Analyzing Parameters of Pure and Reinforced 3D Printed PLA and ABS Samples

If you want high-quality 3D printed parts, then you need to choose the right print parameters. Research on this topic is ongoing, and the latest comes from the University of Manchester. Chamil Abeykoon, Pimpisut Sri-Amphorn, and Anura Fernando, with the Northwest Composite Centre in the Aerospace Research Institute, published “Optimization of fused deposition modeling parameters for improved PLA and ABS 3D printed structures,” about their work studying various properties and processing conditions of 3D printed specimens made with different materials.

There are multiple variables involved in 3D printing, and changing just one parameter could cause “consequential changes in several other parameters” at the same time. Additionally, the most commonly used FDM printing materials are thermoplastic polymers with low melting points – not ideal for “some high performance applications.”

“Therefore, attempts have been made to improve the properties of printing filaments by adding particles such as short-fibres, nanoparticles and other suitable additives [18]. Thanks to these extensive researches and developments in the area of FDM, fibre-reinforced filaments are becoming popular and are currently available for practical applications,” they explained.

In order to optimize parameters and settings for these new reinforced materials, the team says we need more 3D printing research and development. In their study, they investigated the process using seven infill patterns, five print speeds, and four set nozzle temperatures, and observed and analyzed the mechanical, thermal, and morphological properties.

They used five commercially available materials, with 1.75 mm diameters:

  • Polylactic acid (PLA)
  • Acrylonitrile butadiene styrene (ABS)
  • Carbon fiber-reinforced PLA (CFR-PLA)
  • Carbon fiber-reinforced ABS (CFR-ABS)
  • Carbon nanotube-reinforced ABS (CNT-ABS)

The samples were designed with SOLIDWORKS and printed on a MakerBot Replicator 2, MakerBot Replicator 2X, and MakerBot Replicator Z18.

3D CAD images of test specimens: (a) Tensile, (b) Bending, and (c) Compression.

The team studied seven infill patterns – catfill, diamond, hexagonal, Hilbert, linear, moroccocanstar, and sharkfill –  and infill densities of 25%, 30%, 40%, 50%, 70%, 90%, and 100%. Two shell layers were used for all samples, and the print bed temperature was between 23-70° for CFR-PLA, and 110°C for the three types of ABS material, to help reduce shrinkage and warping.

“At each test condition of all the types of tests (mechanical, rheological and thermal), 3 test specimens were prepared and tested, and then the average value was taken for the data analysis to improve the accuracy and reliability of the experimental data,” the team wrote.

Appearance of the printed compression test specimens: (a) PLA, (b) ABS, (c) CFR-PLA, (d) CFR-ABS, and (e) CNT-ABS.

First, the 3D printed samples underwent mechanical testing to determine tensile modulus, flexural modulus, and compression properties. Using differential scanning calorimetry (DSC), the researchers measured melting and crystallization behaviors in a liquid nitrogen atmosphere, and found “the volume fractions of the reinforcement and matrix of the composite filaments” with the help of thermal gravimetric analysis (TGA).

Appearance of printed tensile test specimens: (a) PLA, (b) ABS, (c) enlarged view of PLA, and (d) enlarged view of ABS.

Using a thermal imaging camera, they detected how much heat was released as the figure above was printed with 100% infill density, 20 mm/s infill speed, and 215°C set nozzle temperature. Finally, they used scanning electron microscopy (SEM) to observe and perform morphological testing on the surfaces of the 3D printed specimens that were broken during mechanical testing.

Infill density affects the strength of 3D printed parts. By increasing infill density, you then increase the tensile modulus and decrease porosity, which increases the “strength of the mechanical bonding between layers.”

Relationship between tensile modulus and infill density for PLA.

“For pure PLA, parts with 100% infill density obtained the highest Young’s modulus of 1538.05 MPa,” the researchers note.

But, structure gaps can occur more frequently with low infill densities, which reduces part strength. In the figure below, you can see “the changes in porosity of the structure with the infill density.”

3D printed specimens with infill densities: (a) 25% (b) 50% and (c) 100%.

“Of the tested infill speeds from 70 to 110 mm/s; 90 mm/s infill speed gave the highest Young’s modulus for pure PLA,” they wrote.

Print speeds over 90 mm/s could cause polymer filament to melt, and result in poor adhesion and lower strength. To avoid this, the print speed must be compatible with the set nozzle temperature, and an appropriate combination of speed and set nozzle temperature “can reduce the shrinkage of the parts being printed.”

Relationship between tensile modulus and infill speed for PLA.

3D printed PLA samples were tested with the different infill patterns at 50% infill density, 90 mm/s speed, and 215°C set nozzle temperature.

3D printed samples with infill patterns: (a) Linear, (b) Hexagonal, (c) Moroccanstar, (d) Catfill, (e) Sharkfill, (f) Diamond, and (g) Hilbert.

“Among these seven patterns, the linear pattern gave the highest tensile modulus of 990.5 MPa. This can be justified as the linear pattern should have the best layer arrangement (in terms of the bonding between the layers) with the lowest porous structure,” the team explained.

They found that the print temperature has “a significant effect on the tensile modulus.” 215°C provided the best tensile performance, as lower temperatures might cause poor melting, and thus weak bonding. The set nozzle temperature and print speed correlate, and “should be chosen carefully based on the material being used and the part geometry being printed.”

To study the effect on tensile properties, they were printed with the following parameters: 90 mm/s infill speed, linear pattern, 10% infill density, and 215°C set nozzle temperature for PLA, and 230°C for ABS. The researchers found that the tensile modulus of pure PLA (1538.05 MPa) was far higher than for pure ABS.

“In this study, CFR-PLA gave the largest tensile modulus of 2637.29 MPa while pure ABS (919.52 MPs) was the weakest in tensile strength,” they wrote.

Tensile modulus of the five printing materials.

Reinforcing ABS and PLA with fiber causes higher tensile modulus, though pure PLA was stronger than the CNT-ABS.

Even at 90° of bending, the PLA and ABS samples only had a small crack in the middle, and did not break.

3D printed specimen in bending test.

At 1253.62 MPa, the CFR-PLA had the highest bending modulus, while pure PLA was the lowest at 550.16 MPa.

During compression tests, none of the materials were crushed or broken, and pure ABS was found to be the toughest.

“As evident, pure PLA gave the highest compressive strength while the compressive modulus of CFR-PLA (1290.24 MPa) is slightly higher than that of pure PLA (1260.71 MPa) (higher gradient of the liner region). CFR-ABS and CNT-ABS follow the same trend but CNT-ABS is slightly tougher than CFR-ABS,” the team explained. “Pure ABS shows the lowest compressive strength and modulus (478.2 MPa) but shows the most ductile behavior of the five materials.”

Compressive stress-strain curves of test materials.

Finite element analysis (FEA) by ANSYS was used to visualize stress distribution for the tensile, bending, and compression testing of PLA.

Equivalent stress distribution for tensile test.

“The stress distribution shows that a uniform stress is created in the gauge length of the test piece,” they explained.

“Higher compressive loading will cause the material to have internal crack initiations thereby allowing the PLA to buckle excessively.”

The team concluded through DSC analysis that “the strength of the 3D printed samples is dependent upon the set printing parameters and the printing materials more than the crystallisation.” While the infill speeds differ, the glass transition temperature (Tg) of the samples were similar.

“In this study, cooling of 3D printed parts occurred naturally by releasing heat to the surroundings while printing without any control on the cooling rate,” they stated.

DSC curves of PLA parts printed at different set nozzle temperatures.

As expected, the set nozzle temperature did not significantly effect the Tg, and material crystallization at different temperatures didn’t really affect part strength. But, the tensile modulus did change with the temperature.

TGA was used to analyze the weight loss variation of the composite materials against increased print temperature.

TGA diagrams of short fiber-reinforced composite filaments.

“Degradation temperatures (Td) of these materials can be determined from the mid-point of the descending part of each curve, which is approximately 331.85 °C for PLA. This value showed some sort of agreement to the value reported in commercial PLA data sheets – 353 °C,” they wrote.

Pure PLA typically has a higher Young’s modulus than pure ABS, so it can help to add “a higher volume fraction of reinforcement into the ABS matrix.” Brittle CFR-PLA and CFR-ABS filaments could have their flexibility affected if more carbon fiber is added, which can cause filament feed issues.

Thermal image during 3D printing.

An infrared thermal camera was used to observe 3D printing. The yellow area is the brightest, and hottest: this is where the polymer was extruded from the nozzle. The color changes to orange where the material starts to solidify, and the “red, pink, purple, and blue areas are at lower temperatures, respectively.” The red circle marks the temperature at the printer wall – less than the sample actually being printed.

“SEM images showed that the strength of the printed samples was dependent upon the arrangement of their layers,” the team noted.

Normal and SEM images of fracture surfaces of PLA samples: (a) 25% and (b) 100% infill density.

Observing the fracture surfaces of broken PLA samples with SEM showed that “the air gaps of 25% infill density sample is larger than that of 100% infill density.”

Looking at infill speed with SEM, the team noted that “the best orderliness” comes from 90 mm/s infill speed.

Incompatibility between the material matrix and the reinforcement can cause porosity in the 3D printed samples, but the latter can “contribute in increasing the mechanical properties by bearing the load.” You can see below that the pure PLA has a more regular layer alignment when compared to pure ABS.

SEM images of 3D printed parts at 19X magnification: (a) PLA, (b) ABS, (c) CFR-PLA, (d) CFR-ABS, and (e) CNT-ABS.

CFR-ABS is more porous than CFR-PLA, and both are rougher than the materials in their pure forms.

“Meantime, CNT-ABS shows a better arrangement of individual layers than the other two carbon fibre reinforced materials and also than the pure ABS as well,” they explained.

The last SEM images compare the size of the carbon fiber and carbon nanotube reinforcements. The fracture surface of the CNT-ABS shows some small holes, “due to the embedded carbon nanotubes in the matrix.”

“Compared to the matrix-reinforcement compatibility, both materials show some sort of incompatibility by having cracks and voids between the fibre and matrix,” they wrote.

“On the other hand, although the overall strength of CNT-ABS is improved by CNT particles, the flexibility of this material was decreased compared to the pure ABS as CNT-ABS being more brittle.”

SEM images of fracture surfaces at 1.00 KX magnification: (a) CFR-PLA and (b) CNT-ABS.

They found that the optimal settings to improve the performance of the five 3D printing materials were 100% infill density, 90 mm/s infill speed, 215 °C of set nozzle temperature, and linear infill. Of the five materials, CFR-PLA had the strongest tension, bending, and compression, with the highest modulus.

Overall, it is obvious that the set printing parameters can significantly influence the mechanical properties of 3D printed parts. It can be claimed that the printing speed and set nozzle temperature should be matched to ensure proper melting of filaments and also to control the material solidification process,” the researchers concluded.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

The post Analyzing Parameters of Pure and Reinforced 3D Printed PLA and ABS Samples appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Interview with Josh Martin the CEO of Fortify on Fiber Reinforced DLP

We’re so used to 3D printing being disruptive that we don’t, in my opinion, worry enough about being disrupted ourselves. Much 3D printing news is a seemingly endless me-too copycat conga line so we need to recognize when someone is doing something original. Fortify is doing something original, something original that is potentially disruptive to the 3D printing industry. The company has come out of obscurity to raise over $13 million for an integrated 3D printing solution for fiber-reinforced parts. Fortify is making strong DLP parts and can even align the fibers in these parts. Through correct fiber alignment inside a part, Fortify could potentially create properties that others could not match. Novel fibers could be used to make parts weakly magnetic but only in certain sections for example. Also tougher, stiffer and more durable DLP resin parts may take a traditionally smooth and detailed technology into new applications. Through better microstructural control the company could outperform other players by a significant margin. Boeing was already trying to put SLA parts on aircraft in the mid-nineties, will Fortify make that a reality? Or will light-cured resins always be brittle with low CSTs no matter how many fibers you put in them? Will their technology find broad adoption? Fortify has the potential to be truly disruptive if they through business development find, conquer and commercialize completely new parts and applications in spaces where their technology wins. Or the company could keep on seeking adoption and find only skepticism for a firm going its own way. Either way the company is going to have a very exciting number of years ahead of it. We interviewed Fortify CEO Josh Martin to find out more.

How did Fortify get started?

Fortify spun out of my research at Northeastern University. I completed my P.hD. under Professor Randall Erb at the DAPS (Directed Assembly of Particles and Suspensions) lab focusing on printing advanced composites. Throughout that process, I linked up with a few other engineers (Scott Goodrich, Andrew Caunter, and Dan Shores) at NEU and we decided to commercialize the technology. Around the same time,  Karlo Delos Reyes (one of Fortify’s Co-Founders) brought funding to the University for graduate students to turn their research and technology into a company (what is now called the Origin Program). We were lucky that the additive manufacturing space was gaining acknowledgement and needed new materials to continue serving a variety of industries. All of these pieces came together and propelled us to join MassChallenge (the largest accelerator for startups) where we were the 2016 Gold Winner. Since 2016, we’ve closed two rounds of Venture Capital financing, totaling $13M.

What is it that you do?

Fortify is creating engineering solutions by leveraging fiber reinforced additive manufacturing. We are commercializing DCM (Digital Composite Manufacturing), a platform that combines software, hardware, and materials for a fully integrated additive solution that will replace many bulk machined parts and enable new levels of performance through 3D printing.

How does it work?

The Digital Composite Manufacturing platform leverages traditional digital light projection technology to print accurate parts with high resolution. Our hardware system leverages new types of processing to print filled UV curable resins. Particle alignment and process control is driven by our software, which can utilize finite element analysis to optimize the end product.

How do you optimize for microstructural control?

Control over the microstructure is driven by our electromagnetic alignment technology – fluxprint. Optimization is reached by simulation based techniques, which allow us to use boundary conditions on a part to predict a best-case alignment protocol.

How do you align the fibers?

Our electromagnetic alignment technology – fluxprint – allows for control over the orientation of our reinforcing additives. Part of our unique value add is the ability to tailor the response of a number of different reinforcing materials.

So these are short fibers? 

In most cases, yes. Using aligned short fibers allows us to strike a unique balance of mechanical performance and processability.

Does this mean that you can also do magnetic parts?

Yes, this would be quite easy for us to accomplish. It’s worth mentioning that we currently tailor our materials so that the end-part has no bulk magnetic response.

How do your parts compare with traditional composites?

Traditional continuous fiber composites involve many labor intensive processes to achieve very high levels of performance. Applications that require large structural components (such as wind turbines and airplanes) will continue to leverage the traditional composite supply chain. However, for smaller and more complex parts, the cost to manufacture traditional composites often outweighs the performance benefit. Fortify is excited to bring our materials into these types of applications. Short fiber-filled engineering materials, such as glass-filled Ultem or PEEK, can be processed into more complex parts while providing valuable performance gains. However, these materials still present challenges that require machining operations and impose design constraints. Fortify is targeting a material performance-processability space that will directly compete with short-fiber filled engineering resins, and bridge the gap between filled engineering polymers and traditional composites.

Which materials can you do?

We are currently focusing our development on a number of ceramic reinforcements. We combine this with engineering thermosets from well known industrial suppliers like Henkel, DSM, and BASF.

Aren’t these DLP materials too brittle?

Thermoset materials used in DLP technologies have made tremendous progress towards improved toughness. Fortify is excited to improve performance measured by fracture and impact toughness using our alignment technology.

Can you produce parts with a lot of cross-sectional area?

Yes, Fortify is not limited to printing latticed parts. Most of our injection mold tools are printed with a fully dense cross-section.

Is it problematic that composites are difficult to recycle?

It has been a focus of the industry for a while now. There are new recyclable thermoset systems coming to the market, but the performance keeps them from competing with the incumbent supply chain. Fortify is keeping an eye on this space, because we believe our additive technology could be used to bridge the gap, enabling fiber reinforced recyclable systems that can compete on a performance basis with traditional materials.

What are some of the emerging applications?

Our beachhead application at the moment is injection mold tooling. This is an application sought after by the 3DP space for a few decades. The relatively low adoption barrier makes it a great entrance into the market to allow us to prove our technology as we develop for production parts. Fortify is excited to develop towards applications that need better performance at temperature, such as electrical connectors, as well as other industries that require precision parts with wear resistance, such as gears and electromechanical components.

Will you sell machines, be a service?

We are looking to provide hardware systems and consumables to OEM’s and contract manufacturers.

Who are you interested in partnering with?

We are actively seeking beta program partners. The perfect partner would be an organization that isn’t completely new to additive, so has some familiar background, and has an exciting application that fits the small, complex geometry, high mechanical application space. This is an exciting time to join the Fortify network as we continue to prove our technology for EUP and streamline production and manufacturing for composites in real world applications. 

What advice do you have for a company new to 3D printing that wants to use it for manufacturing?

Get the right decision makers involved from the beginning when identifying areas of the business that would benefit from the use of additive. Each use case likely has a bias towards a particular technology. Once that technology is identified, it will take dedicated resources to validate and exercise the use case.

The post Interview with Josh Martin the CEO of Fortify on Fiber Reinforced DLP appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.