3D Systems Gains FDA Clearance for VSP Orthopaedics 3D Surgical Pre-Planning Solution

3D printing company 3D Systems has just announced 510(k) clearance from the Food and Drug Administration (FDA) for their VSP Orthopaedics solution. This development will further increase solutions offered in their VSP approach for orthopaedics, which has already played a role in the treatment of over 120,000 patients—over the past 25 years.

VSP Orthopaedics will allow surgeons to examine the anatomical structure of patients about to have surgery, relying on a ‘clear 3D visualization’ so they can create a patient-specific surgical plan ahead of time. VSP technology has already been used over the long-term as an example of anatomic modeling leadership.

3D Systems continues to demonstrate the benefits of 3D printing to the world with research and development of a wide range of hardware, software, solutions, and support. While all the classic advantages continue to present themselves from speed in manufacturing—not to mention incredible flexibility in design, making changes, and production—to affordability, customization, and more, what is central to medicine is the ability to make patient-specific models, devices, and solutions.

Virtual planning is becoming much more popular with surgeons too as they are able to remove enormous pressure in training for what may be completely new or rare, complex procedures. With virtual surgical planning, the surgeon can go through the motions of the surgery digitally ahead of time. Accompanying digital surgical training are online planning sessions with 3D Systems biomedical engineers where they work with surgeons to create patient-specific 3D printed models, personalized surgical tools, and instruments—all meant for use in the operating room.

VSP not only offers so many of the typical benefits of 3D printing, but also increases efficiency and the amount of time spent in the operating room—making surgeons, patients, and insurance companies happy. VSP Orthopaedics will be available exclusively through the Onkos Surgical’s My3D™ Personalized Solutions Platform.

This technology enables surgeons in some cases to preserve joints via tumor resections, providing patients with a new lease on life.

“Throughout the years, the power and innovation of our VSP solutions has been demonstrated through improved patient outcomes in a variety of surgical specialties,” said Radhika Krishnan, senior vice president, software & healthcare, 3D Systems. “Our 3D printing technologies combined with the renowned expertise of our biomedical engineers, in collaboration with surgeons, can have a positive impact on a patient’s life—even before they ever enter the operating room.”

“Based on the success we’ve seen with our personalized healthcare solutions in other surgical specialties, we are confident in the positive impact on patient care this technology will have for the orthopaedic community. The opportunity to leverage our capabilities with Onkos’ passion for providing differentiated solutions for oncologists will translate into meaningful innovation for musculoskeletal oncology surgeons and patients.”

Many consumers may be surprised to hear that the VSP solution system was created as far back as 2012, but of course many are also surprised to hear that the inception of 3D printing harkens back to Chuck Hull (founder of 3D Systems) in 1983. The idea behind VSP is an approach that combines:

  • Medical image processing
  • Surgical planning
  • Design
  • 3D printing

“As an early stage investor in Onkos, 3D Systems understands our passion for developing innovation,” said Patrick Treacy, CEO, Onkos Surgical. “The VSP Orthopaedics System, which is available exclusively through our My3D Personalized Solutions platform is a great example of how we’re harnessing the power of advanced surgical planning and personalization to create novel solutions that musculoskeletal patients deserve.”

While the medical realm has seen impressive impacts overall thanks to 3D printing, researchers around the world continue to make strides in the area of orthopedics, from knee guides to hip implants, surgical guides for pediatrics, and more.

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source / Images: 3D Systems]

The post 3D Systems Gains FDA Clearance for VSP Orthopaedics 3D Surgical Pre-Planning Solution appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Nexxt Spine Receives FDA 510(k) Clearance for 3D Printed Stand Alone Cervical Implants

Medical device company Nexxt Spine, founded in Indiana ten years ago, manufactures its own product line of spinal implants and instrumentation. This month, the company announced that its NEXXT MATRIXX Stand Alone Cervical System has officially received 510(k) clearance from the FDA.

Nexxt Spine first invested in metal 3D printing in 2017 – specifically the Concept Laser technology from GE Additive. The company increased its investment in GE Additive’s metal AM technology this spring with the installation of its fourth and fifth Mlab 100R systems, and also uses Concept Laser’s metal 3D printing to create this latest anticipated line extension of its NEXXT MATRIXX family.

NEXXT MATRIXX Stand Alone Cervical System

The Stand Alone Cervical System includes the surgeon-friendly precision, and excellent design qualities, that are part and parcel of the company’s NEXXT MATRIXX brand of 3D printed porous titanium interbodies.

This particular system is fabricated on GE Additive’s Mlab 3D printer. It is available in multiple screws and footprints, and ensures one-step locking, in addition to several options for drills and inserters as well.

“The NEXXT MATRIXX® Stand Alone Cervical System is a stand-alone anterior cervical interbody fusion system intended for use as an adjunct to fusion at one or two contiguous levels (C2-T1) in skeletally mature patients for the treatment of degenerative disc disease (defined as discogenic neck pain with degeneration of the disc confirmed by history and radiographic studies). These patients should have received at least six weeks of non-operative treatment prior to treatment with the device,” a brochure about the system states. “The NEXXT MATRIXX® Stand Alone Cervical System is to be used with autograft bone graft and/or allogeneic bone graft composed of cancellous and/or corticocancellous bone and implanted via an open, anterior approach. The NEXXT MATRIXX® Stand Alone Cervical System is intended to be used with the bone screw fixation provided and requires no additional fixation.”

Nexxt Spine is known for combining quality manufacturing with design expertise to create high quality spinal products with unique features. Now, the company can achieve bone biology relevance, cellular scaffolding, and tailored surface topography in one, which is why it is so pleased to introduced its Stand Alone Cervical System to the market.

The system marries the benefits and functionality of a cervical interbody and anterior cervical plate into one product. Designed to reduce the amount of soft tissue damage and irritation, these 3D printed cervical implants come in multiple footprints and heights in order to better fit each individual patient.

“This enhancement of the NEXXT MATRIXX portfolio was the next natural progression for Nexxt Spine. With patient care always top of mind, we strive to develop end products that surgeons prefer and hardware patients can count on. Our Stand Alone Cervical is no exception and will showcase the propensity of NEXXT MATRIXX technology to facilitate the body’s natural power of cellular healing for fortified fusion,” said Nexxt Spine President Andy Elsbury.

Current distributor partners of Nexxt Spine can now pre-order the NEXXT MATRIXX Stand Alone Cervical System.

What do you think? Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

[Images: Nexxt Spine]

The post Nexxt Spine Receives FDA 510(k) Clearance for 3D Printed Stand Alone Cervical Implants appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Introducing LightForce Orthodontics and Its Customized 3D Printed Bracket System

The LightForce Orthodontics team. L-R: Kelsey Peterson-Fafara, Dr. Alfred Griffin, Craig Sidorchuk, and Dr. Lou Shuman.

A dental resident walked into a bar full of Harvard graduate students. No, it’s not the beginning of a bad joke, but actually the genesis of venture-backed startup LightForce Orthodontics, which officially launched at this year’s American Association of Orthodontists (AAO) Annual Session. The team is making what it calls the world’s first customized 3D printed bracket system for the digital orthodontics field.

The startup’s founder and CEO, Dr. Alfred Griffin, comes from a long line of dentists, and had just completed a combined dental and PhD program at the Medical University of South Carolina before moving to Boston in 2015 to attend the Harvard School of Dental Medicine for his residency. He wasn’t used to the whiteout conditions of a hard New England winter, and spent a lot of time holed up in his apartment, dreaming up the innovative bracket system.

Dr. Larry Andrews and A-Company first introduced fully programmed brackets in 1970, and not a lot has changed since then.

“Standard orthodontic prescriptions are essentially a compromise from the outset,” explained Dr. Griffin in the special edition AAO issue of this year’s Orthodontic Practice US. “They are an “all patients equal” proposition. But no two patients have exactly the same tooth morphology or exactly the same bite. So why would we think they should all have the same ‘ideal’ finish?

“The concessions with pre-programmed brackets have been imposed by several constraining factors. Two of the primary constraints are inflexible bracket manufacturing technologies and the imprecision of analog treatment planning.”

It costs hundreds of thousands of dollars and takes anywhere from six to twelve months, using injection molding, to create molds for one standard prescription, which is about 20 brackets of different programming and shapes – not a realistic environment for patient-specific customization. So Dr. Griffin turned to 3D printing, which already has many applications in the dental and orthodontics fields, such as creating aligners, molds, implants, dentures, and even braces.

Most braces are “off the rack,” and even though skilled orthodontists can make this work, Dr. Griffin knew that 3D printing, which is a good fit for custom applications, could be used to make patient-specific braces. So he created a patented system for 3D printed orthodontic treatment brackets, using material nearly identical to injection modeled ceramic brackets but that’s been formulated specifically for 3D printing.

“Delivering a patient-specific prescription for each case, the LightForce system is unlike anything you’ve ever used,” claims the website. “Each bracket is custom created and 3D-printed, bringing a new level of flexibility and clinical possibilities. This enhances treatment efficiency and minimizes time-consuming adjustments in all phases of treatment.”

That same snowy winter, Dr. Griffin attended a local happy hour with Harvard graduate students, and after buying a few rounds, explained his idea to the group. Engineer Kelsey Peterson-Fafara immediately recognized the potential, and would soon be employee #1. Not long after LightForce, originally titled Signature Orthodontics, was accepted into the Harvard Innovation Lab accelerator, Dr. Griffin met orthodontist Dr. Lou Shuman, who had been an important member of the executive team for another dental company using 3D printing: Invisalign. He soon asked Dr. Shuman to be the company’s co-founder, and help reach out to the venture capital community.

LightForce Orthodontics was one of 128 applicants chosen to join the MassChallenge Accelerator program in 2016, and became entrepreneurs-in-residence at the MassChallenge facility, later receiving $50,000 in equity-free financing as one of the 15 winners. The next step was locking down venture capital, but Dr. Griffin didn’t want to work with just anyone – he was looking to change how orthodontics works at a fundamental level, not just for a cash grab. The company’s first major funding came from AM Ventures (AMV), which is dedicated to investing in 3D printing.

“We wanted a strategic investor — not just someone with money,” Dr. Shuman said. “We wanted expertise in our fundamental technology. AMV was an ideal partner for LightForce.”

Speaking of expertise, AMV introduced Dr. Griffin and Dr. Shuman to EOS founder and industry pioneer Hans Langer, who believes that LightForce has achieved the two most important components in the future of 3D printing: creating high value customization, and having a market that’s large enough to support it.


LightForce continued to grow, staying on as Alumni in Residence at MassChallenge through 2017, hiring expert dental software developers, finalizing the bracket design, and receiving FDA clearance for the system. The startup closed its Series A funding round last summer, enjoyed a successful debut at the 2019 AAO Annual Session, and has multiple patients in treatment who wanted to be the first to sport customized, 3D printed braces.

The brackets can be perfectly contoured to any tooth morphology. The initial system was made to compete with metal brackets, and LightForce is now working on higher-aesthetic options and looking at different materials, as well as perfecting its service and supply chain logistics. It’s a simple three-step digital workflow: scan, create the 3D model, and print. The online interface is intuitive, with cloud-based treatment planning software that allows users to make adjustments directly on the model, before the custom 3D printed appliance is shipped in just 7-10 business days after approval.

In order to keep up with a changing industry, LightForce’s treatment planning system will keep evolving as necessary. Aligners are becoming more capable, but many orthodontists still use braces for their patients, which is why LightForce is looking at the larger marketplace.

Dr. Griffin explained, “We don’t want to bring the idea to market and say `here’s how to use it.` We want to bring this to the orthodontist and ask them, ‘What can you do with it?’”

As direct-to-consumer companies gain popularity, Dr. Griffin wants the startup to acknowledge the expertise of the orthodontic community, and help the field, not just take it over.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

The post Introducing LightForce Orthodontics and Its Customized 3D Printed Bracket System appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Osseus Fusion Systems achieves FDA clearance for 3D printed spinal implants

Texan medical device company Osseus Fusion Systems, has received FDA clearance for its family of 3D printed spinal implants known as Aries. The implants are designed to help surgeons ease back pain and shorten spinal recovery time. They are the first example of Osseus’ new line of 3D printed products, with several other 3D printed […]

3D Printing News Briefs: June 29, 2018

In today’s 3D Printing News Briefs (the last one this month, how is the summer going by so quickly?!), a few companies are announcing special honors and recognitions, and then we’re sharing stories stories about some interesting new 3D printing projects, and finally wrapping things up before the weekend with some business news. Renishaw’s Director of R&D has been honored by the Royal Academy of Engineering, while MakerBot earned an important designation for its 3D printing certification program for educators and Renovis Surgical Technologies received FDA approval for its new 3D printed implant. Festo is introducing three new bionic robots, one of which is partially 3D printed, and CINTEC is using 3D printing for its restoration of a famous government house. GE wants to use blockchains for 3D printing protection, and ExOne announced a global cost realignment.

Royal Academy of Engineering Honors Renishaw’s Chris Sutcliffe

Earlier this week, the Royal Academy of Engineering (RAE) awarded a Silver Medal to Professor Chris Sutcliffe, the Director of Research and Development of the Additive Manufacturing Products Division (AMPD) for global metrology company Renishaw. This award is given to recognize outstanding personal contributions to British engineering, and is given to no more than four people a year. The Silver Medal Sutcliffe received was in recognition of his part in driving the development of metal 3D printed implants in both human and veterinary surgery, and also celebrates his successful commercialization of 3D printed products with several companies, including Renishaw, and the University of Liverpool.

“Throughout my career I’ve worked hard to commercialise additive manufacturing technology. As well as AM’s benefit to the aerospace and automotive sectors, commercialisation of AM and associated technologies has been lifechanging for those with musculoskeletal diseases,” said Sutcliffe. “The award celebrates the successes of the engineers I have worked with to achieve this and I am grateful to receive the award to recognise our work.”

MakerBot’s Certification Program for Educators Gets Important Designation

One of the leaders in 3D printing for education is definitely MakerBot, which has sent its 3D printers to classrooms all over the world. Just a few months ago, the company launched a comprehensive, first of its kind 3D printing certification program, which trains educators to become 3D printing experts and create custom curriculum for STEAM classrooms. An independent review of the program showed that it meets the International Society for Technology in Education (ISTE) standards, and it has earned the prestigious ISTE Seal of Alignment from the accreditation body. In addition, a survey conducted over the last three years of over 2,000 MakerBot educators shows that the percentage of teachers reporting that MakerBot’s 3D printers met their classroom needs has doubled in just two years.

“This data shows that MakerBot isn’t just growing its user base in schools. We’re measurably improving teachers’ experiences using 3D printing,” said MakerBot CEO Nadav Goshen. “Much of this impressive teacher satisfaction is thanks to the effort we’ve put into solving real classroom problems—like the availability of 3D printing curriculum with Thingiverse Education, clear best practices with the MakerBot Educators Guidebook, and now training with the new MakerBot Certification program.”

Earlier this week, MakerBot exhibited its educator solutions at the ISTE Conference in Chicago.

FDA Grants Clearance for 3D Printed Interbody Spinal Fusion System 

California-headquartered Renovis Surgical Technologies, Inc. announced that it has received 510(k) clearance from the FDA for its Tesera SA Hyperlordotic ALIF Interbody Spinal Fusion System. All Tesera implants are 3D printed, and use a proprietary, patent-pending design to create a porous, roughened surface structure, which maximizes biologic fixation, strength, and stability to allow for bone attachment and in-growth to the implant.

The SA implant, made with Renovis’s trabecular technology and featuring a four-screw design and locking cover plate, is a titanium stand-alone anterior lumbar interbody fusion system. They are available in 7˚, 12˚, 17˚, 22˚ and 28˚ lordotic angles, with various heights and footprints for proper lordosis and intervertebral height restoration, and come with advanced instrumentation that’s designed to decrease operative steps during surgery.

Festo Introduces Partially 3D Printed Bionic Robot

German company Festo, the robotics research of which we’ve covered before, has introduced its Bionic Learning Network’s latest project – three bionic robots inspired by a flic-flac spider, a flying fox, and a cuttlefish. The latter of these biomimetic robots, the BionicFinWave, is a partially 3D printed robotic fish that can autonomously maneuver its way through acrylic water-filled tubing. The project has applications in soft robotics, and could one day be developed for tasks like underwater data acquisition, inspection, and measurement.

The 15 oz robot propels itself forward and backward through the tubing using undulation forces from its longitudinal fins, while also communicating with and transmitting data to the outside world with a radio. The BionicFinWave’s lateral fins, molded from silicone, can move independently of each other and generate different wave patterns, and water-resistant pressure and ultrasound sensors help the robot register its depth and distance to the tube walls. Due to its ability to realize complex geometry, 3D printing was used to create the robot’s piston rod, joints, and crankshafts out of plastic, along with its other body elements.

Cintec Using 3D Printing on Restoration Work of the Red House

Cintec North America, a leader in the field of structural masonry retrofit strengthening, preservation, and repair, completes structural analysis and design services for projects all around the world, including the Egyptian Pyramids, Buckingham Palace, Canada’s Library of Parliament, and the White House. Now, the company is using 3D printing in its $1 million restoration project on the historic Red House, which is also known as the seat of Parliament for the Republic of Trinidad and Tobago and was built between 1844 and 1892.

After sustaining damage from a fire, the Red House, featuring signature red paint and Beaux-Arts style architecture, was refurbished in 1904. In 2007, Cintec North America was asked to advise on the required repairs to the Red House, and was given permission to install its Reinforcing Anchor System. This landmark restoration project – the first where Cintec used 3D printing for sacrificial parts – denotes an historic moment in structural engineering, because one of the reinforcement anchors inserted into the structure, measuring 120 ft, is thought to be the longest in the world.

GE Files Patent to Use Blockchains For 3D Printing Protection

According to a patent filing recently released by the US Patent and Trademark Office (USPTO), industry giant GE wants to use a blockchain to verify the 3D printed parts in its supply chain and protect itself from fakes. If a replacement part for an industrial asset is 3D printed, anyone can reproduce it, so end users can’t verify its authenticity, and if it was made with the right manufacturing media, device, and build file. In its filing, GE, which joined the Blockchain in Transport Alliance (BiTA) consortium in March, outlined a method for setting up a database that can validate, verify, and track the manufacturing process, by integrating blockchains into 3D printing.

“It would therefore be desirable to provide systems and methods for implementing a historical data record of an additive manufacturing process with verification and validation capabilities that may be integrated into additive manufacturing devices,” GE stated in the patent filing.

ExOne to Undergo Global Cost Realignment

3D printer and printed products provider ExOne has announced a global cost realignment program, in order to achieve positive earnings and cash flow in 2019. In addition to maximizing efficiency through aligning its capital resources, ExOne’s new program will be immediately reducing the company’s consulting projects and headcount – any initial employee reductions will take place principally in consulting and select personnel. The program, which has already begun, will focus first on global operations, with an emphasis on working capital initiatives, production overhead, and general and administrative spending. This program will continue over the next several quarters.

“With the essential goal of significantly improving our cash flows in 2019, we have conducted a review of our cost structure and working capital practices. We are evaluating each position and expense within our organization, with the desire to improve productivity. As a result, we made the difficult decision to eliminate certain positions within ExOne, reduce our spending on outside consultants and further rely on some of our recently instituted and more efficient processes,” explained S. Kent Rockwell, ExOne’s Chairman and CEO. “Additional cost analyses and changes to business practices to improve working capital utilization will be ongoing over the next several quarters and are expected to result in additional cost reductions and improved cash positions. All the while, we remain focused on our research and development goals and long-term revenue growth goals, which will not be impacted by these changes, as we continue to lead the market adoption of our binder jetting technology.”

Discuss these stories, and other 3D printing topics, at 3DPrintBoard.com or share your thoughts in the Facebook comments below.