ORNL Team 3D Prints Device for Improving Carbon Capture Technology

According to the United Nations Intergovernmental Panel on Climate Change (IPCC), we have less than ten years to cut greenhouse gas (GHG) emissions by 45 percent to prevent runaway climate change. Some environmentalists argue that even that projection is too optimistic. To prevent the collapse of our ecosystem, some researchers are betting on a technology called carbon capture and storage (CCS). This includes a team at the U.S. Department of Energy’s Oak Ridge National Laboratory (ORNL), which has 3D printed an aluminum device for improving carbon capture at fossil fuel plants and other industrial sites.

While carbon capture can be performed in several different ways, the most common method involves attempting to filter carbon dioxide (CO2) from a smokestack using a solvent, such as monoethanolamine, that separates the GHG from the flue gasses. As the CO2 meets the solvent, heat that is produced can reduce the ability of the solvent to react with the CO2, limiting its efficiency.

Image courtesy of RMCMI.

ORNL improved the efficiency of this process by creating a device that integrates with a heat exchanger with a mass-exchanging contactor to remove excess heat. The item was tested within a circular device measuring one meter high by eight inches wide and made up of seven stainless-steel packing pieces. Installed in the top half of the column between packing elements, the 3D-printed part allowed for the integration of a heat exchanger. In turn, the group was able to reduce temperatures and, therefore, improve CO2 capture.

In 2019, ORNL researchers Costas Tsouris and Eduardo Miramontes operated the intensified device inside of the absorption column, which contains commercial stainless-steel packing elements. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

The project’s Principal Investigator, Xin Sun, explained how such a process was previously unattainable: “Prior to the design of our 3D printed device, it was difficult to implement a heat exchanger concept into the CO2 absorption column because of the complex geometry of the column’s packing elements. With 3D printing, the mass exchanger and heat exchanger can co-exist within a single multifunctional, intensified device.”

Embedded coolant channels within the intensified device reduce the column temperature due to the heat produced during the forward reaction. Credit: Michelle Lehman/ORNL, U.S. Dept. of Energy.

To enable heat exchange within the column, cooling channels were incorporated into the steel packing elements. The 3D-printed component, referred to as the “intensified device” was printed from aluminum due to its high thermal conductivity, overall structural strength and its printability.

Costas Tsouris, one of ORNL’s lead researchers on the project, said of the item’s name, “We call the device intensified because it enables enhances mass transfer through in-situ cooling. Controlling the temperature of adsorption is critical to capturing CO2.”

ORNL’s Costas Tsouris, Xin Sun and Eduardo Miramontes, pictured in early March, demonstrated that the 3D-printed intensified device substantially enhanced carbon dioxide capture efficiency. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy.

Lonnie Love, Lead Manufacturing Researcher at ORNL, said that the intensified device was not limited to aluminum:

“The device can also be manufactured using other materials, such as emerging high thermal conductivity polymers and metals. Additive manufacturing methods like 3D printing are often cost-effective over time because it takes less effort and energy to print a part versus traditional manufacturing methods.”

According to some estimates, carbon capture used to reduce emissions from fossil fuel plants could cut CO2 by 55 to 90 percent. However, the bigger issue is not just removing GHGs from the source, but what is done with the material once it’s removed. In the short term, CO2 is already used to extract oil from wells, with the material injected into wells to drive out crude oil. In other words, carbon capture is actively contributing to climate change and the resulting ecological collapse because it is increasing the use of fossil fuels obtained through this enhanced oil recovery.

Long-term storage is another issue. Hypothetically, after CO2 is transported via pipeline as a liquid or gas, it could then be stored underground or underwater in geological formations. Though it may be technically feasible, it has not been tested extensively and we do not know what the side effects of storing excess CO2 underground or underwater.  Similar to the short-term problem, this solution disincentivizes fossil fuel dependent civilization from shifting to alternative energy sources because it suggests that fossil fuel use can continue indefinitely if we capture it at the source and store it under the earth with unforeseeable consequences using yet-to-be-developed technologies.

The post ORNL Team 3D Prints Device for Improving Carbon Capture Technology appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing News Briefs, June 10, 2020: 3D Systems, nTopology, Jellypipe

We’re discussing an upcoming event and some business news in today’s 3D Printing News Briefs. 3D Systems is holding a virtual trade show next month. nTopology and Yamaichi have signed an agreement, and a 3D printing platform has announced the onboarding of Europe’s largest purchasing and marketing association for industrial B2B.

3D Systems Holding Virtual Trade Show

On Wednesday, July 8, 2020, 3D Systems will be holding an exclusive virtual trade show centered on helping manufacturers keep their competitive advantage by using digital manufacturing solutions to fix supply chain dependencies, streamline supplier distribution, reduce supply interruptions, and lower risk. By integrating both additive and subtractive technologies into the environment, businesses can improve their productivity and agility, and offer customers new innovations. 3D Systems’ own Phil Schultz, Executive Vice President, Operations, and Radhika Krishnan, Executive Vice President and General Manager – Software, will give the keynote address for the event.

“Phil Schultz and Radhika Krishnan outline the essence of agile manufacturing, explaining in practical terms how to transform your environment to deliver a digital end-to-end manufacturing workflow that is fit for today and perfect for tomorrow.”

The event will kick off at 9:30 am EST and, in addition to the keynote, will include live webinar presentations and a virtual exhibit hall. Register here. If you’re unavailable to attend on the day of, the virtual trade show will be available on demand for the 30 days following the event.

nTopology and Yamaichi Sign MoU

Software startup nTopology has signed a Memorandum of Understanding (MoU) with Yamaichi Special Steel (YSS) to bring its next-generation nTop software platform to Japan. YSS is part of the automotive and heavy industry manufacturing supply chain in Japan, and its additive division promotes 3D printing and DfAM in the aerospace, automotive, and medical industries. The two have set up a reseller and service agreement, where YSS will bring nTop to its Japanese customers, providing support and training to users. Then, the Cognitive Additive solution of YSS will be connected to the nTop platform, to help users predict cost and printability.

To kick off the partnership, the YSS Additive Manufacturing team used topology optimization to redesign a brake caliper. As the part is used in a high temperature and fatigue environment, YSS designed a TPMS-based heat exchanger for the caliper, and also added an oil circuit and shielding surfaces. The brake caliper was 3D printed out of aluminum alloy AlSi10 using laser powder bed fusion (L-PBF) technology.

Jellypipe Onboards PVH Future LAB and E/D/E

German 3D printing platform Jellypipe uses its Jellypipe Eco-system to help companies take their 3D business to the next level, and features a comprehensive marketplace and the largest 3D printing factory in the D-A-CH region. Now, it’s announced the onboarding of PVH Future LAB, an innovation platform for technology-driven business models, and Einkaufsbüro Deutscher Eisenhändler GmbH (E/D/E), which drives PVH and is the largest purchasing and marketing association for industrial B2B in Europe. Both will now connect to the Jellypipe Eco-system.

“With Jellypipe’s 3D ecosystem – the connection with 3D specialists and our partners is a most important step in the digital automation and supply of 3D printed parts,” said Thilo Brocksch and Frederik Diergarten, both General Managers at PVH FUTURE LAB GmbH. “We can now offer our customers a new and wide process range for 3D printed products.”

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

The post 3D Printing News Briefs, June 10, 2020: 3D Systems, nTopology, Jellypipe appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

VELO3D Develops Process for 3D Printing Aluminum F357 on Sapphire Systems

California-headquartered digital manufacturing company VELO3D, which recently raised $28 million in a Series D funding round, just announced that it has developed a process for 3D printing parts out of foundry-grade Aluminum F357 on its Sapphire metal 3D printers. The commercial release of this capability is significant, because the material is traditionally manufactured with casting technology, but now it can be 3D printed in intricate, complex shapes that casting just can’t achieve.

“Aluminum F357 has already been certified for mission-critical applications—unlike some exotic alloys—so it was a logical addition to our materials portfolio. We will continue to add more compatible materials that enable customers to print parts they couldn’t before, yet with even better material properties than traditional manufacturing,” explained VELO3D Founder and CEO Benny Buller.

This aircraft-grade aluminum alloy, which is well-suited for laser powder bed fusion 3D printing, lets companies in the aerospace, defense, and military sectors 3D print parts that used to be made through casting. Specific components that VELO3D specializes in 3D printing with Aluminum F357 are for thin-walled heat transfer applications.

These photos of 3D printed components demonstrate various perspectives of the design freedom that VELO3D’s SupportFree capabilities offer when it comes to heat exchangers.

VELO3D worked with global advanced cooling solutions supplier PWR to develop the Sapphire metal 3D printing process for Aluminum F357. This was a smart partnership, as PWR has provided cooling solutions to several racing series, including Formula 1 and NASCAR, and customers in the aerospace, automotive, and military industries.

Matthew Bryson, General Manager for PWR, said, “We chose Aluminum F357 due to its ideal material properties to suit thermal performance, machining and weldability.

“Our ability to print free-form and lightweight structures for heat transfer applications with our Sapphire system from VELO3D will further enhance performance and packaging optimization opportunities for our product range and provide significant value to our customers.”

VELO3D’s patented SupportFree capability for metal 3D printing means that support structures for steep overhangs, low angles, and complex passageways are not required, allowing users to attain geometric freedom. The Sapphire metal 3D printing system is built with a semiconductor mindset to ensure repeatability in serial manufacturing, and paired with a con-contact recoater, its print process is able to fabricate the high aspect ratios and extremely thin wall structures needed for flight-critical applications.

Notice the ultra-thin features in the core (cross-section image). Such complexity is near-impossible to attain with existing AM technologies.

While other aluminum alloys, like AlSi10Mg, are used in metal 3D printing more often, Aluminum F357 is ideal for thin-walled AM applications due to shared characteristics with popular casting alloy A356, and because it can be anodized. SmarTech Analysis reports that aluminum alloys accounted for close to 10% of 3D printed metal content last year, which led to a 43% growth in shipments of aluminum powder. The lightweight material is obviously growing in AM popularity, as VELO3D wasn’t the only company this week to roll out the material – Optomec just announced the use of its LENS DED systems for 3D printing aluminum parts.

VELO3D’s Sapphire metal 3D printer is now compatible with Aluminum F357, INCONEL alloy 718, and Titanium64. If you’re interested in a 3D printed aluminum alloy prototype, contact the company. Last month, VELO3D also announced that a 1-meter tall Sapphire system would be available in Q4 2020 for industrial customers, like Knust-Godwin, interested in using LPBF technology to print tall parts without supports.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

The post VELO3D Develops Process for 3D Printing Aluminum F357 on Sapphire Systems appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing News Briefs: October 6, 2019

We’ve got lots of material news for you in today’s 3D Printing News Briefs, starting with a Material Development Kit from RPS. Polymaker and Covestro are releasing three new materials and EOS has introduced a new TPU material for industrial 3D printing. Moving on, CASTOR and Stanley Black & Decker used EOS 3D printing to reduce costs and lead time, and Velo3D is partnering with PWR to make high performance heat exchangers.

RPS Introduces Material Development Kit for NEO800

UK 3D printer manufacturer RPS just launched its NEO Material Development Kit, which was designed by company engineers to be used as a polymer research and development tool for its NEO800 SLA 3D printer. The MDK comes in multiple platform and vat sizes, and allows developers to work with different resin formulations, so that R&D companies can work to develop a range of polymers that are not available in today’s industry. Users can print single layer exposure panes with Titanium software and the 1 liter vat in order to find the photo-speed of the formulation they’re developing; then, tensile testing of different material formulations can commence. Once this initial testing is finished, developers can scale up to the 13 liter vat – perfect for 3D printing prototype parts for use in optimizing final configuration settings.

“This NEO Material Development Kit now opens the door for large industrial chemical companies such as BASF, DSM and Heinkel to push the boundaries of UV photopolymers,” said David Storey, the Director of RPS. “The industry is looking for a quantum jump in materials to print end-user production parts from the stereolithography process.”

New Polycarbonate-Based Materials by Polymaker and Covestro

Advanced 3D printing materials leader Polymaker and polymer company Covestro are teaming up to launch three polycarbonate-based materials. These versatile new materials coming to the market each have unique properties that are used often in a variety of different industries.

The first is PC-ABS, a polycarbonate and ABS blend which uses Covestro’s Bayblend family as its base material. Due to its high impact and heat resistance, this material is specialized for surface finishings such as metallization and electroplating, so it’s good for post-processing work. Polymaker PC-PBT, which blends the toughness and strength of polycarbonate with PBT’s high chemical resistance, is created from Covestro’s Makroblend family and performs well under extreme circumstances, whether it’s subzero temperatures or coming into contact with hydrocarbon-based chemicals. Finally, PolyMax PC-FR is a flame retardant material that’s based in Covestro’s Makrolon family and has a good balance between safety and mechanical performance – perfect for applications in aerospace motor mounts and battery housings.

EOS Offers New Flexible TPU Material

In another materials news, EOS has launched TPU 1301, a new flexible polymer for industrial, serial 3D printing. Available immediately, this thermoplastic polyurethane has high UV-stability, great resilience, and good hydrolysis resistance as well. TPU materials are often used in applications that require easy process capabilities and elastomeric properties, so this is a great step to take towards 3D printing mass production.

“The EOS TPU 1301 offers a great resilience after deformation, very good shock absorption, and very high process stability, at the same time providing a smooth surface of the 3D printed part,” said Tim Rüttermann, the Senior Vice President for Polymer Systems & Materials at EOS. “As such the material is particularly suited for applications in footwear, lifestyle and automotive – such as cushioning elements, protective gears, and shoe soles.”

You can see application examples for TPU 1301 at the EOS booth D31, hall 11.1, at formnext in Frankfurt next month, and the material will also be featured by the company at K Fair in Dusseldorf next week.

CASTOR, Stanley Black & Decker, and EOS Reduce Costs and Lead Time

Speaking of EOS, Stanley Black & Decker recently worked with Tel Aviv startup CASTOR to majorly reduce the lead time, and cost, for an end-use metal production part that was 3D printed on EOS machinery. This was the first time that 3D printing has been incorporated into the production line of Stanley Engineered Fastening. In a CASTOR video, EOS North America’s Business Development Manager Jon Walker explained that for most companies, the issue isn’t deciding if they want to use AM, but rather how and where to use it…which is where CASTOR enters.

“They have a very cool software in which we can just upload the part of the assembly CAD file, and within a matter of minutes, it can automatically analyze the part, and give us the feasibility of whether the part is suitable for additive manufacturing or not. And in case it is not suitable, it can also let us know why it is not suitable, and what needs to be changed. It can also tell us what is the approximate cost, which material and printer we can use,” said Moses Pezarkar, a Manufacturing Engineer at Stanley’s Smart Factory, in the video.

To learn more, check out the case study, or watch the video below:

PWR and Velo3D Collaborating on 3D Printed Heat Exchangers

Cooling solutions supplier PWR and Velo3D have entered into a collaborative materials development partnership for serial manufacturing of next-generation heat exchangers, and for the Sapphire metal 3D printer. PWR will be the first in the APAC region to have a production Sapphire machine, which it will use to explore high-performance thermal management strategies through 3D printing for multiple heat exchange applications. Together, the two companies will work on developing aluminum alloy designs with more complex, thinner heat exchange features.

“PWR chose Velo3D after extensive testing. The Velo3D Sapphire printer demonstrated the ability to produce class-leading thin-wall capabilities and high-quality surfaces with zero porosity. Velo3D and PWR share a passion for pushing the limits of technology to deliver truly disruptive, class-leading, products. We are a natural fit and look forward to building a strong partnership going forward,” said Matthew Bryson, the General Manager of Engineering for PWR.

“Heat exchanger weight and pressure-drop characteristics have a huge impact on performance and are significant factors in all motorsport categories. Using additive manufacturing to print lightweight structures, enhancing performance with freedom-of-design, we have the ability to further optimize these characteristics to the customer’s requirements whilst providing the necessary cooling. The broad design capabilities and extremely high print accuracy of the Velo3D Sapphire 3D metal printer will help us optimize these various performance attributes.”

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the comments below. 

The post 3D Printing News Briefs: October 6, 2019 appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing News Briefs: February 22, 2019

We’ve got some exciting dental news to share first in today’s 3D Printing News Briefs – Stratasys just announced its new full-color dental 3D printer at LMT Lab Day. Moving on, Farsoon has been busy developing an advanced pure copper laser sintering process, and Aether is working with Procter & Gamble on a joint development project. DyeMansion has announced a new UK distributor for its products, and three researchers address the challenges of adopting additive manufacturing in a new book about best practices in the AM industry.

Stratasys Introduces Full-Color Dental 3D Printer

This week at LMT Lab Day Chicago, the largest dental laboratory event in the US, Stratasys has introduced its new full-color, multi-material J720 Dental 3D printer which lets you have 500,000 color combinations for making very high resolution, patient-specific models. Its large build tray can print six materials at the same time, and it’s backed by GrabCAD Print software.

“Labs today operate in a very competitive space where differentiation counts on mastering the digital workflow and expanding into new products and services. The J720 Dental 3D Printer is designed to change the game – allowing levels of speed, productivity and realism the market has never seen,” said Barry Diener, Dental Segment Sales Leader for Stratasys. “This powers laboratories to meet the demands of a competitive market and push the boundaries of digital dentistry.”

See the new J720 Dental 3D printer at LMT Lab Day Chicago today and tomorrow at Stratasys Booth A9. It’s expected to be available for purchase this May.

Farsoon 3D Printing Pure Copper

Pure copper heat exchanger

Two years ago, after Farsoon Technologies had introduced its metal laser sintering system, the company’s application team began working with industrial partners to develop an advanced 3D printing process that could additively produce components made of pure copper. Copper is a soft, ductile metal with both high electrical and thermal conductivity, and it’s often used in industries like shipbuilding, electronics, automotive, and aerospace. But most additive copper is based on alloys, and not the pure metal itself, which is hard for lasers to regularly and continuously melt and can cause problems like thermal cracking and interface failure.

That’s why Farsoon’s work is important – all of its metal laser sintering systems can successfully create cost-effective, high-quality pure copper parts. The company’s process and unique parametric design is able to meet custom needs of customers, and to date, it’s launched 13 process parameters for metal powder sintering, including pure copper. Some of the parts that have come out of Farsoon’s recent collaborations include a pure copper heat exchanger, which featured a 0.5 mm wall thickness, complex spiral geometry and was printed in a single piece. Farsoon is open for additional partners seeking to further develop the 3D printing of pure copper and other specialized materials.

Aether and Procter & Gamble Begin Joint Development Project

Aether CEO Ryan Franks and Director of Engineering Marissa Buell with an Aether 1

San Francisco 3D bioprinting startup Aether has entered into a two-year joint development agreement with Procter & Gamble (P&G) in order to develop 3D printing and artificial intelligence technologies. The two will use the multi-material, multi-tool Aether 1 3D printer as a technology creation platform, and will create several hardware and software capabilities that hope to automate and improve P&G’s product research applications and develop a next-generation Aether 3D printer. An interconnected network of computer vision and AI algorithms aims to increase automation for multi-tool and multi-material 3D printing, while high-performance cameras will enable new robotics capabilities. Aether is also working on additional software that will help P&G automate and speed up image processing.

“Aether is working with P&G to completely redefine 3D printing.  It’s no longer going to be just about depositing a material or two in a specific pattern. We’re building something more like an intelligent robotic craftsman, able to perform highly complex tasks with many different tools, visually evaluate and correct its work throughout the fabrication process, and constantly learn how to improve,” said Aether CEO and Founder Ryan Franks.

DyeMansion Names New UK Distributor

3D print finishing systems distributor DyeMansion, headquartered in Munich, announced that Cheshire-based 3D printing services supplier Europac3D will be the UK distributor for its range of machines. Per the agreement, Europac3D will now offer all of the AM finishing systems in DyeMansion’s Print-to-Product workflow, which includes its Powershot C powder blasting system, DM60 industrial coloring system, and the PowerShot S, which delivers homogeneous surface quality to 3D printed, powder-based plastics. Because of this, Europac3D is one step closer to achieving its mission of being a one-stop shop for 3D printing, scanning, and post-processing services.

“DyeMansion’s post-production systems are worldclass and add the all important finish to additive manufacturing,” said John Beckett, the Managing Director of Europac3D. “Their systems are perfect for companies or 3D print bureaus that have multiple SLS or HP 3D printers and allow us to extend our offer by providing market leading additive manufacturing finishing systems for 3D-printed polymer parts.”

New 3D Printing ‘Best Practices’ Book

We could go on and on about the many benefits offered by 3D printing (and we do), but there are still industry executives who remain unconvinced when it comes to adopting the technology. But a new book, titled “Additive Manufacturing Change Management: Best Practices” and released today, is here to provide some guidance for those still holding back. The book, which addresses some of the challenges of adopting 3D printing, was published by CRC Press as part of its Continuous Improvement Series and written by Dr. Elizabeth A. Cudney, an associate professor of engineering management and systems engineering at the Missouri University of Science and Technology, along with Divergent 3D’s VP of Additive Manufacturing Michael Kenworthy and Dr. David M. Dietrich, who is an Additive Manufacturing Engineering Design Fellow for Honeywell Aerospace and Dr. Cudney’s former doctoral student.

Dr. Cudney said, “If company leaders are interested in bringing additive manufacturing online, this book can help them decide if it makes sense for their industry.

“There’s often a lack of planning, a lack of understanding, a resistance to change and sometimes fear of the unknown. Our hope is that this book will provide a good road map for managers to advance additive manufacturing at a faster pace.

“We wanted to take a look at how companies can roll out a new technology, new processes and equipment and integrate that in such a way that you have a good product in the end.”

In the 17-chapter book, the authors present what Dr. Cudney refers to as a ‘road map’ for business leaders looking to adopt 3D printing. The eBook format costs $52.16, but if you want that shiny new hardcover version, it will set you back $191.25.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

GE News: Subsidiary AP&C Purchased New Land, GE Aviation Helping Airbus 3D Print Parts for RACER Aircraft

L-R: City of Saint-Eustache Mayor Pierre Charron and AP&C President and CEO Alain Dupont

GE Additive‘s Canadian subsidiary, Advanced Powders & Coatings (AP&C), which produces and distributes metal powders for 3D printing, has been operating out of the Innopark Albatros in Saint-Eustache, Quebec since 2016. But last week, AP&C announced that it had purchased an additional piece of land at the location. This new location, just outside Montreal, is where the company will be concentrating its expansion activities in an effort to support its growth plans.

“We are thrilled to work with the dynamic Ville de Saint-Eustache team! Our firm is currently enjoying rapid growth and we need more space for our projects, along with a good location for drawing fresh talent. Innoparc Albatros meets both of these urgent needs,” said AP&C CEO Alain Dupont. “It is clear that AP&C’s future is right here in Québec and, in particular, Saint-Eustache!”

This past Friday at the Saint-Eustache Town Hall, Dupont and Saint-Eustache Mayor Pierre Charron concluded the sale of the new, almost 40,000 square meter plot in the presence of Town Clerk Mark Tourangeau and notary Jean-Luc Pagé. AP&C already employs roughly 100 people at its Allée du golf facility in the Innoparc Albatros business district, but with this new addition, the company will be able to increase the amount of high added-value jobs in the area.

“We are extremely proud that AP&C, the flagship of its industry, has decided to multiply its activities in Innoparc Albatros, thereby making big contributions to Saint-Eustache’s economy,” said Mayor Charron. “Innovation breeds more innovation and we are confident that AP&C’s increased presence will bring new businesses to our techno-park and encourage other hitech firms to come here.”

This new space will be a big help, as the company, which mainly serves the biomedical and aerospace sectors, distributes its powder products in over 40 nations.

But this expansion isn’t the only news GE is sharing. Speaking of aerospace, a new GE Reports has come out regarding the next-generation RACER helicopter hybrid by Airbus, which is the concept aircraft for the European Union’s Clean Sky 2 project.

“The future of flight is an ever-evolving topic ranging from new supersonic passenger jets to hybrid helicopter-like aircraft that fly more like a plane,” Yari M. Bovalino wrote in GE Reports.

“One recent example of such a flying machine is Airbus’ RACER.”

According to Airbus, the RACER, or “rapid and cost-effective rotorcraft,” can hit a cruising speed of over 400 km an hour, making it one of the fastest helicopters in the world. The RACER combines an airplane’s speed and distance capabilities with the helicopter’s versatility; i.e., it can take off and land vertically and also hover. This aircraft could bring about greener, faster, and less expensive air travel, which fits right in with the EU’s project goal of lowering the impact of aviation on the environment.

Over 600 entities in 27 countries are working together to develop more “environmentally benign” aircraft technology as part of the Clean Sky aviation banner. The goal is to lower nitrous oxide emissions by 80%, fuel consumption and carbon dioxide emissions by 50%, and external noise by 50%, when compared to their levels in the year 2000. Clean Sky is looking at the big picture to make a real difference, and working on things like improving wing aerodynamics.

The RACER has a body like a helicopter, with a large rotor on top, but rather than a tail rotor, it has two skeletal wings, each with a backwards-facing propeller. One wing moves clockwise while the other moves counterclockwise, and the propellors work with the RACER’s low-drag wings to help it pick up speed while also maintaining lift.

For a long time, aviation engineers have been looking for that special flight vehicle that’s fast, cost-effective, and agile at the same time…and it looks like the RACER is checking all of those boxes.

Tomasz Krysinski, head of research and innovation at Airbus Helicopters, said, “The RACER is 50 percent faster than a traditional helicopter, but has lower costs, and brings together several new technologies.”

In order to obtain the necessary technology to get the RACER flying, Airbus turned to England-based GE Aviation Integrated Systems and Avio Aero, an Italian GE Aviation company. The two are working on building the components and subsystems for the hybrid aircraft, such as the transmission system for the wing and rotor propellers and the RACER’s cradles, which connect the wings to the gearboxes.

While traditional helicopter cradles were made with heavy parts that had been pre-made and were not cost-effective, the RACER’s cradles will be made with 3D printed casting molds, which helped lower cost, part count, and weight.

 Paul Mandry, the engineering program leader for GE Aviation, said, “This is the first time we’ve ever designed such a complex cast component.”

The RACER also has some other new components that Airbus Helicopters and Avio Aero designed together, such as 3D printed heat exchangers for the transmission based on the experience that engineers gained while developing GE’s Catalyst engine. Because the craft is more lightweight, it will also save Airbus money on fuel costs over its lifetime, and will be much more environmentally friendly.

In order to take the RACER on its maiden flight in 2020, Airbus is planning to start assembling the first prototype later this year.

Discuss this news and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

3D Printing News Briefs: October 20, 2018

We’re starting with some information about a couple of upcoming shows in today’s 3D Printing News Briefs, followed by some business and aerospace news. Sinterit is bringing its newly launched material to formnext, while Materialise has announced what products it will be presenting. Registration is now open for AMUG’s 2019 Education and Training Conference. Moving on, Sciaky sold its EBAM and EB Welding System to an aerospace parts manufacturer, while final assembly has been planned for the Airbus Racer, which features a 3D printed conformal heat exchanger. The Idaho Virtualization Lab is a leader when it comes to 3D printing dinosaurs, and the recently released movie First Man used 3D printed models during filming.

Sinterit Launches New PA11 Powder

Military glass case 3D printed with PA11 Onyx

Desktop SLS 3D printing company Sinterit has launched a new material – PA11 Onyx – which it will be bringing to formnext next month, along with its Lisa and Lisa 2 Pro 3D printers. According to Sinterit, this is first powder that’s ready for use in desktop SLS 3D printers, and it delivers excellent thermal, chemical, and abrasive resistance, along with better flexibility and impact resistance. PA11 Onyx is a high performance, lightweight, polyamide-11 bioplastic produced from plant-based renewable resources. In addition, the material also has high elongation at break, which means that durable finished products, like a military glass case and custom casings, can be opened and closed thousands of times without getting damaged.

“Our clients use a lot of electronic devices, like Raspberry Pi, that need a proper, individually made housing that can endure in unfriendly conditions. They are looking for durable materials but also require some elasticity and high-temperature resistance,” said Sinterit Co-Founder Konrad Glowacki. “PA11 Onyx delivers that.”

Come visit Sinterit at booth G41 in Hall 3.1 at formnext, November 13-16, to see its 3D printers and newly launched powders, which also include Flexa Black and Flexa Grey TPU materials.

Materialise Announces formnext Product Introductions

Materialise Magics 23

Speaking of formnext, 3D printing leader Materialise will also be attending the event in Frankfurt, and has just revealed what new product introductions it will be displaying at its booth C48 in Hall 3. Some of the highlights include new plastic and metal materials, like Inconel, Polypropylene, and Taurus, automotive applications, and the Materialise Magics 3D Print Suite; this last includes a new Simulation Module, the E-Stage for Metal 1.1 automatic support structure generation upgrade, and Magics 23, the latest software release.

Additionally, there will also be presentations from Materialise partners and the company’s own experts, like Lieve Boeykens, the Market Innovation Manager for Materialise Software. Boeykens will be presenting on the TCT Stage about “Reducing Costs and Speeding Up the Validation of AM Parts” on November 15 at 4 pm. Visit the Materialise formnext site for updates.

AMUG Conference Registration Open

The Additive Manufacturing Users Group (AMUG) just announced that online registration is now open for its 2019 Education & Training Conference, which is now in its 31st year and will be held in Chicago from March 31-April 4. The conference is open to owners and operators of industrial 3D printing technologies for professional purposes, and welcomes designers, educators, engineers, plant managers, supervisors, technicians, and more to share application developments, best practices, and challenges in 3D printing. The program has been adjusted to include more hands-on experiences and training, and will include workshops, technical sessions, and even a new Training Lab. There will also be networking receptions, catered meals, the two-night AMUGexpo, a Technical Competition, and the fifth annual Innovators Showcase, featuring special guest Professor Gideon Levy, consultant for Technology Turn Around.

“As the AM community evolves, so will AMUG,” said Paul Bates, the President of AMUG. “We are excited to present the new program with the goal of continuing to act on our mission of educating and advancing the uses and applications of additive manufacturing technologies.”

Sciaky Sells EBAM and EB Welding System to Asian Aerospace Parts Manufacturer

VX-110 EBAM System

Metal 3D printing solutions provider Sciaky, Inc. has announced that an unnamed but prominent aerospace parts manufacturer in Southeast Asia has purchased its dual-purpose hybrid Electron Beam Additive Manufacturing (EBAM) and EB Welding System. The machine will be customized with special controls that allow it to quickly and easily switch from 3D printing to welding. The system will be used by the manufacturer, remaining anonymous for competitive purposes, to 3D print metal structures and weld dissimilar materials and refractory alloys for said structures, as well as for other aerospace parts. Delivery is scheduled for the second quarter of 2019.

“Sciaky is excited to work with this innovative company. This strategic vision will allow this manufacturer to reduce operating costs by combining two industry-leading technologies into a single turnkey solution,” said Scott Phillips, President and CEO of Sciaky, Inc. “No other metal 3D printing supplier can offer this kind of game-changing capability.”

Airbus Plans Final Assembly for Racer

Scale model of the Airbus Racer on display at Helitech International 2018. The manufacturer is aiming for a first flight of the demonstrator in 2020. [Image: Thierry Dubois]

Together with partners of its Racer demonstration program, Airbus Helicopters explained that it definitely expects to meet performance targets, and complete the first flight of the compound helicopter on time in 2020. The 7-8 metric ton aircraft, in addition to a targeted cruise speed of 220 knots and 25% lower costs per nautical mile compared to conventional helicopters, will also feature several advanced components, including a three-meter long lateral drive shaft. Avio Aero was called in to 3D print a round, conformal heat exchanger for each later gear box, which will help achieve reduced drag.

The preliminary design review was passed last July, with final assembly targeted to begin in the fourth quarter of 2019. The flight-test program will likely be 200 flight hours, with the second part focusing on demonstrating that the Racer will be able to handle missions like search-and-rescue and emergency medical services. The program itself is part of the EU’s Clean Sky 2 joint technology initiative to help advance aviation’s environmental performance.

Idaho Virtualization Lab is 3D Printed Dinosaur Leader

The Idaho Virtualization Laboratory (IVL), a research unit housed in the Idaho Museum of Natural History on the Idaho State University campus, has long been a leader in using 3D printing to digitize and replicate fossils and skeletons. Museum director Leif Tapanila said that IVL’s 3D printing program has been ongoing for the last 15 years, and while other labs in the country are more driven by research, the IVL is operated a little more uniquely – it’s possibly the only program in the US that goes to such great extent to 3D print fossils.

Jesse Pruitt, lab manager of the Idaho Virtualization Lab, said, “Everybody does a little bit of this and a little bit of that, but no one really does [everything we offer].

“We do our own internal research, we digitize our collections and we also do other people’s research as well.

“It’s not something you see at a smaller university. For this to exist at the level that it exists here is pretty remarkable in my mind.”

The IVL is also one of the only programs to have a large online database of the 3D models it creates, and works to spread knowledge about its 3D printing processes to students and researchers.

3D Printed Models for First Man Movie

Lunar module miniature [Image: Universal Pictures]

While many movies swear by CGI to create special effects, there are some directors and production crews who still prefer to use old school miniatures and models. But old school meets new when 3D printing is used to make these models for practical effects. Oscar-winning director Damien Chazelle used some 3D printed miniature model rockets for his new movie First Man, which was just released a week ago and is all about Neil Armstrong and his legendary first walk on the moon. The movie’s miniature effects supervisor Ian Hunter, who won an Oscar for Visual Effects for Interstellar, was in charge of creating and filming the models, which included a one-thirtieth scale miniature for the giant Saturn V rocket and one-sixth scale miniatures of the Command/Service Module and Lunar Excursion Module.

“We had banks of 3D printers running day and night, running off pieces. We also used a lot of laser-cut pieces,” Hunter said about the Saturn V rocket miniature. “The tube-like shape of the rocket came from PVC piping, with the gantry made of acrylic tubing, along with many 3D printed and laser cut parts.”

The 3D printed model of the Saturn V rocket even made it into one of the trailers for the film, and the film itself.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

Fabrisonic’s Whitepaper on Metal 3D Printed Heat Exchangers for NASA JPL

Founded in 2011, Ohio-based Fabrisonic uses its hybrid metal 3D printing process, called Ultrasonic Additive Manufacturing (UAM), to merge layers of metal foil together in a solid-state thanks to high frequency ultrasonic vibrations. Fabrisonic mounts its patented hybrid 3D printing process on traditional CNC equipment – first, an object is built up with 3D printing, and then smoothed down with CNC machining by milling to the required size and surface. No melting is required, as Fabrisonic’s 6′ x 6′ x 3′ UAM 3D printer can “scrub” metal foil and build it up into the final net shape, and then machines down whatever else is needed at the end of the process.

Last year, Fabrisonic’s president and CEO Mark Norfolk told 3DPrint.com at RAPID 2017 that about 30% of the company’s business was in heat exchangers, as the manufacturing process is a lot smoother thanks to its low-temperature metal 3D printing technology – no higher than 250°F. UAM makes it possible to join metal alloys that are notoriously difficult to weld, such as 1000, 2000, 6000, and 7000 series copper, aluminum, stainless steel, and exotic refractory metals…all of which are used in the heat management systems at NASA’s Jet Propulsion Laboratory (JPL).

[Image: Sarah Saunders]

Justin Wenning, a production engineer at Fabrisonic I spoke with at RAPID 2018 this spring, recently published a whitepaper, titled “Space-grade 3D Metal Printed Heat Exchangers,” that takes a deep dive into the work he’s been doing with Fabrisonic’s 3D printed metal heat exchangers for aerospace applications. The company participated in a two-year program at JPL, and 3D printed a new class of metal heat exchanger that passed JPL’s intense testing.

“For every interplanetary mission that JPL oversees, numerous critical heat exchanger devices are required to regulate the sensitive, on-board electronic systems from temperature extremes experienced in space. These devices can be small (3 in. x 3 in.) or large (3 ft. x 3 ft.),” Wenning wrote in his whitepaper.

For many years, NASA glued bent metal tubes along, and fastened them to, the exterior of a space vehicle’s structure, which weigh a lot and do not perform well thermally. These devices were also assembled and quality-checked by hand, so production could take up to nine months. At the end of its partnership with NASA JPL, Fabrisonic showed that 3D printing can be used to improve upon all of these issues.

Evolution of UAM 3D printed heat exchanger with NASA JPL. Samples began small to
evaluate benchmark burst and helium leak performance in 2014. The team then began focusing on technology scale-up and system integration. The culmination is a full-size, functioning heat exchanger.

The UAM system does not use any controlled atmospheres, so the part size and design range greatly. NASA JPL first started working with Fabrisonic in 2014, thanks to a JPL Spontaneous R&TD grant, to look into small, simple UAM heat exchangers, before moving up to larger structures in 2015 through NASA’s SBIR/STTR program. The result was a full-size, functioning heat exchanger prototype for the Mars 2020 rover mission that was fabricated in far less time, with a 30% lighter mass.

The 3D printed heat exchangers that Fabrisonic creates involve building pumped-fluid loop tubing right into the structure for additional efficiency and robustness, as the company’s UAM process can also be used to mix and match materials, like copper and aluminum.

UAM starts with a metal substrate, and material is then added to and removed from the structure to make the device’s internal passageways. To help with material deposition, a proprietary water-soluble support structure is added, before adding strength and features, respectively, with optional heat-treating and final CNC machining. Fabrisonic then added SS tubing, which helps with fitting attachments, to the aluminum structure with friction welding for NASA JPL’s development parts.

NASA JPL also needed to raise its technology readiness level (TRL) from 3 to near 6. During the program, Fabrisonic and its EWI affiliate 3D printed and tested dozens of different heat exchangers, in order to develop a final prototype for ground-based qualification standards based off of NASA JPL’s existing heat exchangers.

UAM process steps for fabricating NASA JPL heat exchangers.

The NASA JPL TRL 6 qualification included several tests, including proof pressure testing to 330 PSI, two-day controlled thermal cycling from -184°F to 248°F in an environmental chamber, and vibration testing on an electrodynamic shaker, which simulated a common day rocket launch (1-10 G) in all orientations while attached to a dummy mass at the same time for imitating a normal hosted electronics package. Other tests included:

  • Burst testing greater that 2500 PSI with a 0.030-in. wall thickness
  • Helium leak testing to less than 1×10-8 cc/s GHe between thermal and vibration testing
  • Full 3D CT scans of each specimen before and after mechanical testing, in order to evaluate void density and any accumulated testing damage

JPL project with copper embedded. [Image: Sarah Saunders]

Each of the three UAM 3D printed heat exchanger components passed the qualifications, which raised the technology to its goal of near TRL 6. To corroborate the results, NASA JPL scientists completed more helium leak and burst testing, along with thermal shock testing on certain devices; this involved submerging certain heat exchangers in liquid nitrogen (-320°F) to test their bi-metallic friction welded stainless steel aluminum joints. According to the whitepaper, the joints were “robust and helium leak tight” post-submersion.

Fabrisonic’s new class of 3D printed metal heat exchanger, developed under NASA JPL, has uses in other commercial production applications, which the company is currently exploring.

“For instance, the lack of melting in UAM enables the integration of multiple metals into one build since high temperature chemistry is avoided,” Wenning wrote. “Thus, copper may be integrated as a heat spreader in critical locations improving thermal performance with a small weight penalty.”

Because of its low temperatures, UAM can also be used to embed sensors into solid metal. In 3D printed heat exchangers, sensors could help monitor system health and improve control by being integrated in important locations.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

[Images: Fabrisonic unless otherwise noted]