SLM Solutions Helping to Create Guidelines for 3D Printing Spare Parts in Oil, Gas, & Maritime Industries

Last January, 11 companies – now at a total of 16 – began working together on two aligned Joint Innovation Projects (JIPs). Their objective – collaborate in developing a guideline for 3D printing functional, qualified metal spare parts for the Oil, Gas, and Maritime industries, in addition to creating an accompanying economic model.

The 16 companies working on Joint Innovation Projects (JIPs). [Image: SLM Solutions via Facebook]

These 16 partner companies participating in the standardization project include:

In addition, SLM Solutions, a top metal 3D printing supplier headquartered in Germany with multiple offices around the world, is also working to support these two joint projects.

“Our aim is to make the SLM  technology better known in the industry and to increase its application through uniform standards,” stated Giulio Canegallo, Director of Business Development Energy for SLM Solutions, who is representing the company in the JIP.

The company offers cost-efficient, fast, and reliable Selective Laser Melting (SLM) 3D printers for part production, and works with its customers throughout the process in order to offer expertise and support. It will be supporting the JIPs by offering its technical 3D printing expertise, for SLM additive manufacturing in particular.

Using pilot parts, like this pump impeller 3D printed on the SLM 280, the guideline is tested for practical application.

Together with the other 15 JIP partner companies, SLM Solutions is working to create two separate but aligned, coherent programs: a toolbox that will enable economic viability, selection, and supply chain setup, to be be managed by Berenschot, and a guideline towards certified parts, which will be manged by DNV-GL.

Because these two programs will be aligned in their setup, the companies can ensure, as SLM Solutions put it, “maximum cross fertilization.” In order to make sure that all the steps are there to achieve high quality, repeatable production, up to five pilot parts will be produced for the JIPs. One of these pilot parts is a pump impeller, which SLM Solutions already fabricates on its SLM 280 3D printer for oil and gas company Equinor.

During production of the selected pilot parts, the partner companies will complete a final applicability test of this guideline, focusing specifically on its practical use in successfully producing the parts, and their overall quality. The information that’s learned in these case studies will be added to the guideline’s final version so that others can benefit.

The practical guideline will be available to use by this coming June, and will offer a framework so users can make sure that their 3D printed metal spare parts, fabricated through either SLM or Wire Arc Additive Manufacturing (WAAM) technology, will conform to the exacting specifications of the Oil, Gas, and Maritime industries.

A functional, comprehensive business tool will also be released in June, to help figure the bottom-line impact that will result from using 3D printing to fabricate spare parts, as opposed to more conventional methods of manufacturing. A database of parts will also be put together in cooperation with the business ROI-model, in order to show just how applicable 3D printing is for manufacturing spare parts for these three industries. The model will be officially tested during the Q2 parts production process.

Discuss this story, and other 3D printing topics, at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

Researchers Complete Comprehensive Evaluation of Manufacturing Methods, Including 3D Printing, for Impellers

EDM and ECM finishing of near-net-shape turbo charger wheels produced by additive manufacturing and investment casting.

Combustion engines uses turbochargers to boost their performance. But, for multiple reasons, there isn’t a conventional process chain for economically manufacturing the component. A team of researchers from RWTH Aachen University and Robert Bosch GmbH recognized the need for a comprehensive evaluation of alternative manufacturing methods for impellers – 3D printing isn’t the only way – and set out to deliver. They published their results in a paper, titled “Technological and Economical Assessment of Alternative Process Chains for Turbocharger Impeller Manufacture.”

The abstract reads, “In this paper, different manufacturing chains consisting of pre-finishing and finishing of near-net-shape parts are compared to each other for a given example geometry. Electrochemical as well as Electrical Discharge Machining technologies are taken into account as alternatives for conventional milling and grinding processes for the finishing of cast blanks or samples produced by additive manufacturing. Based on a technological analysis a cost comparison is executed, which allows an economical assessment of the different process chains regarding given boundary conditions and varying production quantities.”

In addition to electrochemical (ECM) and electrical discharge machining (EDM) technologies, the team also looked at wire-based technology variants (WEDM/WECM) for outer straight geometries, and 3D-(Sinking)-based technologies for inner flow ones. They completed a cost comparison of the methods, based on technological analysis, which, as the researchers wrote, “allows an economical assessment of the different process chains regarding boundary conditions and production quantities.”

Turbocharger wheels – blank manufacturing by investment casting (near-net-shape and finish contour) or additive manufacturing and conventional finishing by milling and grinding

“In a first step a technological process analysis took place for both alternative primary shaping processes of turbocharger wheel blanks and for finish machining of near-net-shape geometries by conventional as well as unconventional advanced machining processes,” the researchers wrote. “Target values were a geometrical precision better than 0.05 mm and a minimum surface roughness of Rz = 4 µm.”

Fine investment casting can be used to manufacture a blank with defined material allowance, as well as electron beam melting (EBM) 3D printing, though the latter with require post processing because of insufficient geometrical precision and a rough surface. It’s possible to finish with 5-axis milling, but due to extensive tool wear, it will require a lot of effort. The team determined that abrasive flow machining and vibratory grinding would not work.

“All technological necessary efforts have been evaluated and aggregated in a production cost ratio relative to the standard investment casting process as basis,” the team wrote in the paper. “This includes tool costs (purchase costs and life time), raw material costs (melt / powder material), energy (average energy consumption) and working costs (salary and multiple machine work) as well as machine costs (investment, net book value, space, maintenance, machining time per part) for main and secondary process like hot isostatic pressing (HIP) – imperative for the EBM parts – and washing. Additional industrial boundary conditions were a yearly lot size of 150,000 parts and working time of 4,800 h. The earnings per worker amounts to 43.75 €/h, the energy price and monthly space costs are 0.128 €/kWh and 12 €/m² respectively. The imputed interest rate is 10 %.”

Production costs of different primary shaping and finish machining as well as handling processes relative to the investment casting process.

Alternative EDM- and ECM-based processes were also included in the diagram.

The researchers explained that the microstructures from 3D printing and casting processes had a major influence on the final surface roughness. In addition, the ECM-processed material was analyzed, and basic EDM research showed that for the TiAl material, the correct electrical polarity had to be clarified. By applying a new flushing concept based on WECM, the team was able to achieve higher ECM cutting rates in a “competitive order of magnitude of 20 mm²/min also for macroscopic workpiece heights.”

EDM and ECM applications for finishing turbo charger wheels.

It was determined that, under the boundary conditions laid down, 3D-EDM is not a competitive  or efficient single process, but 3D-ECM is, when compared to 5-axis milling. Additionally, WEDM and WECM showed low costs.

“It can be concluded that the process chains involving 3DEDM are not suitable as their cost ratios are higher than 300 % of the reference but the ECM variants reveal significant advantages due to much lower cost ratios. In addition for the basis costs, the AM produced raw blanks reveal lower cost ratios compared to the investment casted ones – even for the given series production,” the researchers wrote.

These results are due to the specific material properties of the TiAl material. Because of low costs for the outer geometry finishing, the contour casted samples also had higher cost ratios.

“As a conclusion – for the given boundary conditions – the process chain including 3DECM and WECM of AM produced blank wheels achieved the lowest costs and was therefore the most efficient one,” the researchers wrote. “Further work should include detailed studies on surface integrity for the different machining processes and appropriate positioning.”

Co-authors of the paper are A. Klink, M. Hlavac, T. Herrig, and M. Holsten.

PostProcess Technologies Uses Hybrid DECI Duo Solution to Achieve Excellent Surface Finish for 3D Printed Shrouded Impellers

Exacting Surface Finishing of Complex 3D Printed Metal Geometries.

PostProcess Technologies, which expanded its channel partner coverage in North America this spring, is well known for its software and post-printing solutions. With its automated Hybrid DECI Duo solution, PostProcess helps its customers achieve excellent surface finish standards and replicable results for complex metal parts.

Recently, PostProcess demonstrated in a new case study how well its technology can help other companies. The subject was Ingersoll Rand, a $14 billion global industrial manufacturing company that specializes in compressed air technologies. The company uses 3D printing for its shrouded impellers, which improve the performance of a compressor package more than open impellers because there is no clearance between the stationary inlet and the impeller, so no slip losses occur as a result of compression gas recirculating in the space.

The design for shrouded impellers, which rotate 60,000 RPM, has very tight tolerances in order to meet aerodynamic testing. In addition, the blades need excellent surface finishing, and it takes months to build using conventional forms of manufacturing. So Ingersoll’s engineering team, needing to commercialize its shrouded impeller design, turned to 3D printing because of its complete design freedom; the technology also makes it possible to build the part as monolithic, so no welding is required. But, in order for 3D printed parts to meet performance thresholds, they do require outstanding surface finishes.

Ingersoll 3D prints its shrouded impellers out of titanium and nickel alloy, but they unfortunately come off the print bed at an Ra (roughness average) value that doesn’t meet the engineering team’s specifications. The team has tried everything from manual sanding and grinding tools to chemical etching, but the results were inconsistent and did not have the necessary, repeatable quality needed to produce end parts within the required specifications.

The company needed to find a replicable process that would provide them with the necessary surface finish for its shrouded impeller’s complex geometry, in order to, as PostProcess wrote in its case study, “drive a measurable increase in efficiency for its advanced air compressors.”

So, Ingersoll turned to PostProcess in hopes that the company could work with complex metal part geometries, like organic shapes and internal channels, and help achieve repeatable results and excellent surface finish standards for its shrouded impellers.

Automated DECI Duo for Post-Print Support Removal & Surface Finishing.

PostProcess delivered a “transformative outcome” for Ingersoll’s 3D printed titanium and nickel alloy parts, thanks to its patent-pending, automated Hybrid DECI Duo solution. The Hybrid DECI Duo – a single, multi-functioning, data-driven system – promises fast cycle times for even the most complex of parts Designed to optimize production floor space, the system also includes noise reducing features for a low dBa, an LED lighted chamber, and a manual mode for hands-on part finishing when needed.

The system also uses PostProcess’ proprietary AUTOMAT3D software, in order to optimize energy and exclusive chemistry, which includes detergents and suspended solids so the geometries maintain their fine-feature details while still receiving the desired surface finish.

“We have chosen the DECI Duo because of its repeatability, minimal setup, processing times, and cost of ownership. Photochemical machining, extrude honing, and micro polishing or micro machining all yield very good results when applied correctly, however extensive tooling and equipment costs, setup times, and required DOE’s prior to applying the surface finishing method to obtain a repeatable process have made the DECI Duo a better option,” said Ioannis Hatziprokopiou, Mechanical Engineer, New Product Development, Ingersoll Rand Compression Technologies and Services.

“In addition, some of aforementioned finishing techniques unevenly remove material inside the flow path of the impeller, whereas the DECI Duo uniformly treats the entire surface of the flow path. The final geometry of the flow path must remain as unaltered as possible after post-processing of any kind.”

3D printed shrouded impellers were
implemented on the last 3 stages of this 6 stage 6R3MSGEP+4/30 engineered air booster machine.

The PostProcess solution established operating settings that were in line with Ingersoll’s standards using benchmark parts. Then, the DECI Duo was able to consistently finish metal parts that were able to successfully pass exacting aerodynamic tests.

Ingersoll came to PostProcess with a need for high quality and requirements in consistency and repeatability. But, it’s also achieved additional advantages from working with the company, such as cost savings and ease of operation.

In addition, the DECI Duo also produced an average of 70-80% reduction in Ra for parts run for 20 minutes or less.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

[Images: PostProcess Technologies]

Velo3D Reveals Capabilities of its Metal 3D Printing Technology Interview with Stefan Zschiegner

A heat exchanger 3D printed with Velo3D.

A heat exchanger 3D printed with Velo3D.

Velo3D raised $22 Million in 2015 and was working in secret to revolutionize metal 3D printing. For the past years the company has been quiet as a mouse about its process and intentions. A lot of speculation abounded as to what Velo3D could unleash upon the world. Today we learn that the company has developed a metal printing process with more design freedom in metal. The company says that its systems can print complex geometries below 45 degrees. Which would make more 3D printed parts possible with their technology. The company has also developed its own software to acompany its process. And rather than just raising $22 million it turns out that they’ve raised over $90 million in funding. 3DPrint.com interviewed Stefan Zschiegner, Chief Product Officer at Velo3D, about the secretive start up now coming out of stealth mode. From their answers, their published work and patents we can conclude that this is a well captilalized start up with a lot of candle power that seems to have gotten quite far in controlling for many the important variables in metal 3D printing. 

Acetabular Cups 3D printed on a Velo3D.

Acetabular Cups 3D printed on a Velo3D. We can see that in terms of the sheen and the look of this that it is very different from the usual output of metal 3D printers.

Why all the secrecy?

The model for Silicon Valley has typically been to announce and hype products long before they are commercially available. For a solution like the one we are bringing to market which aims to disrupt the $500 billion global manufacturing industry, we felt it was necessary to wait until we had a thoroughly vetted, customer tested product available for sale before announcing ourselves to the world.

 

Unpacking Acetabular cups (for giants) with the Velo3D.

What’s special about Velo3D?

We started Velo3D with a bold vision to enable additive manufacturing without design constraints. We are solving problems with deep insights and getting to the root cause. Based on that we build a solution from the ground up for high volume manufacturing consisting of our Sapphire System and Velo3D Flow print preparation software. Intelligent Fusion is the technology that powers the combination of Flow and Sapphire and enables an end-to-end integrated workflow.

While conventional systems often require supports for any geometry below 45 degrees, Velo3D’s Sapphire uniquely enables engineers to realize designs with overhangs lower than 5°and large inner diameters without supports.Some of our key benefites include

1st print success rates of 90%

Reduced part costs by 30-70%

 

Look at the teeny tiny blue windows, not sure what is going on in there but it is very powerful and plasma-y. Am I the only one getting a kind of DoD InQtel feel from this?

Is this a manufacturing technology?

Yes, Velo3D is a metal additive manufacturing solution company. Our customers are service bureaus who offer metal 3D printing services to end users, as well as leading OEMs for use in-house.

What kind of parts can be made with your technology?

We have removed design constraints by enabling overhangs below 5 degrees and large internal openings up to 40mm. Key applications include shrouded impellers, heat exchangers, pump housings and other turbomachinery components which are critical for the aerospace, energy and industrial applications. We also enable medical instruments and implants, such as orthopedic hip cups.

You state that more geometries can be made? How?

The ability to design and print complex geometries is enabled by our Intelligent Fusion technology. Intelligent Fusion is a Velo3D proprietary technology invented to free the conventional powder bed laser fusion approach from design constraints through process simulation, prediction, and closed loop control.

An impeller 3D printed by Velo3D.

Did you manage to correct for melt pool size in order to improve microstructure control?

Yes. Microstructure control is only one of Velo3D’s benefits. It allows us to build previously impossible designs and to improve part-to-part consistency.

What kind of reliability and repeatability are you getting?

We are meeting and exceeding reliability and repeatability tests by our customers. Currently we are testing with external labs and plan to publish the results soon.

A Shrouded Impeller Printed on the Velo3D, note the supports on the bottom.

 How dense are parts?

The parts meet and exceed metal manufacturing density requirements of over 99.9%.

What kind of Ra are you getting off the machine?

The surface properties are geometry dependent and customer application defined. We are demonstrating below < 3 SA.

Both Impellers.

What post processing typically needs to be done?

The Velo3D solution minimizes the need for supports reducing typical support volume 3-5 times.  It avoids internal supports that prevents the manufacturability or causes laborious post processing with conventional approaches.

Who are your target customers?

Service Bureaus and OEMs with expertise in additive manufacturing.

A stator ring and impeller

What are your target applications?

Aerospace, energy and Industrial applications, as well as medical applications (i.e., orthopedic implants). Applications include engine parts such as impellers, heat exchanges, and other critical turbomachinery parts, as well as assembly simplifications but also spare parts and spine implements, and larger implements such as hip cups.

Velo3D has come out of nowhere to seem quite the contender. If their estimates and performance claims pan out in the real world then this is a very interesting technology indeed. Simulation is very difficult to do in metal 3D printing and its a key element of getting prints right. Finding out $5000 and three days later that your parts don’t work kind of holds the technology back. This opens up new applications for 3D printing. Especially if they can have a sucess rate of 90% on the first time printed parts. Sometimes in Powder Bed Fusion you have to come up with different support strategies and print a part four or five times to get it right if it is a new geometry. Powder Bed Fusion in metals is great at making a million different hip cups but if we’d throw a radically different shape in the printer for the first time than this will most likely fail. Many applications are being held back because of this. Think of “draw your own jewlery” as a start up idea for example. Reducing supports will also make this much cheaper in terms of overal part costs and may save time as well. Supports are still manually removed on, nearly all, Metal Powder Bed Fusion 3D prints. You can see how parts are being unpacked on the Velo3D here. Manual removal of supports adds considerable cost to the final part so any gain here would be very beneficial. The increased design space could open up new applications, especially in new customers that have thusfar been unable to make their parts with metal 3D printing.

3D printing is very much a testing and data game if you want to take on manufacturing. You’ll need hundreds of kilos of a powder to make sure it works well for example. There are also many geometries that can have significant effects on how and if the part builds. Thermal stresses can cause parts to get ripped apart as well. By developing simulation software the 100 strong Velo3D team has really focussed on getting the repeatability right through lowering their testing cost and increasing their dataset. This is a smart move and will bring dividends to them and their customers. The company has a number of patents including a skillfull 3D printing one, an accurate 3D printing one and an adept 3D printing one. Also the first time I’ve ever seen cute patent names. Going by those patents the company has developed a real time melt pool monitoring technology that works in concert with material dosing and laser control and builds closed loop using, probably, a plasma beam.The company seems to also to be able to correct on the fly with cooling to reduce deformation and may use an FPGA or similar to do this. So depending on errors it seems to be able to reduce the insensity of the laser or actively cool a part. Given the teams previous work and published articles they may also be using a MOSFET or Field Effect Transistor to do this.

Also given that velocity fields play an important role in metal 3D printing and the name of the company is Velo 3D, I’m taking a guess here to say that they probably are managing to control velocity fields in some way which would then allow them to have more of a grip on the final part and how it is built. If they then are able to monitor melt pool size and shape in real time using the FPGA and then have influence on the cooling rate of areas of the part while being able to adjust the plasma beam also on the fly then they may have just come close to cracking this metal printing thing. They certainly have the candle power to do it, they’ve hired very bright people who have over the years written some very interesting papers on real time monitoring, modeling and control of metal 3D printing. During my research for this I was actually at one point surprised to learn that Brent Stucker didn’t work at Velo3D now given the overlap.

The patents also seem to disclose that parts can be polished and post processed in part by lasers on the build machine, perhaps in concert with building the part. Another patent seems to point to active cooling or producing multiple layers at once using a preheat step or process. Can’t wait to find out how this actually works. All in all the value propostion seems a solid one and they’re certainly ticking the right goals. They’ve also got a lot of air which they can use to iron out the kinks in the chain. I like the fact that the company seems down to earth and isn’t all “startuppy” about everything. But, first impressions are first impressions and we work in an industry where an awful lot of machines and dreams have caught fire. We’ll have to wait to find out what the performance is as tested or experienced by the customer, it will cost me some beers at a trade show but I’ll find out for you guys.