a time. Previous approaches tried to obtain that control by using modified nucleotides with a special blocking group that prevents multiple additions at once. After the DNA molecules have been extended by a blocked nucleotide, the blocking groups are removed to allow the next addition.

TdT, however, cannot accommodate a blocking group on the nucleotide being added. But Arlow came up with the idea to tether an unblocked nucleotide to TdT, so that after the nucleotide is added, the enzyme remains attached and prevents further additions. After the molecule has been extended, the tether is cut, releasing the enzyme and re-exposing the end for the next addition.

In the first trials, the researchers demonstrated that this technique is not only faster and simpler, but nearly as accurate as other techniques in each step of the synthesis.

“When we analyzed the products using NGS, we were able to determine that about 80 percent of the molecules had the desired 10-base sequence,” Arlow said. “That means, on average, the yield of each step was around 98 percent, which is not too bad for a first go at this 50-plus-year-old problem. We want to get to 99.9 percent in order to make gene-length DNA.”

Once they can reach 99.9 percent fidelity, they can synthesize a 1,000-base-long molecule with a yield of more than 35 percent, which is currently impossible with existing techniques.

“By directly synthesizing longer DNA molecules, the need to stitch oligonucleotides together and the limitations arising from this tedious process could be reduced,” said Palluk. “Our dream is to directly synthesize gene-length sequences and get them to researchers within few days.”

“Our hope is that the technology will make it easier for bioengineers to more quickly figure out how to biomanufacture useful products, which could lead to more sustainable processes for producing the things that we all depend on in the world, including clothing, fuel and food, in a way that requires less petroleum,” said Arlow.

He added, “Our dream is to make a gene overnight. For companies trying to sustainably biomanufacture useful products, new pharmaceuticals, or tools for more environmentally friendly agriculture, and for JBEI and DOE, where we’re trying to produce fuels and chemicals from biomass, DNA synthesis is a key step. If you speed that up, it could drastically accelerate the whole process of discovery.”

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

[Source: UC Berkeley / Images: Marilyn Chung, Berkeley Lab]

 

Using 3D Printing to Sample the Ocean Floor

When we think of biodiversity, we may think of forests with wildly differing species of birds, insects and other animals, or seas with wide varieties of fish. Sometimes biodiversity is easily visible in these larger species, but often it can only be measured on a very small scale. Dr. Matthew Cannon, a research associate in the lab of Dr. David Serre at the University of Maryland School of Medicine’s Institute for Genome Sciences, is interested in measuring biodiversity using DNA from environmental samples such as fresh or marine water, sediments or soils.

The analysis of environmental DNA, or eDNA, is an effective technique of measuring biodiversity. Organisms living in a particular area can be identified and characterized by the cells and hair they leave behind, or their decaying remains, all of which contain DNA and can reveal to scientists the types of creatures that are present in any given location. Special tools are required for this kind of analysis, especially for the type of work that Dr. Cannon wants to do, which involves taking samples from deep underwater locations.

Methods of sampling eDNA from deep underwater locations are limited by the volume of water that can be collected, or because of potential contamination from surface water. The possibilities presented by collection of eDNA from these deep-water locations are intriguing, however, because a single sample can give researchers an idea of the total biodiversity of a site without direct organism sampling. These locations are difficult to explore; traditional methods such as collecting samples in trawl nets or expeditions with remotely operated vehicles are expensive and can miss organisms that can’t be captured by a net or that avoid the lights of a rover.

Therefore, Dr. Cannon wanted to explore alternative options for deep-water eDNA sampling. He designed and 3D printed a device that houses a water filter and pump, controlled by an Arduino, that can collect samples at any depth. The device allows for the collection of large samples, limited only by filtering time.

“3-D printing is allowing us to develop a prototype water sampler that might not have been practical to imagine or design a few years ago,” Dr. Cannon said.

Dr. Cannon used the 3D printer at the Health Sciences/Human Services Library Innovation Space to create his prototype, which he is now testing to ensure that the parts work well together. It only takes a few hours to 3D print each prototype, allowing him to quickly develop new iterations.

The University of Maryland prioritizes technological advancement; towards the end of last year the university opened a new center dedicated to bioengineering, and was one of the earlier schools to open a MakerBot Innovation Center. The school is responsible for some advanced 3D printing-related research, and Dr. Cannon’s work will put the university on the map once again for its use of technology to gain new insight into areas that have previously been unexplored.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

[Source/Images: University of Maryland]