Project Carpaccio: MeaTech Makes Real 3D Printed Meat

The proof may often be found in the pudding, but adventurous eaters may also discover it in evolved food production like Project Carpaccio, as MeaTech Ltd. outpaces other companies in bioprinting “real, clean meat” with muscle and fat cells derived from animals. Recently announcing that their researchers have reached their ambitious goal of bioprinting stem cells that “successfully fused” in a layer of meat, the Israeli startup has reached the first step necessary in their goal to fabricate a quarter-pound steak with progressive technology that eliminates the butchering of animals.

Consumers around the world should continue to find their epicurean expectations transformed as startups continue to make alternative meats palatable. You may already be surprised to see vegetarian and vegan food, along with plant-based ‘burgers,’ making their way onto mainstream menus these days—from the Beyond Burger which you may have encountered at local restaurants to the much-discussed Impossible Whopper now available at Burger King.

Other fast-food corporations are actively engaged in R&D, racing to promote their own versions of the enhanced veggie burger too. Meat alternatives are blossoming into an impressive industry of their own, expected to be valued at around $8.1 billion by 2026. Such foods and snacks processed by conventional methods are often made from soy, wheat, or other types of alternative vegan proteins like seitan.

MeaTech, however, has developed a comprehensive process for 3D printing meat that actually comes directly from animals. MeaTech scientists begin by taking umbilical cord samples (leaving animals unharmed) from animals like cows and then developing the cells into a continuous line of production. As the researchers are tasked with separating fat and muscle cells, they mark them by using different types of bioink for bioprinting—with the cells then incubating and growing into viable products for consumption.

MeaTech’s 3D meat printer. (Image: PR)

Project Carpaccio came to fruition as scientists from MeaTech 3D printed meat from stem cells using a 3D printer that they customized in their own lab. Sorting and separating cells was no easy feat as they worked to create a texture similar to real meat, along with making the appropriate ink and then fusing the materials.

(Image: MeaTech)

(Image: MeaTech)

Companies experimenting with and exploring the future potential of 3D printed meat are beginning to multiply. Consumers may still feel some trepidation about eating anything bearing the vegetarian label (or at the next level, vegan), and even more so regarding food that is extruded from a 3D printer; however as 3D printing technology continues to infiltrate the mainstream, other companies too like Novameat and Redefine Meat are working to bring forth compelling products to dinner tables around the world.

“This is another step on the path to meeting the company’s vision of building a plant for the growing and manufacturing of 3D-printed cuts of meat without needing to slaughter or harm any animals, a technology which could dramatically reduce air pollution, loss of energy sources and the loss of vast areas currently used for raising livestock for slaughter,” said Sharon Fima, CEO and co-founder of MeaTech.

[Source: CTech]

The post Project Carpaccio: MeaTech Makes Real 3D Printed Meat appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3DP AIPerfecter Offers Part Analysis to 3D Printing Service Bureaus

Service bureaus offer the ability to have prototypes and parts fabricated on professional equipment (especially important as some designers may not have access to any 3D printing resources) and in most cases bring extensive expertise to the table to help with design and manufacturing plans.

The PrintSyst.ai, team, founded in 2017 and headquartered in Israel, understands the benefits and the challenges in offering 3D printing services as the founding brothers—Eitan and Itamar Yona—not only had a lot of work in their beginning stages, but a lot of questions from customers, too. As they began educating their customers further, they also gained a deeper understanding of the processes and continued to learn through their experiences and mistakes.

The 3DP AI-Perfecter™ dashboard

The results of their work and learning have evolved into an automated workflow system that, according to PrintSyst.ai, “turns 3D service bureaus and manufacturing engineers into instant 3D printing experts.” The 3DP AIPerfecter was developed over the last two years for industrial users involved in 3D printing applications like aerospace, defense, and automotive.

The company suggests that, with this new pre-printing evaluation tool, customers may see a considerable improvement in the quality and strength of their parts while also enjoying faster turnaround in production, greater affordability, and less need for labor. The AI system offers users the ability to analyze parts before printing—an element of the process that is becoming recognized as more critical—and especially in metal 3D printing.

“Analyzing parts before printing is a crucial step that requires a lot of time from highly skilled engineers and bears significant risks to a company’s reputation and ability to meet the desired lead times and regulations,” explained the PrintSyst.ai team in a recent press release.

Without automated analysis, far too many parts result in dysfunction. 3DP AI Perfecter is meant to offer relief for users with automated part analysis which the PrintSyst.ai team claims saves “more than 99 percent of the preparation time and cost.” It was developed with scalability, user-friendliness, and simplicity in mind for customers engaged in complex digital fabrication projects. The AI tool also provides a streamlined dashboard for monitoring the printing process—and can be used to “scale and optimize” operations further. Not only that, but it can also be modified according to the needs of the customer.

Users may save more than 99% of prep time with the 3DP AI-Perfecter™

[Source / Images: AviTrader]

The post 3DP AIPerfecter Offers Part Analysis to 3D Printing Service Bureaus appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing News Briefs: October 16, 2018

We’re starting with some business news in today’s 3D Printing News Briefs, including stories about a new 3D printer, an anniversary, and a 3D printing investment. Cincinnati Incorporated has launched a new high temperature version of its SAAM 3D printer, and EOS will supply Visser Precision with five new metal 3D printers, including its M 400-4. VBN Components celebrates its tenth anniversary, and an Israeli 3D printing startup has received about $400,000 in funding. Researchers in Iran have successfully 3D printed flexible electronic circuits, and 3D printing was used to replicate a Chinese grotto. Finally, the Golf Channel will be featuring 3D printed golf clubs tonight.

New High Temperature Version of SAAM 3D Printer

Last week at FABTECH 2018 in Georgia, build-to-order machine tool manufacturer Cincinnati Incorporated (CI) launched a brand new high temperature version of its SAAM (Small Area Additive Manufacturing) 3D printer series. The SAAM HT 3D printer has a nozzle that can sustain temperatures up to 450°C and a bed temperature up to 260°C, which makes it possible to process materials like polycarbonate, PEEK, and ULTEM. Courtesy of its continuous patented automatic-ejection mechanism, the SAAM HT can be used for small batch production, and is a good choice for manufacturing tooling involved in high temperature operations.

“All materials compatible with SAAM can be used on the HT version. This level of versatility makes it a valuable asset in any manufacturing setting. We are enabling manufacturers and engineers to create the custom parts they need for their most demanding applications,” said Chris Haid, the General Manager of the NVBOTS Business Unit at CI.

EOS Supplying Visser Precision with New Metal 3D Printers

EOS M400-4

Denver-based Visser Precision, which provides advanced metals manufacturing solutions, has doubled its metal 3D printing capacity, thanks to the terms of an agreement reached with EOS at the recent IMTS trade fair. Visser has purchased three EOS M 400-4 3D printers, and two of the recently introduced EOS M 300-4 systems, making it the first organization to acquire the new platform. Market demands for DMLS-quality metal components in industries like aerospace and defense led Visser to grow its metal 3D printer capacity, and the new EOS systems will be delivered in a few months.

Ryan Coniam, the President of Visser Precision, said, “Our customers require the highest-performance, highest quality components and we feel partnering with EOS – the metal AM industry pioneers and leaders in DMLS – provides us with the capabilities we need to meet market demands now and in the next few years. Nearly anyone nowadays can 3D print something in metal, the trick is repeatability while meeting and maintaining quality and our investments with EOS mean we can deliver that to our customers.”

VBN Components Celebrating 10 Years in Business

Swedish materials development company VBN Components AB was founded in the midst of the 2008 financial crisis, and has come a long way since then. The award-winning company works to continuously develop new and better materials, including its corrosion and wear resistant Vibenite 350 for the plastics industry and Vibenite 290, the “World’s Hardest Steel.”

Martin Nilsson, CEO and one of the founders of VBN Components, said, “After our first patent, describing the process of making extremely clean and low-oxygen-rate materials, we realised that we were on to something big.”

This year, VBN Components is celebrating 10 years in business, with several patents and new, hard materials under its belt. But stay tuned – the company will soon unveil the greatest news in its history, which has been described as “a revolution in material development.”

Israeli 3D Printing Startup Receives Funding

TAU Ventures team, R-L: Nimrod Cohen, Managing Partner at TAU Ventures; Shira Gal, Director of Incubator Programs; Yaara Benbenishty, Director of Marketing and Operations [Image: Eylon Yehiel]

TAU Ventures, the venture capital fund of Tel Aviv University, announced that it has led an investment round worth nearly $2 million for two Israeli startups, including Hoopo and 3D printing company Castor. Founded two years ago by Omer Blaier and Elad Schiller, Castor combines 3D printing with artificial intelligence for its high-tech customers, which enables the companies to lower costs by using advanced technology. Castor’s technology automatically analyzes and determines the cost-effectiveness and feasibility of using 3D printing in the manufacturing process.

The startup will be receiving about $400,000 in combined funding from Stanley Black & Decker, the Techstars Accelerator, British businessman Jeremy Coller, and TAU Ventures, which is the first and only academic-based venture capital fund in Israel.

3D Printing Flexible Electronic Circuits

Researchers from a knowledge-based company in Iran have recently developed 3D printers that can fabricate flexible electronic circuits, which could be used in the future as wearables for clothing, pressure sensors, or industrial talc for cars.

The unnamed company’s project manager, Ali Gharekhani, told Mehr News that these 3D printers only take a few seconds to 3D print the flexible electronic circuits, and that foreign versions of this system are “very expensive.” Gharekhani also said that in light of this new development, his company has already received some proposals for Turkey, and “intends to reach an agreement with the Turkish side on production of clothes by 3D printers” before its rivals in Germany, Canada, and Korea.

3D Printed Replica of Chinese Grotto

Yungang Grottoes are a cradle of Buddhist art, playing host to more than 51,000 sculptures. [Image: Zhang Xingjian, China Daily]

There are over 59,000 statues carved in 45 different caves in the 1,500-year-old Yungang Grottoes, which was named a UNESCO World Heritage site in 2001. This week, a full-size, 3D printed replica of one of the grottoes passed experts’ tests. The Yungang Grottoes Research Institute in northern China’s Shanxi province, a Shenzhen company, and Zhejiang University launched the project, which is based on original cave No 12, also called the “Cave of Music.” The 3D printed replica is 15 meters long, 11 meters wide, and 9 meters high, weighs less than 5 metric tons, and is claimed by the institute to be the world’s largest 3D printed movable grotto. High precision 3D data was collected to print the replica out of resin, which took about six months, and it can be divided in parts and pieced together within a week.

“We plan to color it with mineral pigments before the end of this year,” said Zhang Zhuo, head of the institute. “In this way, the replica will maintain its original size, texture and color.”

In the future, the 3D printed grotto replica will be added to exhibition tours with the institute’s other cultural relics.

3D Printed Golf Clubs on the Golf Channel

Tonight, at 9 pm EDT, EOS will be featured, together with Wilson Golf, on the NBC Golf Channel show Driver Vs. Driver. The seven-episode series follows aspiring designers of golf equipment as they compete against each other for the chance to win $500,000. In addition to the money, the winner will also have the opportunity to have their driver design sold, under the Wilson Staff name, at retail stores.

The show gives viewers a behind the scenes look as advancing teams work with engineers at the company’s innovation hub, Wilson LABS, to evaluate, refine, and test out their concepts. Tonight is the third episode, and showcases several designers’ use of 3D printing to make the best golf driver club. Wilson is among a few other companies, including Krone Golf, Ping, Callaway Golf Company, and Cobra Puma Golf, that is using 3D printing to produce golf clubs and other equipment.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

3D Printing News Briefs: June 26, 2018

We have plenty of business, material, and 3D printer news to share with you in today’s 3D Printing News Briefs. 3D printing led to increased savings for GM over the last two years, which is now increasing its use of the technology as a result. ExOne is saying goodbye to one CEO and hello to another, while Polymaker announces a global distribution arrangement with Nexeo Solutions and CollPlant receives R&D project approval in Israel. The US Patent and Trademark Office will be hosting its annual Additive Manufacturing Partnership Meeting this week, and RP Platform has announced a rebrand and a new AI software platform. Finally, the UK’s National Centre for Additive Manufacturing has decided to add Digital Metal’s binder jetting technology to its portfolio.

GM Increasing Use of 3D Printing at Plants

Zane Meike, AM lead at GM’s Lansing Delta Township assembly plant, holds a common 3D printed tool used to align engine and transmission vehicle identification numbers. [Photo: Michael Wayland]

According to Dan Grieshaber, the Director of Global Manufacturing Integration for General Motors (GM), most of the company’s factories have 3D printers, which are used to build accessories and tools for workers. A $35,000 3D printer at GM’s Lansing Delta Township assembly plant has actually helped save the company over $300,000 over two years: it’s used to make multiple items, such as part hangers, socket covers, and ergonomic and safety tools. A common tool used to align engine and transmission vehicle identification numbers cost $3,000 to buy from a third party, but is less than $3 to 3D print at the factory. Realizing that these kinds of savings can add up quickly, GM is increasing the use of 3D printing – part of its new Manufacturing 4.0 processes – at its plants in order to help streamline operations.

“We’re quickly evolving, creating real value for the plant. This will become, as we progress, our footprint. We’ll have this in every one of our sites,” Grieshaber said.

Grieshaber also said that GM is working to standardize 3D printing, as well as share best practices across all of its global plants.

ExOne Welcomes New CEO

The ExOne Company, which provides 3D printers and 3D printed products, materials, and services to its industrial customers around the world, has announced that its CEO, James L. McCarley, is departing the company, effective immediately, to pursue other interests and opportunities; he will be assisting the company in transitioning his responsibilities to the new CEO. ExOne’s Board of Directors has also announced who the new CEO will be – S. Kent Rockwell, the company’s Executive Chairman, who has served in the position in previous years. Rockwell’s new title is effective immediately.

“On behalf of our Board and management team, I would like to thank Jim for his efforts and wish him all the best in his future endeavors,” said Rockwell.

Polymaker Makes Distribution Arrangement with Nexeo Solutions

Shanghai-based 3D printing material producer Polymaker has entered an arrangement with chemicals and plastics distributor Nexeo Solutions, Inc., also based in Shanghai. Nexeo will be a global distributor for three new materials in the Polymaker Industrial line, but plans to introduce more of its materials over the rest of the year. C515 is an advanced polycarbonate (PC) filament that has excellent toughness and a low warping effect, while C515FR is a flame retardant PC with high impact resistance. SU301 is a polyvinyl alcohol (PVA)-based polymer that’s water soluble and was developed as a support material for FFF 3D printers.

Paul Tayler, the Vice President of EMEA at Nexeo Solutions, said, “Expanding our portfolio to include industrial grade filaments from Polymaker Industrial gives our customers access to a wider range of filaments that solve new 3D printing challenges and meet the demands of manufacturers. Industrial customers benefit from Nexeo Solutions’ access to world leading plastic producers coupled with additive manufacturing technical expertise.”

CollPlant Receives R&D Project Approval

Two years ago, regenerative medicine company CollPlant received funding from Israel’s Ministry of Economy for its research in developing collagen-based bioinks for 3D printing tissues and organs. CollPlant, which uses its proprietary plant-based rhCollagen (recombinant human collagen) technology for tissue repair products, has now announced that the Israel Innovation Authority (IIA) has approved a grant to finance the continued development of its rhCollagen-based formulations intended for use as bioinks. Terms of the grant require CollPlant to pay royalties to the IIA on future sales of any technology that’s developed with the use of the funding, up to the full grant amount. The total project budget is roughly $1.2 million (NIS 4.2 million), and the IIA will finance 30%, subject to certain conditions.

“In addition to providing immediate non-dilutive funding, this grant from the Israel Innovation Authority represents an important validation of our BioInk technology and its market potential. With the recent opening of our new cGMP production facility in Rehovot, Israel, we are well positioned to meet growing demand for our BioInk and tissue repair products. We are grateful to the IIA for this recognition,” said CollPlant CEO Yehiel Tal.

Additive Manufacturing Partnership Meeting Hosted by US Patent and Trademark Office

For the last several years, the US Patent and Trademark Office (USPTO) has been hosting the Additive Manufacturing Partnership Meeting, and this year’s meeting takes place tomorrow, June 27th, from 1 to 5 PM at the USPTO headquarters inside the Madison Building in Alexandria, Virginia. The USPTO will be seeking opinions from various participants at the informal meeting, which is really a forum for individual 3D printing users and the USPTO to share ideas, insights, and personal experiences.

“We value our customers and the feedback provided from individual participants is important in our efforts to continuously improve the quality of our products and services,” the USPTO meeting site reads. “Your willing participation in this informal process is helpful in providing us with new insights and perspectives.”

Scheduled speakers at this year’s meeting are coming from CIMP-3D, HRL, Kansas State University, Lawrence Livermore Laboratories, and the NextManufacturing Center, and an RSVP is required to attend the AM Partnership Meeting.

RP Platform Launches New AI Software and Rebrand

London-based RP Platform, which provides customizable workflow automation software for industrial 3D printing, is launching a new software platform, which will use AI for the first time to automate 3D printing production. With customers in over 30 countries, the company is one of the top automation software providers for industrial 3D printing. In addition to its software launch, RP Platform has also announced that, as it continues to expand its software capabilities to target AM end part production, it is rebranding, and has changed its name to AMFG.

“We want to help companies make their 3D printing processes much smoother so that they can produce more parts with greater visibility and less effort. And we have more exciting releases to our software over the coming months that will further enhance our production automation capabilities,” said Keyvan Karimi, the CEO of AMFG.

“Ultimately, we’re creating a truly autonomous manufacturing process for industrial 3D printing. For us, this means taking manufacturing to a new era of production. The launch of our new software, as well as our company rebrand, fully reflects this vision going forward.”

NCAM Installing a Digital Metal 3D Printer

The National Centre for Additive Manufacturing (NCAM) in the UK, headquartered at the Manufacturing Technology Centre (MTC) in Coventry, has decided to add the unique binder jetting technology developed by Digital Metal to its large range of advanced manufacturing equipment, and will soon be installing one of its high-precision metal 3D printers – which are not available anywhere else in the UK. The 3D printer will be available for use by NCAM’s member companies, and other organizations, who are interested in testing the capabilities of Digital Metal’s proprietary binder jetting technology.

Dr. David Brackett, AM Technology Manager at the NCAM, explained, “The Digital Metal binder jetting technology falls into the category of ‘bind-and-sinter AM’, where a multi-stage process chain incorporating sintering is required to achieve full density. It’s a very fast technology that can create complicated and highly detailed designs, and there is potential for wider material choice than with AM processes that use melting. We are delighted to be able to offer this to the companies we work with.”

The Digital Metal 3D printer will be operational later this summer, and NCAM personnel are already training with it to ensure they can operate it efficiently and safely.

Discuss all of these stories, and other 3D printing topics, at 3DPrintBoard.com or share your thoughts in the Facebook comments below.