Rice Researchers 3D Print with Lasers and Sugar to Build Complex Vascular Networks

A team of researchers from Rice University has uncovered a promising strategy to generate vascular networks, one of the most daunting structures in the human body. Using powdered sugar and selective laser sintering, the researchers were able to build large structures from complex, branching, and intricate sugar networks that dissolve to create pathways for blood in lab-grown tissue.

This is the team’s latest effort to build complex vascular networks for engineered tissues to show that they could keep densely packed cells alive for two weeks. The findings of their study—published in the Nature Biomedical Engineering journal—prove that developing new technologies and materials to mimic and recapitulate the complex hierarchical networks of vessels gets them closer to providing oxygen and nutrients to a sufficient number of cells to get a meaningful long-term therapeutic function.

“One of the biggest hurdles to engineering clinically relevant tissues is packing a large tissue structure with hundreds of millions of living cells,” said study lead author Ian Kinstlinger, a bioengineering graduate student at Rice’s Brown School of Engineering. “Delivering enough oxygen and nutrients to all the cells across that large volume of tissue becomes a monumental challenge. Nature solved this problem through the evolution of complex vascular networks, which weave through our tissues and organs in patterns reminiscent of tree limbs. The vessels simultaneously become smaller in thickness but greater in number as they branch away from a central trunk, allowing oxygen and nutrients to be efficiently delivered to cells throughout the body.”

Overcoming the complications of 3D printing vascularization has remained a critical challenge in tissue engineering for decades, as only a handful of 3D printing processes have come close to mimic the in vivo conditions needed to generate blood vessels. Without them, the future of bioprinted organs and tissues for transplantation will remain elusive. Many organs have uniquely intricate vessels, like the kidney, which is highly vascularized and normally receives a fifth of the cardiac output, or the liver, in charge of receiving over 30% of the blood flow from the heart. By far, kidney transplantation is the most common type of organ transplantation worldwide, followed by transplants of the liver, making it crucial for regenerative medicine experts to tackle vascularization.

Ian Kinstlinger with a blood vessel template he 3D printed from powdered sugar (Credit: Jeff Fitlow/Rice University)

In the last few years, extrusion-based 3D printing techniques have been developed for vascular tissue engineering, however, the authors of this study considered that the method presented certain challenges, which led them to use a customized open-source, modified laser cutter to 3D print the sugar templates in the lab of study co-author Jordan Miller, an assistant professor of bioengineering at Rice.

Miller began work on the laser-sintering approach shortly after joining Rice in 2013. The 3D printing process fuses minute grains of powder into solid 3D objects, making possible some complex and detailed structures. In contrast to more common extrusion 3D printing, where melted strands of material are deposited through a nozzle, laser sintering works by gently melting and fusing small regions in a packed bed of dry powder. According to Miller, “both extrusion and laser sintering build 3D shapes one 2D layer at a time, but the laser method enables the generation of structures that would otherwise be prone to collapse if extruded.”

“There are certain architectures—such as overhanging structures, branched networks and multivascular networks—which you really can’t do well with extrusion printing,” said Miller, who demonstrated the concept of sugar templating with a 3D extrusion printer during his postdoctoral studies at the University of Pennsylvania. “Selective laser sintering gives us far more control in all three dimensions, allowing us to easily access complex topologies while still preserving the utility of the sugar material.”

Assistant professor of bioengineering at Rice University, Jordan Miller (Credit: Jeff Fitlow/Rice University)

Generating new 3D printing processes and biomaterials for vascularization is among the top priorities for the researchers at Miller’s Bioengineering Lab at Rice. The lab has a rich history of using sugar to construct vascular network templates. Miller has described in the past how sugar is biocompatible with the human body, structurally strong, and overall, a great material that could be 3D printed in the shape of blood vessel networks. His original inspiration for the project was an intricate dessert, even going as far as suggesting that “the 3D printing process we developed here is like making a very precise creme brulee.”

To make tissues, Kinstlinger chose a special blend of sugars to print the templates and then filled the volume around the printed sugar network with a mixture of cells in a liquid gel. Within minutes, the gel became semisolid and the sugar dissolved and flushed away to leave an open passageway for nutrients and oxygen. Clearly, sugar was a great choice for the team, providing an opportunity to create blood vessel templates because it is durable when dry, and it rapidly dissolves in water without damaging nearby cells.

A sample of blood vessel templates that Rice University bioengineers 3D printed using a special blend of powdered sugars. (Credit: B. Martin/Rice University)

In order to create the treelike vascular architectures in the study, the researchers developed a computational algorithm in collaboration with Nervous System, a design studio that uses computer simulation to make unique art, jewelry, and housewares that are inspired by patterns found in nature. After creating tissues patterned with these computationally generated vascular architectures, the team demonstrated the seeding of endothelial cells inside the channels and focused on studying the survival and function of cells grown in the surrounding tissue, which included rodent liver cells called hepatocytes.

The hepatocyte experiments were conducted in collaboration with the University of Washington (UW)’s bioengineer and study co-author Kelly Stevens, whose research group specializes in studying these delicate cells, which are notoriously difficult to maintain outside the body.

“This method could be used with a much wider range of material cocktails than many other bioprinting technologies. This makes it incredibly versatile,” explained Stevens, an assistant professor of bioengineering in the UW College of Engineering, assistant professor of pathology in the UW School of Medicine and an investigator at the UW Medicine Institute for Stem Cell and Regenerative Medicine.

The results from the study allowed the team to continue their work towards creating translationally relevant engineered tissue. Using sugar as a special ingredient and selective laser sintering techniques could help advance the field towards mimicking the function of vascular networks in the body, to finally deliver enough oxygen and nutrients to all the cells across a large volume of tissue.

Miller considered that along with the team they were able to prove that “perfusion through 3D vascular networks allows us to sustain these large liverlike tissues. While there are still long-standing challenges associated with maintaining hepatocyte function, the ability to both generate large volumes of tissue and sustain the cells in those volumes for sufficient time to assess their function is an exciting step forward.”

The post Rice Researchers 3D Print with Lasers and Sugar to Build Complex Vascular Networks appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Additive Manufacturing: The Ongoing Uncertainties and Market Shares

SmarTech Analysis has recently published its Q1 2020 additive manufacturing market guidance for the metal additive manufacturing industry, highlighting the first quarter in an economic universe gripped by effects of coronavirus. The question on everyone’s minds these days is, “just what will the bottom line impact be with regards to COVID 19?”

Most in the AM industry still don’t know. No AM company is able to provide firm expectations for 2020, and certainly not into 2021. And it is this lack of expectations, or at least the continual presence of uncertainty, which may end up being the key market driver for additive manufacturing in the near future.

During the first quarter of the year, the metal additive hardware market was hit hard, down about 33 percent year over year compared to 2019. It’s worth noting however that Q1 2019 was the best first quarter in terms of metal AM hardware revenue in history.

To add a little more context for Q1. Revenues were down about 28 percent versus the average quarterly market revenue from the last twelve consecutive quarters. While that paints a grim picture, during the first three months of the year, revenues from material sales of metal powders and sales of metal AM services were much less dire. Metal powder sales increased slightly year over year, though they declined compared to the previous consecutive quarter for the first time in recent history. Services revenues for metals declined just 3 percent.  In this article we examine the state of play of the AM industry as it starts its planning for 2021, along with the market shares of its leading players.

The post Additive Manufacturing: The Ongoing Uncertainties and Market Shares appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D-Printed Respirator Masks Below N95 Standards, Says Virginia Tech Team

We’ve been cautious and careful about promoting 3D-printed COVID safety equipment here at 3DPrint.com. We talked about a general principle of first doing no harm and also discussed safety recommendations for 3D-printed medical devices. Specifically, we addressed safety concerns related to 3D printing masks and provided some recommendations.

It was notable that, in this current crisis, the U.S. Food and Drug Administration (FDA) and other authorities relaxed their existing standards for face shields but did not do so for respirators. A respirator is a close-to-the-skin device that is worn over one’s mouth for hours per day and can impede breathing or could lead to foreign particles in the wearer’s lungs. Even at their most inventive and creative, health authorities would not budge from keeping it a Class II medical device that would have to be made in a good manufacturing practice environment and subject to strict FDA regulation.

Initial findings point to the regulator’s findings being borne out by research. A paper by a team at Virginia Polytechnic Institute and State University (Virginia Tech) points to a decided lack of effectiveness on the part of 3D-printed respirators. We must point out that the paper itself is in the preprint stage. Preprint means that it has not yet been peer reviewed. This means that we are now forming our opinion about a hasty engineering effort to make life-saving devices through a paper that itself has been presented to us earlier (and one would expect more error-prone) than usual.

Just to be clear, we celebrate everyone’s engineering and maker efforts to make COVID devices of all kinds. We think this is truly one of the brightest and best moments in our industry’s history. We have an important role to play in making spare parts, new solutions, and unavailable items in this current crisis. Furthermore, it is becoming clear to us and many more people that 3D printing has a real role to play in many supply chains and in future crises, whatever they may be. We are now much more relevant than at the start of the year to any further breakdown of the very fabric of the global supply chain or as some kind of magical duck tape solution to a shortage.

This expectation and interest is, of course, a double-edged sword and we could squander it by over-claiming and underdelivering. Or we could meet the challenges of the future with forthrightness and honesty. Yes, we are an interesting shape-making technology. This does not mean that all of our shapes are functional for all of the applications now, in all materials.

The paper is by Bezek, L.B.; Pan, J.; Harb, C.; Zawaski, C.E.; Molla, B.; Kubalak, J.R.; Marr, L.C.; Williams, C.B.  and is titled “Particle Transmission through Respirators Fabricated with Fused Filament Fabrication and Powder Bed Fusion Additive Manufacturing“. The summary is as follows (the text is quoted but formatted by me for readability):

  • “Results from this study show that respirators printed using desktop/industrial-scale fused filament fabrication [FFF] processes and industrial-scale powder bed fusion [PBF] processes have insufficient filtration efficiency at the size of the SARS-CoV-2 virus, even while assuming a perfect seal between the respirator and the user’s face.

  • Almost all printed respirators provided <60% filtration efficiency at the 100-300 nm particle range.

  • Only one respirator, printed on an industrial-scale fused filament fabrication system provided >90% efficiency as-printed.

  • Post-processing procedures including cleaning, sealing surfaces, and reinforcing the filter cap seal generally improved performance, but no respirator sustained the filtration efficiency of an N95 respirator, which filters 95% of SARS-CoV-2 virus particles.

  • Instead, the printed respirators showed similar performance to various cloth masks.

  • While continued optimization of printing process parameters and design tolerances could be implemented to directly print respirators that provide the requisite 95% filtration efficiency, AM processes are not sufficiently reliable for widespread distribution and local production of N95-type respiratory protection without commensurate quality assurance processes in place.

  • Certain design/printer/material combinations may provide sufficient protection for specific users, but the respirators should not be trusted without quantitative filtration efficiency testing. It is currently not advised to expect printed respirators originating from distributed designs to replicate performance across different printers and materials.”

Generally, a lot of the conclusions that the paper has made are what we have previously pointed out and what many in the industry were saying, as well. It seems that, once again, we’re shadowboxing overinflated claims that the media (and some of us) have made.

The paper points out that

  • “One concern about the efficacy of using AM to produce direct replacements for N95 respirators is the intrinsic porosity in FFF and PBF-produced parts, which can affect filtration efficiency, accuracy, and reliability of the printed respirators. In FFF processes, porosity can result from adjacent layers not fully fusing, gaps left from changing direction and stopping/starting melt extrusion, and/or gaps left from adjacent extruded paths failing to fuse together”
  • “Such inherent, process-induced defects have been shown to cause up to 32% porosity in FFF parts, with 200-800 Mu diameter pores , which could render them ineffective in protecting against 0.3 mu virus particles.”
  • “Similarly, parts produced via PBF can be up to 30% porous [16] due to insufficient delivery of energy, recoating defects, and/or the use of heavily recycled powder.”
  • One solution to mitigate porosity in printed polymer parts is to seal them in a post-processing step.
  • “Another anticipated challenge in the use of AM to directly fabricate PPE through shared digital designs is the inherent variability between AM machines, materials, and build parameters, which can affect the mechanical properties of the printed materials and the accuracy of the printed geometries.”

That final issue is also a potential limitation to testing how effective these masks are, since individual machine settings, materials, material handling, toolpaths and local variables could have interfered with the test parts themselves. The paper goes on to look at the parts where the mask could fail through insufficiently covering the face or through gaps.

The masks chosen were the Montana mask by Make the Masks, the Factoria mask, and the Stopgap Surgical Face Mask. They printed these masks on a Sinterstation (polymer powder bed fusion), Fortus 400mc (industrial FFF) and an Afinia (desktop FDM). We have made some progress since the venerable Sinterstation and porosity has been reduced in current generation sintering machines with better software and processing so that we would expect less porosity than with a machine that was released in 1998. On the one hand, it’s amazing that these machines last so long, but it is perhaps slightly unfair to use a 22-year-old 3D printer as the industrial sintering system for this important test.

The paper states that, “the PBF models were de-powdered and bead blasted to remove adhered powder and improve surface finish,” but, crucially, it is unclear if “rinse parts with water to remove remaining media and dry parts using compressed air” was done as per the general instruction attached to the file. Also, they state that the powder used was “Nylon-12 (Factoria: 100% recycled; Montana/Stopgap: 50% recycled / 50% virgin).” It’s unclear whose powder it was. Now, its not apparent why they would use different mixes between virgin and recycled powder for different masks but a 100 percent recycled material is not really something I’d recommend. I think it’s also unfair to compare a 100 percent recycled mask to anything.

I also have concerns about the filament materials printed. I also thought that ULTEM 9085 printed at 350°C? I’m confused about the ABS print that has 15-20% infill. To me, for a day-to-day use part, I’d use a much higher infill percentage of 30 percent at least. I also don’t understand why the PLA part has 15 percent infill either. I couldn’t find the machine settings or the name of the filament supplier either. There could be a lot of variability in their nozzle temperature as per indicated and actual also. We all know that we can get a lot of layer adhesion differences in prints from speed, material, temperature. So this is one caveat. I’d really like for the Cura profile and the machine settings to be included in this kind of research. If we’re going to be testing parts then we should know how they were made.

This isn’t a gripe specific to this paper however; no papers have this. I personally can’t really get ABS to work at all below a 100°C bed temperature and most recommend 110°C, so that seems low, while 260°C sounds like it could be rather too fume-y. I’d never recommend that you print ABS above 250°C and, most of the time, I’d expect the right temperature to be far lower than that, much lower than 260°C anyway. Also, each test part was only printed once (apart from the stopgap that they tried in two orientations). That to me is putting rather a lot of stock in the five-year-old Afinia’s accuracy and I would have much rather seen a number of parts printed and tested.

The team then shows us that they had visible defects in the prints.

“(a) The Stopgap respirator in ABS oriented with the filter cap face down on the build plane has a few mislaid layers; (b) The Stopgap respirator in ABS in an alternate orientation also suffers from periodic sparsity; (c) The Stopgap respirator in PLA is visibly thin across most surfaces; (d) The Stopgap respirator in ULTEM shows porosity on the surface parallel to the filter.”

“Figure 4c shows the Stopgap respirator fabricated with PLA held up to a light to enable observation of several regions of thin material along the shell (as in Figure 4a and b), along the seal to the face, and on the surface flush with the filter cap. Figure 4d displays the Stopgap respirator fabricated with ULTEM held up to a light. Macroscale pores across the entire surface flush on the build plane are observed despite this part being printed in 100% infill on an industrial-scale FFF system,” the authors write. The team does say that the Stopgap respirator was made for powder bed fusion ,so that it was not meant to be printed with FFF/FDM. They go on to test the Stopgap FFF/FDM prints and I think that this is rather unfair.

I have a real issue with the authors changing the roll of filament for build orientation prints “a” and “b” and not mentioning that this is a different material. Even if it was from the same vendor and the handling was the same, then the different colorants mean that there is a different optimal print temperature there. It’s strange to me to both change print orientation and material and then compare those prints. Also, the authors say that this is an adhesion issue, but is it? Is it digging by the nozzle? The “c” part is a great example why you should not have letters on your part. The hatched pattern on the “d” print made from ULTEM is very strange. Is that the Sparse Double Density infill pattern? Did it not print because they didn’t support the part well?

The team went on to test the results of the different filter designs:

“The particle analyzer simply counts the frequency of detected nanoparticles; it does not distinguish between nanoparticles resulting from the generated aerosol and residual nanoparticles resulting from stray particulates shed from the shell,”  was an issue that they identified.

They go on to treat the masks, saying that the “FFF respirators were rinsed thoroughly with tap water and dried with compressed air. Since water could cause aggregation among dry powder, the cleaning step for PBF respirators involved additional compressed air followed by the application of two coats of acrylic paint to form a sealant.”

I’m confused about this since I know that water can have effects on porous sintered parts long-term, but am not sure why the researchers didn’t just wash them in water, which would be fine short-term. Also, painting it changes the part and makes it less flexible. I don’t understand the “aggregation among dry powder” part at all really and am not sure why they’d need to paint the model. I especially worry that the coats of paint will effect how the different parts of the mask fit together. I may have read it wrong but why then in the table above do they say that they rinse and dry the PBF parts? Also I’m pretty sure that the PLA models were made more brittle by the water, but perhaps that’s a limitation of the mask that’s good to include.

The paper goes on to show that, “none of the printed respirators provided the requisite 95% filtration efficiency.”

“Montana respirator results (Figure 5a) show filtration efficiency consistently under 60% for the ABS, PLA, and nylon materials, which is far from the baseline performance of the ULPA filter medium. The ULTEM variant of the Montana respirator could not be tested as printed because the filter cap was too loose to adequately secure the filter.”

The team makes the following determination:

“The Factoria respirator results are provided in Figure 5b. The PLA and ABS respirators filter out more particles than in the Montana respirator design, but both still only protect against ~75% of particles. The ULTEM Factoria respirator provides the highest observed performance, with a filtration efficiency between 90-95%, depending on particle diameter; however, it falls slightly less than the tested ULPA filter (99% efficiency). Similar to the Montana respirator results, the PBF-printed respirator presents the lowest filtration efficiency (~45%).”

“Montana and Factoria respirators are nearly identical in shell design, it is expected that the difference in filter cap design is the cause for the consistently worse performance of the Montana respirator compared to the Factoria respirator. The press-fit cap of the Montana respirator may have allowed particles around the filter (which correlates to the loose-fitting filter cap printed in ULTEM), whereas the larger cap of the Factoria respirator completely encloses the filter.”

Another thing that I don’t get is this: “It is observed in Figure 6a that cleaning the ABS Montana respirator increases the filtration efficiency measurement by ~20%, but the ABS Factoria measurement decreases in efficiency by ~10%. The ABS Stopgap efficiency measurements significantly improve, with both print orientations offering similar performance once cleaned. In Figure 6b, it is seen that the ULTEM Factoria respirator decreases by ~15% efficiency following cleaning.”

I’m quite surprised that there would be such a huge difference in filtration efficiency just from cleaning the parts? To me, this points to the fact that the testing apparatus is picking up loose powder and particles on the masks themselves from before, or that they are created or released through cleaning. But, I don’t know enough about the filtration side of things to know.

The team concedes, “These results highlight the inherent variability in results due to the testing method and testing conditions, which is why it was critical to use the same respirators for repeat tests. The testing environment was kept as close to the same conditions each time, yet the Factoria respirators somehow declined in filtration efficiency. It is believed that a coupling of the failure modes identified in Section 1.2 could be contributing to the erratic trends.”

They go on to look deeper, “Application of the epoxy sealant to the shell increases efficiency to peak at ~75%. This indicates that the porosity of the PLA material drops filtration efficiency by ~20%.” And “Residual powders from printing, post-process, or handling are likely to blame for the poor performance of the respirators as-printed. This also corroborates the reason why the as-printed nylon Montana and Factoria respirators had such low filtration efficiency. While testing some intermediate modifications were forgone, it is evident that the dominant failure mode is the filter cap/shell interface.”

Their conclusions are the following:

“As printed, most of the respirators performed poorly, with almost all providing less than 60% filtration efficiency (significantly below the requisite 95% efficiency of a N95 respirator). This result is especially discouraging when considering that the testing was done with the approximation of a perfect seal between the respirator and user’s face (a common failure mode for standard N95 textile respirators, and likely a significant failure mode for the rigid printed polymers). When printed in ULTEM on an industrial-scale FFF system, the Factoria respirator provided the best filtration efficiency of those evaluated, consistently exceeding 90% efficiency for all particle sizes.”

They also say that, “For example, while the Factoria respirator in ULTEM reached >90% filtration efficiency in the as-printed state, its measured efficiency was reduced to ~80% following cleaning. No tested design with modifications was able to consistently attain 95% filtration efficiency, although the nylon Stopgap respirator with modifications was able to filter ~85% of particles at the size of 300 nm.”

“The results from this study do not completely discount AM from being appropriate for making an effective N95 respirator,” the authors write. “The ULTEM Factoria’s performance suggests that (i) high quality, repeatable printing technology with (ii) proper process settings, and (iii) tolerancing of the filter cap/shell interface that is aligned with a specific machine/material combination could provide an effective solution.”

Further on they, say, “In the case of the Montana and Stopgap respirators, the as-printed performance falls below that of many simple textile materials. The as-printed Factoria respirators and post-process modified Stopgap respirators provide equivalent protection to these textile materials and surgical masks, with the ULTEM Factoria and modified PBF Stopgap respirators providing slightly enhanced performance to these materials.” This was a result that many of us would actually have been happy with, I believe.

Also, “The modified PBF Stopgap respirators can perform better than the surgical mask, high-threaded cotton, and N95 respirator from the study by Konda [33]. This study shows AM respirators are capable of achieving competitively high filtration efficiency on par with non-medical use masks only when assuming a perfect seal to the face.” This is a very good result however and one that we’d be very happy with. But, as the paper rightfully states, this perfect seal is illusory and is probably not the case for these relatively rigid parts. The inability to make a good seal, especially when compared to a home-sewn mask has always to me been the Achilles heel of 3D-printed respirators.

On the whole, it is very good that this kind of research is being done. I’m a little confused by some of the printing and parameters involved. I would have liked to have seen more consistency there. But assembly and print-related issues in experiments only cause me to consider how such variability precludes us from making respirators. On the whole, we can conclude that it will be difficult to make a respirator that works well with 3D printing. This does not mean that we should be dissuaded from trying to improve these designs but rather that we should welcome scientific rigor and analysis to our endeavors.

The post 3D-Printed Respirator Masks Below N95 Standards, Says Virginia Tech Team appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

6K Partners with Relativity Space, Commissions UniMelt to Transform Sustainability in Metal 3D Printing

On the heels of their recent announcement of commissioning the first two commercial UniMelt systems for sustainable production of additive manufacturing (AM) powders, 6K has now partnered with Relativity Space to explore sustainability in AM production for rocket manufacturing and space travel.

Relativity’s Terran 1 – rocket parts will be built in a reportedly sustainable manner using 6K’s proprietary technology, image courtesy of Relativity Space.

The partnership with Relativity Space expands on the sustainability focus in metal AM, reimagining the aerospace supply chain. Relativity will look to provide 6K with certified scrap materials, used powder or parts, which can be recycled into premium powder that will then be reprinted by Relativity for final production parts suitable for rocket launch and space travel applications. The pioneering aerospace manufacturer is not only creating an autonomous factory to additively manufacture an entire rocket, from raw material to launch-ready, in just 60 days, but is also looking to do it by reusing materials. 6K will bring sustainability to Relativity’s unique supply chain, and ensure closed loop traceability in production.

Commenting on the landmark partnership, Dr.Aaron Bent, CEO of 6K, said:

“Relativity is pushing the boundaries of additive manufacturing by 3D printing a complete rocket and we see this partnership as a natural extension of their forward thinking practice. Our ability to turn their used powder and parts into premium powder through the UniMelt process provides them with a sustainable source for AM powder. We are proud to be partnering with Relativity to explore ways to increase sustainability, recycling and environmentally responsible manufacturing processes, which the entire AM industry is uniquely posed to be able to integrate into standard practices.”

Relativity is continuing to build key partnerships as it prepares to launch the world’s first entirely 3D printed rocket, Terran 1, in 2021, and recently signed a public-private infrastructure partnership with the US Airforce to use the latter’s launch site facility in Southern California.

Customers from key industries of automotive, manufacturing, aerospace and more, are increasingly looking to improve their supply chain efficiencies and shift towards more sustainable production. In shifting towards ‘green’ manufacturing, AM material suppliers are looking for ways to use domestic, reusable sources for AM powder production. While AM itself is often seen as a sustainable manufacturing method, the production of AM powders hasn’t been near sustainable, generating large amounts of waste to produce a small quantity of much-needed premium quality AM powders.

6K, a developer and supplier of advanced materials, is transforming the production of AM powders with its UniMelt system, which is the world’s only microwave plasma system for production. The system, which produces three to four times the yield of gas atomization, not only allows 6K to create highly uniform powders with the requisite properties, but also to tailor the powder to the specific AM process it will be used for.

Outlining the range of materials the system can produce, 6K stated that UniMelt is capable of producing:

“a highly uniform and precise plasma zone with zero contamination, and capable of high throughput production of advanced materials including Onyx In718 and Onyx Ti64 AM powders. 6K’s UniMelt technology can also spheroidize ferrous alloys like SS17-4PH, SS316, other nickel superalloys including Inconel 625, HX, cobalt-base alloys like CoCr, refractory metals like Mo, W, Re, reactive alloys such as Ti-6-4, TiAl, Al alloys as well as high-temperature ceramics such as MY and YSZ.”

6K’s proprietary UniMelt system that produces premium metal AM powders at 100% yield, image courtesy 6K

The company recently commissioned two commercial UniMelt production lines at its 40,000 square foot plant in Pennsylvania, USA, with each to produce 100 tones per year of nickel super alloys and titanium powders. This could represent a significant milestone in AM sustainability, in both its processes and applications for existing and new metal powders.

At Formnext 2019, 6K launched its Onyx In718 and Onyx Ti64 materials which, after internal product qualification and 3rd party printing, will begin customer sampling in the latter half of this year. Additional UniMelt systems will be commissioned throughout 2021 to meet anticipated demand for premium metal AM powders. The company is also looking to certify its plant as a sustainable manufacturing factory, as a recent member of MESA’s association for sustainable manufacturing.

“The commissioning of the first commercial UniMelt systems is the culmination of terrific work by experts in manufacturing, process and materials at both 6K Additive and our parent company 6K,” said Frank Roberts, President of 6K Additive. “Customers and strategic partners have been eager to sample and use our Onyx powders and we’re ready to deliver. Accompanying the new UniMelt systems, the new facility encompasses automated manufacturing equipment and industry leading safety and health systems that confirm our organization is hitting our production goals while ensuring the utmost in safety for our employees.”

UniMelt’s high frequency microwave plasma, image courtesy 6K

Through 6K Additive, its division focused on AM material solutions, the company aims at the production of ultra-high quality metal powders, at scale, at low cost with more than nine times the efficiency of existing plasma processes, the company claims. 6K (which stands for 6000K, the approximate temperature of the UniMelt plasma system and the temperature of the Sun) also enables the development of alloy powders with unusual properties, combining different types of metals that could not be mixed before, and producing previously thought “impossible” materials for 3D printing production. ‘Unobtainium’, is an alloy made by 6K which was previously considered impossible to obtain or produce, that combines six different metals including copper, iron, nickel, titanium among others.

This is because 6K’s microwave plasma process is the only process that can achieve the combination of high entropy metals, enabling the production of rare, unexpected alloy powders for metal AM. What’s most interesting though is that 6K’s microwave plasma platform converts certified chemistry machine millings, turnings, previously used powders, discarded parts, and other recyclable feedstock into high-quality AM powders. This means that any machined alloy could potentially be processed into reusable premium metal AM powder with specific properties.

6K’s unique technology could accelerate the trend towards a circular economy in metal AM, image courtesy 6K

6K may be transforming the business case for powder-bed and sintering applications in critical areas of cost, efficiency, sustainability and capabilities. This could accelerate the shift towards a circular economy in metal AM, despite greater short-term impacts in metal AM markets (as compared to polymer) this year due to COVID-19, and could also strengthen mid to long-term demand for metal AM solutions – perhaps growing the market beyond a projected $11 billion by 2024 (as per SmarTech’s latest AM Metal Powders 2019 report).

The post 6K Partners with Relativity Space, Commissions UniMelt to Transform Sustainability in Metal 3D Printing appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Made In Space Acquired by New Space Company Redwire

In an era of endless mega-mergers and acquisitions, perhaps nearly every startup’s dream is to one day become big enough to be bought out. That dream has now been fulfilled by Made In Space (MIS), the company to first install a 3D printer in the International Space Station (ISS). MIS has announced that it was purchased by a firm called Redwire.

Made In Space’s Additive Manufacturing Facility, the first commercial 3D printer in space. Image courtesy of Made In Space.

MIS is already well-known in the additive sector for its work in 3D printing in space. In addition to the aforementioned ISS machine, the company subsequently sent up the first commercial system in space. This allowed customers to print objects on the ISS. Other projects explored by MIS include the Archinaut, a system meant for the additive construction of large-scale objects, such as satellites, in space, as well as in-space fiber optics pulling, material recycling, and metal 3D printing.

While, in many cases, corporate buyouts are performed by much more established businesses to grow their portfolios, MIS has announced that it was purchased by Redwire, a seemingly unknown new space company. Part of the reason for Redwire’s lack of name recognition is the fact that it was only formed in June 2020, the result of strategy by private equity firm AE Industrial Partners. AEI acquired two other space firms, Adcole Space and Deep Space Systems (DSS), earlier in 2020 to form Redwire. The company’s goal is to be a leader in “mission critical space solutions and high reliability components for the next generation space economy.”

In the new space industry, there is plenty of opportunity to take advantage of media and investment hype due to the fact that much of the sectors goals are on a very protracted timeline. Mining on earth has already proven to be ripe for fraud, as discovery and extracting valuable metals can take years to achieve and may never be realized, allowing the purported mining operations to cover up financial malfeasance. Mining asteroids in space is that much more abstract.

For this reason, it would pay to be skeptical of nearly any new space company. However, whereas Redwire may have come out of the blue, AEI and the companies purchased have much more established histories. AEI was founded in 1998 to expand middle market aerospace companies using its team of over 30 investment staff and resulting in the closure of 46 acquisitions.

The team is made up of numerous aerospace veterans, with Managing Partner David Rowe having served at GE Aerospace and GE Capital before becoming executive vice president at Gulfstream Financial Services Corp. and then building AEI. Other members worked at such companies as UBS, Boeing, GE and Hawker Beechcraft, with some serving as U.S. federal officials, including former acting Department of Homeland Security secretary Kevin McAleenan.

Commercial Lunar Payload Services Small Lunar Lander from Deep Space Systems. Image courtesy of Deep Space Systems.

Both DSS and Adcole Space are fixtures in the space industry, with DSS involved in the development and management of space systems, including parts and spacecraft. Since its founding in 2001, DSS has created complete spacecraft, data recovery systems, fully qualified payloads and has been involved in projects related to the Space Shuttle, ISS, Orion, Dream Chaser and more. Adcole Space was founded in 1957, when it began working on satellite technology that has since been used in hundreds of low-earth orbit, geosynchronous and interplanetary spacecraft, including missions to Mercury, Mars, Jupiter, Saturn and Pluto.

The purchase of MIS is meant to expand Redwire’s portfolio from space sensors and payloads, flight hardware and space craft to include MIS’s in-space manufacturing technology.

Of the acquisition, Redwire CEO Peter Cannito said, “To truly realize the full potential for space exploration, innovation must change the economics. Made In Space has been driving these innovations and is now positioned to revolutionize the industry.”

Cannito, it is worth noting, worked as an operating partner at AEI after serving as CEO of Polaris Alpha, a developer of technology for the Department of Defense and the intelligence community.

In other words, while Redwire may be new as a business entity, its team is not, and MIS is joining what may be an altogether formidable group of space experts. It will be taking along with it its sister company, Made In Space Europe, which develops space-capable robotic systems. In addition to its headquarters in Jacksonville, Florida, MIS has offices in California, Alabama and Ohio. Andrew Rush, president and chief executive officer of MIS, said that the purchase by Redwire would allow the company to grow and advance its technology.

The post Made In Space Acquired by New Space Company Redwire appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Phil Schultz of 3D Systems on 3D Printing Supply Chain Assurance

Phil Schultz is executive vice president of Operations at 3D Systems. As a seasoned 3D printing exec, he leads all on-demand operations there. Before that, he lead Foxconn’s printing business and spent 25 years at HP, ultimately leading their consumer inkjet offering. I interviewed Phil and enjoyed his measured, thoughtful responses, which showed his deep understanding of the possible and impossible of additive. 

The current crisis has exposed the brittleness of our just-in-time manufacturing world. Small ripples in the system can propagate, reinforce themselves, and cause waves that, in turn, build up to a storm, collapsing the system. A factory in Thailand closing or a freighter being diverted can wreak havoc on the intricate supply chains that connect our globalized society. A system that is so massive and world-spanning as global commerce and transport turned out to shatter easily in a difficult situation. Many global organizations are now discovering that they need to do more to audit and update their supply chains. Supply chain resilience once meant that you had more than one supplier for critical components. But now we all know that we need to look further to assure supply. What role can 3D printing play in this? 

Phil differentiates between “short-term and long-term supply chain interruptions.” “Especially in an emergency…3D printing can help” and do so much faster than other technologies can. If “additive is a contingency or it is used in bridge manufacturing,” it is often an excellent choice. We “don’t need any tooling…and we’re not bound to a geography” with 3D printing “through a distributed manufacturing model…or one order being delivered globally” we can respond in a crisis, and we’re “lightning fast.” Especially for “small parts in runs of a 100, 1,000 or 10,000…additive has the advantage.” 

The “downside with 3D printing is the materials…that your parts are different than injection molded parts,” and “part properties and strength may not be the same.” “Your parts could be good enough for the application,” but he cautions customers against entering into production “without qualification…because then you’re carrying a lot of risk.” There will also be “cost differences…and often increased costs mean that without mass customization additive may not always make sense.” 

He likes to take customers through “a simple calculation…that often shows that pricing represents “multiples of an injection-molded part—not 20% or 30% higher—multiples” and, in that case, if “you’re going to do a replacement of a conventional part,” the business case falters. In that case, “you’d only do it because you have no choice.”

However, if you “learn to design for the technology…and use it to combine parts…lose weight…bring value,” it changes the equation. “Why would you want this is part to be 3D printed…and what does that mean for your business?” He maintains that “3D printing is…not a replacement for CNC or injection molding…it is just another tool” and “you must use it wisely.” 3D printing can help you “guard against the future…and find your future more quickly,” but it is no panacea. 

A 3D Systems On Demand site in Lawrenceburg, TN.

A 3D Systems On Demand site in Lawrenceburg, TN.

There are often overlooked alternatives, made possible by 3D printing, that allow for more scale and lower costs. This includes “3D printing positive investment casting print patterns,” “using Real Wax for lost wax casting,” or “directly 3D printing low-pressure injection molds.”

“By casting urethane..or through thermoforming inserts” relatively low-cost parts can be made in the millions, as Invisalign already does with the latter technology. In “thermoforming, some customers are making over 400,000 parts a day,” through the use of 3D printing as an intermediate. Yes, in an emergency, he understands that people are printing face shields. But, if we step back, then we can consider making the headband through thermoforming or urethane casting and using an acetate screen to sterilize the parts more easily. Phil continually seeks to use additive for the right applications, the right parts. “We are geometry agnostic, require no tooling, and we are fast to the first part, but must be aware of the tradeoffs in materials and more expense.” 

3D Systems MJP Wax

He’s excited “by making spare parts out of polyamide…through sintering…especially of filled materials” and, also, “new possibilities in TPU.” Higher temperature resins for SLA are also pushing the envelope of what is possible there. Now, “we are getting resins with good flexural strength, elongation…that make parts that can bend well while being less brittle.” 

When he does introduce 3D printing for manufacturing at a firm, he likes to “start with the applications people..and walk the (production) lines…to see how we can help… We can evaluate our services…your parts…and see what sense it makes to outsource or do in-house.” Ideally, he’d like to “get into the design phase…and help companies with qualification..or share with them how to qualify products for additive.” Surprisingly, one of the sectors that he is most excited about is EMS and contract manufacturing firms.

“They have tonnes of injection molded parts…many indirect parts…and can often use additive in the short term…but have not considered it for more.” With these businesses, “almost every fixture and tool can be improved, adjusted or is now more quickly consumed,” making it more suitable for additive. “An iPhone production line may have 600 people on it and as many steps. Imagine a five percent improvement.”

He likes asking manufacturing firms, “what do you need?” and then “having complex conversations about matching material properties to needs…avoiding tooling…and the level of proof required for them to proceed.”  He’s now increasingly seeing “ducts, knobs, connections, functional parts in gear trains…and on the whole, things that are more functional in assemblies” being made with additive. A few years ago, he only used to “talk to R&D, and now we talk with [operations]…about things that I care about, such as cycle time.”

3D printing “is emerging as a backup plan….but you have to design for it… 3D printing services could, through their hundreds of machines…solve customer problems,” but firms could also have 3D print capacity in-house for the most relevant materials to them. Either way, qualified parts can be manufactured at scale, but not all parts can be made cost-effectively through 3D printing.

It is clear from Phil’s recent experience that additive is maturing and new applications are being discovered all the time. New realism is unlocking actual manufacturing and, in due time, we could provide true supply chain reassurance through 3D printing. Ultimately, “I want to go in front of every industrial engineer in the world and show them how their creativity can be unleashed with 3D printing.” 

The post Phil Schultz of 3D Systems on 3D Printing Supply Chain Assurance appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Freeform Injection Molding Service by Mitsubishi Chemical Advanced Materials

Previously Danish startup Addifab had announced that it was working with its investor Mitsubishi Chemical to develop and offer more materials for its Free Form Injection Molding process, which combines injection molding with 3D printing. Now, Mitsubishi Chemical will be offering FIM as a service.

With Addifab’s process, molds are 3D printed out of photopolymer resin and then cured. This mold is then filled and later dissolved similar to lost wax casting. Because it uses molding, Addifab makes it possible to perform short-run manufacturing with many more materials than are possible with just 3D printing. Start-up costs are lower than actual molding and the lead times are faster, as well. Especially if you work with materials in conventional molding that you just can’t get in 3D printing, Addifab would be a boon. At higher volumes, conventional molding would be more advantageous, of course, and 3D printing would be possible in a lot of geometries where Addifab would not be. Like other technologies such as RIM (reaction injection molding), Thermoforming, thermoplastic injection, and cast Urethane, Addifab provides an alternative for runs between 1 and 10,000 parts.

Mistubishi Chemical will begin by offering FIM services at three locations worldwide: Mesa, Arizona; Tielt, Belgium; and in Tokyo, Japan. The Japanese chemicals giant will offer FIM as a service in Arizona in early Q3 and somewhere toward the end of the year at the other locations.

Randy White, Chief Innovations Officer, Mitsubishi Chemical Advanced Materials, said of the partnership:

“Mitsubishi Chemical Advanced Materials is leading the field of metal replacement polymers. We quickly realized that Freeform Injection Molding would allow us to offer entirely new levels of light-weighting, and we have been working with AddiFab to bring our KyronMAX materials onto the FIM platform. When we were able to drive an 8,000-pound pick-up truck onto a KyronMAX lattice weighing only 70 grams, we knew we were onto something”.

AddiFab CEO Lasse Staal noted:

“We have brought 3D-printing lead-times and start-up costs to the injection molding industry, without compromising on the choice of materials”.

An Addifab mold and the resulting ABS part.

The company is primarily targeting this replacement service at the capital goods industry. It seems to have identified a need and market for machine tool makers, process equipment vendors, and the machinery industry for just the types of parts that Addifab can make. Spare parts have always been a huge imagined opportunity in 3D printing, much funded by the EU in particular.

It is very nice to see a company target this market commercially. Consumables and spare parts are a huge market in the industrial sector. The replacement parts market is not transparent or indeed really global. Often logistics or warehousing unpopular parts is a huge cost element and the combination of Addifab and Mitsubishi Chemical Advanced Materials could bring real change to such a market. Spare parts, consumables, and replacement materials on demand could be a very interesting business model. For now, in certain geographies for certain parts, it could make sense.

If designers and engineers take replacement through Addifab into account during the design stages, then things could really get interesting. Firms would have less of an outlay in certain parts initially. Less upfront investment in part development may improve cashflow in some cases or at some times. Firms would still have to make sure that they wouldn’t overpay in parts, however. An entirely or partially outsourced, or flexible, replacement parts service would be a considerable advantage to many firms. Companies would have much less capital tied up in spare parts. It would also be easier for them to develop specialized and niche versions of existing products, while still being able to support them.

PMMA, PBT and ABS Addifab parts.

Will the new service only work with OEMs? That could be the case, but if it does not, then we may see other firms get into the spare parts business. By making it relatively straightforward to make spares and by democratizing molded parts, it could be easier for service companies, for example, to get into the spares business. If I already service trucks in Indonesia, I could now offer less expensive spare parts for those trucks to my existing customers. Likewise, someone could offer much less expensive spares in the Chilean bus market or for the industrial machinery of one particular company. Capital goods and industrial B2B markets are considerable in revenue and value, but do not often experience the glare of the media or of new disruptive technologies. Overall, this seems to be a particularly timely and well-chosen market entry into a high volume opportunity of many parts.

Generally, we can see chemical and polymer companies increasingly toy with the idea of moving from selling chemicals and polymers to parts. Victrex, for example, has moved towards a service model whereby, for some medical parts, it sells the components themselves and not resin. While still staying in the PEEK business, Victrex’s Invibio unit moves up the food chain and is now helping people develop and get approval for medical devices made out of PEEK.

Is this a similar move by Mitsubishi? In some ways it is, but, rather than carve out a niche that it won’t let others into, the Japanese company has extended its offering into more parts as a service. Such an approach would seem to make a lot of sense. There are much higher margins to be found in parts and one can work more on developing a, by its very nature more strategic, relationship with customers. By moving away from bulk and even specialty chemicals toward parts, polymer and chemical companies could be doing their bottom lines a whole world of good.

The Addifab Printed Molds

Molds Being injected.

Finished Parts.

There is risk: perhaps existing customers could feel alienated because their supplier now competes with them? This has happened before in 3D printing, for example, with OEMs who have started services. If their existing business was adjacent, then such a move could lead to a decline in some revenues that hopefully would be compensated by parts revenue. If Mitsubishi has been careful to avoid that issue, then their move of helping a company it has invested in with entering the global service business through making parts out of Mitsubishi polymers seems like a very solid play aimed at a more end product oriented future.

The post Freeform Injection Molding Service by Mitsubishi Chemical Advanced Materials appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3DPOD Episode 27: Terry Wohlers

Max and I really enjoyed our chat with Terry Wohlers. Terry has been writing the Wohlers Report for 25 years. This report is the definitive yearly 3D printing report, and gives us all an annual update on market developments, breakthroughs, and new applications worldwide. Additionally, Terry consults for many businesses globally, helping them to implement and understand 3D printing. His company has worked with over 275 clients in 27 countries including the likes of Airbus, GE, Lockheed, Apple, Procter & Gamble and NASA. I’ve known Terry for a long time and he always has insight and concise analysis of developments in the industry. Max and I talked with him about when to use additive, what is holding the technology back, the general state of the industry, growth today, some key highlights of the Wohlers Report, and his America Makes involvement.

The post 3DPOD Episode 27: Terry Wohlers appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Marine Biologist Modifies Bioprinting for the Creation of Bionic Coral

Corals are dying globally. In the face of climate change and global warming, we can expect some severe consequences, which in turn directly affects marine life. In what is panning out to be a mass extinction event, coral reefs have been dangerously threatened by toxic substances and excess carbon dioxide for years, causing the certain death of may of these diverse marine invertebrates. Once the coral is dead, the reefs will also die and erode, destroying important marine life, that would otherwise feed and spawn on it.

Considering that scientists have predicted that nearly all coral reefs will disappear in 20 years, it is crucial that we protect corals and learn from them. For the expanding field of biotechnology, untapped resources like corals hold great potential, as bioactive compounds for cancer research or simply as an inspiration for the production of bioenergy and bioproducts.

In an interview with 3DPrint.com, interdisciplinary marine biologist Daniel Wangpraseurt, from the University of California San Diego (UCSD)’s Department of NanoEngineering, explained how bioprinting technology was a pivotal point in his work to develop bionic 3D printed corals as a new tool for coral-inspired biomaterials that can be used in algal biotechnology, coral reef conservation and in coral-algal symbiosis research. 

“For many years I have been studying how corals optimize light management and discovered that there are lots of interesting evolutionary tricks, such as different growth forms and material properties, so I became interested in copying these strategies and developing artificial materials that could host living microalgae, just like corals do in nature,” revealed Wangpraseurt.

Daniel Wangpraseurt

As one of the most productive ecosystems globally, coral reefs use photosynthesis to convert carbon dioxide into energy that they in turn use for food. Even though light provides the energy that fuels reef productivity, key nutrients such as nitrogen and phosphorus are also required, but are found in very low quantities in warm tropical oceans where coral reefs are generally found, making scientists wonder how these marine animals have managed to create a competitive habitat with such limited resources.

A laser beam is intensely scattered by elastic coral tissue and aragonite skeleton. (Credit: Daniel Wangpraseurt)

Wangpraseurt described that, while different corals have developed a plethora of geometries to achieve such capabilities, they are all characterized by an animal tissue-hosting microalgae, built upon a calcium carbonate skeleton that serves as mechanical support and as a scattering medium to optimize light delivery toward otherwise shaded algal-containing tissues.

“Taking what we learned about corals and biomaterials, we began working on a project to develop a synthetic, symbiotic system using a 3D bioprinting approach. We know corals have both animal cells and algal cells, and, so far, we have mimicked the animal part of the corals, that is, the physical and chemical microhabitat that partially controls the activity of the algal cells.”

At UCSD, Wangpraseurt expects to continue recreating coral-inspired photosynthetic biomaterial structures using a new bioprinting technique and a customized 3D bioprinter capable of mimicking functional and structural traits of the coral-algal symbiosis. Along with fellow researchers from UCSD, the University of Cambridge, the University of Copenhagen and the University of Technology Sydney, and thanks to a grant from the European Union’s Horizon 2020 research and innovation program, and the National Institutes of Health (NIH), the team reported the results of their work on bioinspired materials that was published in the journal Nature Communications earlier this year.

“We want to go further and not just develop similar physical microhabitat but also modulate cellular interactions, by mimicking biochemical pathways of symbiosis. We hope that this allows us to not only optimize photosynthesis and cell growth, but also to gain a deeper understanding of how the symbiosis works in nature. By doing so, we can improve our understanding of stress phenomena such as coral bleaching, which is largely responsible for global coral death.”

Living colonies of Symbiodinium are visible within the 3D bioprinted tissues (Credit: Daniel Wangpraseurt)

So, how did bioprinters become the go-to technology for this project? Wangpraseurt explains that, while working as a researcher at the University of Cambridge’s Department of Chemistry Bio-Inspired Photonics lab, he noticed that scientists were using cellulose as a biomaterial with interesting optical responses. He was wondering how he could use cellulose to develop a material with very defined architectural complexity. 

“In the beginning, the main aim was to develop a coral-inspired biomaterial, that has a similar optical response as natural coral, and then to grow algae on it or within it. Thereby, we started off with simple techniques, using conventional 3D printers; however, it wasn’t very easy to recreate the spatial resolution we needed for corals.”

Inspired by 3D bioprinting research in the medical sciences, Wangpraseurt reached out to scientists at the UCSD NanoEngineering lab that were developing artificial liver models, and who later became collaborators in the project.

A laser beam is intensely scattered by elastic coral tissue and aragonite skeleton (Credit: Daniel Wangpraseurt)

The team went on to develop a 3D printing platform that mimics morphological features of living coral tissue and the underlying skeleton with micron resolution, including their optical and mechanical properties. It uses a two-step continuous light projection-based approach for multilayer 3D bioprinting and the artificial coral tissue constructs are fabricated with a novel bioink solution, in which the symbiotic microalgae are mixed with a photopolymerizable gelatin-methacrylate (GelMA) hydrogel and cellulose-derived nanocrystals (CNC). Similarly, the artificial skeleton is 3D printed with a polyethylene glycol diacrylate-based polymer (PEGDA).

Close up of coral polyps and living photosynthetic biomaterials. Living colonies of Symbiodinium are visible within the 3D bioprinted tissues (Credit: Daniel Wangpraseurt)

Based in San Diego, Wangpraseurt has spent months trying to recreate the intricate structure of the corals with a distinguished symbiotic system that is known to grow as it creates one of the largest ecosystems on the planet. 

“We used a 3D bioprinter that had been developed for medical purposes, which we modulated and further developed a specific bioink for corals. A lot of the work was related to the optimization of the material properties to ensure cell viability. Having the right bioink for our algal strains was crucial as if we were to use mixtures commonly used for human cell cultures, the cells will not grow very well and can die rapidly.”

The implications of the newly developed 3D printed bionic corals capable of growing microalgae are many. Wangpraseurt said he plans to continue working on bionic corals and potentially scale up the process for his startup, called mantaz, as well as for commercial properties; or to develop coral-inspired materials at a larger scale to have a more immediate impact on efforts related to coral reef restoration, and also for biotechnology.

SEM images of the skeleton structure of the coral Stylophora pistillata and the coral-inspired, 3D-printed material (Credit: Daniel Wangpraseurt)

Wangpraseurt is looking to scale the bioprinting system to have a more immediate impact on algae biotechnology, bioenergy, and bioproducts. He claims that he and his colleagues can “customize the environment of the algae and fine-tune the production of a certain bioproduct to potentially tap into the algae bioproduct market and scale the system for bioenergy production.” 

“Another interest of mine is to further develop a 3D bioprinted synthetic coral-algal symbiosis system, which can provide important insight into the mechanisms that lead to coral death, but can also result in the development of future technology for coral reef restoration.”

The researcher talks about coral reefs with a reverent passion that today goes beyond his lab work. When he is not moving the research along at USCD, Wangpraseurt is working with his social enterprise in Panama, as he and his team try to restore coral reef ecosystems to help coastal communities in the tropics, including local fishermen, by harvesting algae biomass that can be sold for different purposes, such as natural fertilizer, which contributes to an organic and sustainable chain of production. Furthermore, the coral-inspired aspects of Wangpraseurt’s research and startup company are really coalescing to enable him and his team to understand how corals work and, in turn, how we can learn from them for the benefit of our planet.

Nutrient sampling at a polluted reef in Panama (Image: Daniel Wangpraseurt)

The post Marine Biologist Modifies Bioprinting for the Creation of Bionic Coral appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3DPrint.com Review of the Creality CR-6 SE

I received a pre-production version of the Creality CR-6 SE 3D printer for review a few weeks ago. I’m pleasantly surprised with this solid printer which is currently on Kickstarter for $339 and will be $429 later. It’s a step up from earlier Creality offerings, is relatively easy to use, and dependable. It’s a value for money machine that is an improved version of an Ender with some better components. Safety features, an improved extruder, and a better feeder make this a better printer, suited for beginners and everyday use.

Specs 

  • 235 by 235 by 250mm build volume.
  • Auto-leveling
  • Filament end detection
  • Touch screen
  • Mini USB/SD Card
  • Carborundum glass bed

Unboxing

Unboxing the CR-6 was easy and the most difficult thing was the manual. I also didn’t know about the handy little tool drawer beforehand but actually that is quite handy once I managed to find it. The toolset is alright with the little pliers being very handy indeed. I had the printer set up and printing within 15 minutes of unpacking it. One of the only parts where you have to pay attention is in placing the Z stage correctly, so just take some time to make sure that this is perpendicular and that it is placed absolutely level. The other part where you have to pay attention is when placing the main plug on the front of the printer the right way.

Software 

I had to update the firmware and the Creality software worked well for the printer. I also tried just regular Cura with a modified Ender profile and this worked well also. I did some prints with Slic3r and this was fine as well. The Creality software is relatively easy to use and easy for beginners as well. There were some issues with saving to the SD cards with my own SD cards not working and certain file names being too long or having exotic characters and not working either. The workarounds were to format my SD cards and to shorten the file names.

Touchscreen 

I had some issues with the touchscreen crashing but this was due to me having a preproduction version and was fixed. Other than that, the touchscreen works well and is super simple to use every day. Menus that you need are very accessible. Part of me wanted more accessible tuning options but that would make it more complex to understand.

Leveling & Filament End Detection

Bed leveling worked like a dream on the printer and was super easy. Filament end detection and pausing prints worked as well. I also ripped out filament and the software paused the print and let me feed new filament back in again. These features are all very handy and work well.

Carborundum glass build plate 

This part really threw me. The first week I totally completely loved the build plate which is a coated glass plate that works like a dream for PLA. I tried several PLA variants and they all worked well. After intensive use however, there were some adhesion issues especially with prints that had little initial surface area. I found it more difficult to clean this plate compared to regular glass also. I had real issues with the adhesion of ASA, ABS and PETG variant materials on the build plate. I’d recommend another build surface if you’d like to vary your materials. If you don’t damage the plate it works wonderfully with PLA though, so do be careful when removing prints.

Chassis 

The aluminum extruded profile chassis of the printer with the power supply in it makes for a solid base and reduces vibrations and misprints when compared to other similar printers. On the whole, components are more well made than we expect in this price category. Machining and finishing was, on the whole, better than comparable printers as well.

General operation 

It’s a simple system to use and general maintenance stuff such as belt tensioning, leveling, and printing is straightforward. Compared to similarly priced systems it is quiet and just pumps out print after print in PLA. You can hear the fans work but little else. After my testing, I started making dozens of ear savers for friends and acquaintances and it just kept on working well. For PLA it’s a dream at this price point. Feeding in filament was easy as was removing it. I found that for me it worked better with an external spool holder.

Prints 

Prints for PLA were good with the default settings and default operation working well. The printer was reliable and gave a good surface finish straight out of the box. Small tweaks improved this so that one could reliably make PLA prints that looked good.

Opinion

This is a surprisingly solid 3D printer for the price. For entry-level systems this is a step forward in ease of use, components, the chassis, and in general operation. All of the leveling and day to day operation features work well. Both the feeder and nozzle are significant steps up from previous Creality designs. For PLA it works well but with the standard build platform, ABS and other materials are just not possible. Also, I’m not sold on the longevity of the coating on the platform either. This can be remedied through a BuildTak or other build plate though. All in all this is a good printer that offers a lot of value for money for the price.

The post 3DPrint.com Review of the Creality CR-6 SE appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.