Lazy Manufacturing: Making Things Using Less Energy

A friend took a broken part of his old boat out of his pocket.  “Can you fix this?” he asked me.

It was a complicated aluminium die-casting from the cold end of the engine’s heat exchanger.  A tab with a hole for one of the fixing screws had sheared off, and the decades had not been kind to the rest of it either.

“I think so,” I said, and stuck the tab back on with Blu-tack.

His eyes narrowed. “It was a serious question.”

“I know.”  I started to build a riser and sprue structure with more Blu-tack.

“Ah!” he said. “You’re going to make a mould and cast me a replacement.  Thanks!  But how will you melt the aluminium?”

“I won’t,” I said. “Aluminium would shrink, so it would end up the wrong size.  I’m going to use Lego.”

He sighed and wandered into the next room.  I heard him say something to my wife about her bloody husband and seaworthiness. Then he asked her if he could pour himself another whisky.

The application of computers to manufacturing has transformed the way humanity makes things, transformed the efficiency with which we do it, and transformed what it is possible to make.  A great deal has been written about those transformations, going right back to John T. Parsons’ first numerically controlled (NC) machine tool in the 1950s [1].

But, while that has been happening, another change in how we make things has been progressing in parallel.  We have been reducing both the forces and the temperatures that we need to deploy (and hence reducing the energy needed) to make a great range of products.  Much less has been written about this change, and adumbrating it is the purpose of this article.

The Industrial Revolution started with iron; indeed – only slightly apocryphally –  it started at Ironbridge in Shropshire with Abraham Darby smelting iron ore using coke, which allowed his grandson to make, among other things, the eponymous bridge.  The revolution rapidly moved from iron to steel and took in brass, and later aluminium and other metals along the way.

Whenever you are going to make something from a metal, you need to get it very hot, or hit it very hard, or both.  Metals, or at least the metals we use in most products, are tough; that is why we use them.  For 150 years great force and great heat were the way that we made things.

Then, around the time of Parsons’ first NC tool, materials that had begun to be developed decades earlier – plastics – started to become significant.  These were much weaker than metals, but melted at much lower temperatures or – in the case of some thermosets – could even be formed at room temperature.

Moving to the present day, every year now humanity makes about 100 million cubic meters of steel and four times that volume of plastics.  Plastics overtook steel towards the end of the Twentieth Century because we discovered that – for many things – we simply didn’t need the strength, and that plastics were a lot more versatile, in part because they required much lower forces and temperatures to work with.  The introduction of plastics is the first reason that force and temperature have reduced when we make things.

Conventional manufacturing is about cutting or moulding material (and also bending, to a lesser extent).  Given the toughness of metals and the high temperatures at which they melt these – as I mentioned above – need big forces and temperatures.  But of late the application of computers to manufacturing has facilitated a number of new ways of cutting that require little or no force.  The most ubiquitous is the lasercutter – a bandsaw made of light.  But there are also water jet cutters and (pre-dating the NC revolution) spark erosion and electrochemical machining.  All these cutting machines remove material without applying large forces to it.

And now, of course, we also have 3D printing.  All the versions of this (even those that work with metals) apply very little force as they build things.  We can imagine a 3D printer controlled by punched cards like a Jacquard loom that it would have been possible to build in the Nineteenth Century, but that simply didn’t occur to anyone.  So we had to wait until the late Twentieth for the low-force 3D printing revolution to start.  That, and the other methods in the previous paragraph, are the second reason that force has reduced when we make things.

Finally, the most productive manufacturing system on Earth – biology – has always used low-force methods.  A growing organism usually has little more opposition to overcome than the weakest of the forces in physics – gravity.  And what grows is not that strong either.  With a few exceptions (such as tooth enamel) most biological materials are much weaker than metals.  Indeed, almost all of them are plastics of a sort, being formed from polymers of various kinds like hair, which is made from keratin, insect exoskeletons, which are made from chitin, and wood, which is made from cellulose and lignin.

Some time ago colleagues and I did a systematic study of how biological systems evolve solutions to engineering problems, and contrasted that with human solutions to similar problems [2].  One of our conclusions was that, when humans do engineering (at least traditionally) we have tended to throw in energy to create a solution.  But when evolution is doing engineering it tends rather to throw in information in the form of complicated structure or data processing to create its solutions.

Wood is a good example[3].  Both cellulose and lignin are brittle materials, but wood never shatters like glass.  This is because it is made from cellulose fibres in a helix glued together with lignin.  As stress causes wood to fail, the lignin fractures but the cellulose stays intact, stretching like a spring.  This process absorbs a great deal of energy, which is why wood is so tough.  The complexity of this structure is only possible because it is programmed (which is also the way we’d have to do it if we were to imitate it).

A Squash Stem

So, as human manufacturing has progressed we have used lower temperatures, less force, and weaker materials.  To achieve that, in many cases, we use computers to do clever control of the manufacturing process.  In this way human manufacturing is beginning to approach the way that evolution has always solved the same sorts of problems.

I put some rods in the holes in the die casting to act as cores.  Then I built a Lego tank to hold it, and lined its inner faces with Sellotape to stop it leaking.  It made a Lego bridge across the top from which I suspended the hose connector using a length of cotton.

I poured liquid silicone into the tank around and over the die casting and left it to set.

Then I took the resulting solid rectangular lump of silicone from the tank, cut round the embedded die casting with a scalpel, dug out the core rods, and separated the two halves of the mould that I had made.  I scraped away the Blu-tack risers and sprues, put the cores back, and held the two (now empty) halves of the mould together with elastic bands.  I mixed up some resin and poured it in.

An object originally requiring a temperature of 700oC and a pressure of 200 bar to make had been reproduced at room temperature and pressure in a material about a third as strong as the original, which was quite strong enough.

That was a few years ago, and the result is still at sea.  But if it fails, my friend has a couple of spares in his locker.  As I pointed out to him, it was almost as easy for me to make three as to make one…

Adrian Bowyer is a British engineer and mathematician; in 2005 he created the RepRap Project to make a self-replicating 3D printer; this has been widely credited with starting the desktop 3D printer revolution.

[1] https://en.wikipedia.org/wiki/History_of_numerical_control#Parsons_Corp._and_Sikorsky

[2] Julian F.V. Vincent , Olga A. Bogatyreva , Nikolaj R. Bogatyrev , Adrian Bowyer , Anja-Karina Pahl: Biomimetics: its practice and theory, Journal of the Royal Society Interface, ISSN: 1742-5689, (2006).

[3] G. Jeronimides, The fracture of wood in relation to its structure, Leiden Botanical Series, No. 3, 253-265, 1976

Images: Berkshire Community College, Numerical Control Patent, Adrian Snood, Fabrice Florin, Berkshire Community College.

The post Lazy Manufacturing: Making Things Using Less Energy appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Siemens seeks validation for 3D printed burners key to 100% renewable energy for Gothenburg

Award-winning industrial manufacturing company Siemens is in the process of validating 3D printed burners key to a fossil-free fuel initiative in Sweden. Part of a cooperation agreement between the conglomerate and Göteborg Energi, the power provider owned by the City of Gothenburg, Siemens is testing state-of-the-art gas turbine technology that enables the operation of renewable fuels. 3D printing […]

The Philippines opens two 3D printing research facilities to remain competitive within ASEAN

The Philippines Department of Science and Technology (DOST) has launched two new 3D printing research: the Additive Manufacturing Research Laboratory (AMREL) and the Additive Manufacturing Center (AMCen). DOST established the facilities in order to aid the Philippines in developing its additive manufacturing industry and overtake other countries implementing AM within the Association of Southeast Asian Nations […]

Siemens Saves Time and Money, and Lowers CO Emissions, with 3D Printed Gas Turbine Component

German engineering group Siemens is on a roll in its quest to determine just how many benefits can be offered by 3D printing in the power generation industry. The company completed the first full-load engine tests for its 3D printed gas turbine blades last year, only a few weeks before completing the first commercial installation of a 3D printed part in a nuclear power plant. Earlier this year, it had 3D printed and installed its first industrial steam turbine replacement part into customer equipment, and as of this April, Siemens had over two handfuls of 3D printed gas turbine components qualified and released for serial production.

Now, the company has hit another milestone – Siemens announced that it has 3D printed and engine tested a dry low emission (DLE) pre-mixer for its industrial SGT-A05 aeroderivative gas turbine; 3D printing was also used to improve aerodynamic development testing for this particular turbine last month.

“This is another excellent example of how additive manufacturing is revolutionizing our industry, delivering measurable benefits and real value to our customers, particularly as they look to further reduce emissions to meet environmental target. Our achievements using AM are paving the way for greater agility in the design, manufacturing and maintenance of power generation components,” said Vladimir Navrotsky, Chief Technology Officer for Siemens Power Generation Services, Distributed Generation.

A 3D printed dry low emission pre-mixer for the SGT-A05 gas turbine. [Image: Trade Arabia]

The results of this 3D printed combustion component show that it could help significantly lower CO emissions, and numerous other achievements have also resulted from using 3D printing to fabricate this specific component. Complexity in the production process is simplified, and the geometry of the component was improved upon, which led to a better fuel-air mix. In addition, 3D printing the DLE pre-mixer helped to decrease external dependencies in the supply chain.

First, the development of the component only took seven months from start to finish – this is a pretty impressive timeframe for a complex, high-temperature component with tight tolerances that works with high loads. When made with traditional manufacturing processes, the DLE pre-mixer has over 20 parts, but this was reduced down to only two parts by 3D printing the component out of Siemens’ qualified nickel super alloys; this also helped lower the lead time by about 70%.

Siemens recently completed the first engine testing of the 3D printed component, which shows some promising data. The test revealed that there were no combustion dynamics or noise, no start issues, and that all of the fuel transitions were completed without needing any controls modifications. In addition, full power was achieved and there was a measurable reduction in CO emissions.

Douglas Willham, Siemens Director of Engineering for the SGT-A05, said, “And now, with AM technology we have an opportunity to go even further with emissions reduction for DLE combustion.”

The 3D printed DLE solution for Siemens’ SGT-A05 gas turbine uses advanced lean burn combustion technology to reduce emissions, which meant that water injection was not needed; this also helps lower costs. The engine model’s high dynamic loading response is not compromised by applying DLE, evidenced by the fact that over 120 engines successfully use the technology to lower CO and NOx emissions.

The DLE pre-mixer was 3D printed at Siemens’ AM Center of Competence in Sweden. These positive test results further show how committed the company is to moving forward 3D printed serial production of highly complex components in the energy industry.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

[Source: Power]