Cosmonaut aboard the ISS 3D prints human tissue for the first time

Here is one of those sentences that somehow feels futuristic and retro all at the same time: Up on the International Space Station, a Russian cosmonaut has 3D printed human tissue. Here’s more from SlashGear:

The cosmonaut used a magnetic levitation device created by Russian researchers to fabricate human cartilage from a few isolated cells. The scientists say that the work could lead to new techniques for regenerating tissues during long-term spaceflight…. Traditional tissue engineering involves seeding cells onto biocompatible “scaffolds,” which biodegrade once the tissues have assembled themselves into 3D organs. There are newer and more flexible approaches that don’t require the scaffold emerging. These techniques allow cells to assemble themselves without the need for a structural biomaterial.

Techshot’s Bioprinter Successfully Fabricates Human Menisci in Space

Current Bioprinting in space could become a pathway that guides future decisions for biofabrication on Earth as well as in orbit. Astronauts have already used two bioprinters on the International Space Station (ISS), experimenting with human bone tissue and even heart tissue. Interest in creating these machines arose as Earth’s gravity was making printing functional organ-like structures quite challenging, making the space environment a feasible alternative. Techshot, a commercial space company, chose to develop a BioFabrication Facility (BFF) that has been mounted inside the ISS U.S. National Laboratory and is being used by astronauts on board since last summer. This week the company announced that the space-based 3D bioprinter was used to successfully manufacture human knee cartilage test prints in space.

Techshot’s BFF, which aims to print organ-like tissues that could one day lead to 3D printing human organs in space for transplants, was used to successfully manufacture test prints of a partial human meniscus aboard the ISS last month. The meniscus pattern was manufactured for the company’s customer: the 4D Bioprinting, Biofabrication, and Biomanufacturing (4D Bio3) program, which is based at the Uniformed Services University of the Health Sciences (USU). The program is a collaboration between the university and The Geneva Foundation, a non-profit organization that advances military medical research.

BioFabrication Facility Patch (Image: Techshot)

Manufacturing human tissue in the microgravity conditions of space could ultimately aid in the race to manufacture hearts and other organs using a 3D bioprinter. Although the actual fabrication of functional organs that could finally replace the shortage of donor organs to help patients in need of a transplant could be a decade away – if not more – the team at Techshot was optimistic around this project since research in space might illuminate a lot of the work done on Earth.

In the last six months, astronauts, like NASA’s flight engineer Christina Koch, have tested the ability of the BFF to print cells. Using adult human cells (such as stem or pluripotent cells) and adult tissue-derived proteins as its bioink, the BFF is able to create viable tissue.

Astronaut Jessica Meir is using the BFF at the International Space Station (Image: Techshot)

According to the ISS U.S. National Lab, although researchers have had some success with 3D printing of bones and cartilage on Earth, the manufacturing of soft human tissue (such as blood vessels and muscle) has been difficult. What they claim occurs is that, on Earth, when attempting to print with soft, easily flowing biomaterials, tissues collapse under their own weight, resulting in little more than a puddle; but if these same materials are produced in the microgravity environment of space, the 3D printed structures will keep their shapes.

A meniscus, which is a crescent-shaped disc of soft cartilage that sits between the femur and the tibia, acts as a significant cushion or shock absorber, yet when the meniscus tears, the cushioning effect functions poorly, leading to arthritis and knee pain. Meniscal injuries are one of the most commonly treated orthopedic injuries and have a much higher incidence in military service members and sports players.

Early in March, Techshot sent equipment and samples supporting plant, heart and cartilage research for three of its customers to the ISS on SpaceX mission CRS-20. Astronauts on-board the station used the BFF to manufacture human knee menisci as a test of the materials and the processes required to print a meniscus in space. According to Techshot, the first experiment for 4D Bio3 aboard the ISS U.S. National Laboratory served as a test of the materials and the processes required to print a meniscus in space. Astronaut Andrew Morgan, a medical doctor and graduate of USU loaded biomaterials into BFF, while Techshot engineers uploaded a customer-provided design file to the printer from the company’s Payload Operations Control Center (POCC) located in Greenville, Indiana, from which the devices in space are controlled. The success of the print was evaluated via real-time video from inside the unit.

“Some of our criteria for mission success, such as the ability to work with customer-specified print materials and customer-supplied design files, were met before we even launched back on March 6,” said Techshot Senior Scientist Carlos Chang. “But commanding BFF to print from here at Techshot, and watching it all literally come together in real-time, provided the confirmation we needed that we’re on the right track.”

Founded more than 30 years ago, Techshot operates its own commercial research equipment in space and serves as the manager of NASA-owned ISS payloads – such as the Advanced Plant Habitat and two materials-science research furnaces. The company provides its catalog of equipment and services for a fee to those with their own independent research programs – serving as a one-stop resource for organizations seeking access to space. And launched to the station in July 2019 aboard SpaceX CRS-18, the BFF has been tested since. Techshot has even suggested that biomaterials for a second meniscus print, which will be returned to Earth for more extensive testing, will launch on a later SpaceX mission.

As astronauts stationed at the ISS U.S. National Lab continue to advance work with Techshot’s 3D bioprinter and microgravity research, we can expect to hear more about the cutting edge science that is being done that aims to improve patient care. The technology offers a unique opportunity to support bioprinting structures and construct tissues, providing an ideal scenario that will enable remarkable changes to move forth the medicine of the future.

The post Techshot’s Bioprinter Successfully Fabricates Human Menisci in Space appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Improvements to the BioFabrication Facility on the ISS Thanks to Lithoz

Scientific discoveries and research missions beyond Earth’s surface are quickly moving forward. Advancements in the fields of research, space medicine, life, and physical sciences, are taking advantage of the effects of microgravity to find solutions to some big problems here on Earth. Researchers in 3D printing and bioprinting have taken advantage of space facilities that are dedicated to conducting multiple experiments in orbit, such as investigating microgravity’s effects on the growth of three-dimensional, human-like tissues, creating high-quality protein crystals that will help scientists develop more effective drugs, and even growing meat with 3D printing technology.

The BioFabrication Facility (BFF) by Techshot and nScrypt (Credit: Techshot)

On November 2, 2019, a Northrop Grumman Antares rocket successfully launched a Cygnus cargo spacecraft on a mission to the International Space Station (ISS). The payload aboard the Cygnus included supplies for the 3D BioFabrication Facility (BFF), like human cells, bioinks, as well as new 3D printed ceramic fluid manifolds that replaced the previously used that were printed out of polymers. According to Lithoz – the company behind the 3D printed ceramic fluid manifolds – they are enabling advancements in bioprinting at the ISS.

The additive manufactured ceramics have been in service since November 2019 and Lithoz claims they have proven to provide better biocompatibility than printed polymers, resulting in larger viable structures.

Lithoz, a company specializing in the development and production of materials and AM systems for 3D printing of bone replacements and high-performance ceramics, printed the ceramic manifolds using lithography-based ceramic manufacturing (LCM) on a high-resolution CeraFab printer in collaboration with Techshot, one of the companies behind the development of the BFF. Moreover, the ceramic fluid manifolds are used inside bioreactors to provide nutrients to living materials in space by the BFF.

Testing of the ceramic 3D printed manifolds is focusing on biocompatibility, precision, durability, and overall fluid flow properties; and the latest round of microgravity bioprinting in December yielded larger biological constructs than the first BFF attempts in July.

NASA engineer Christina Koch works with the BioFabrication Facility in orbit (Credit: NASA)

Techshot and Lithoz engineers and scientists worked together to optimize the design and the manufacturing processes required to make it. Techshot Senior Scientist Carlos Chang reported that “it’s been an absolute pleasure working with Lithoz.”

While Lithoz Vice President Shawn Allan suggested that “their expertise in ceramic processing really made these parts happen. The success of ceramic additive manufacturing depends on working together with design, materials, and printing. Design for ceramic additive manufacturing principles was used along with print parameter control to achieve Techshot’s complex fluid-handling design with the confidence needed to use the components on ISS.”

Headquartered in Vienna, Austria, and founded in 2011, Lithoz offers applications and material development to its customers in cooperation with renowned research institutes all over the world, benefiting from a variety of materials ranging from alumina, zirconia, silicon nitride, silica-based for casting-core applications through medical-grade bioceramics.

This work, in particular, highlighted an ideal use case for ceramic additive manufacturing to enable the production of a special compact device that could not be produced without additive manufacturing while enabling a level of bio-compatibility and strength not achievable with printable polymers. Lithoz reported that Techshot engineers were able to interface the larger bio-structures with the Lithoz-printed ceramic manifolds and that the next steps will focus on optimized integration of these components and longer culturing of the printed biological materials. While conditioned human tissues from this mission are expected to return to Earth in early 2020 for evaluation.

Back in July 2019, Gene Boland, chief scientist at Techshot, and Ken Church, chief executive officer at nScrypt, discussed the BFF at NASA’s Kennedy Space Center in Port Canaveral, Florida, how they planned to use the BFF in orbit to print cells (extracellular matrices), grow them and have them mature enough so that when they return to Earth researchers can encounter a close to full cardiac strength. Church described how a tissue of this size has never been grown here on Earth, let alone in microgravity. The 3D BFF is the first-ever 3D printer capable of manufacturing human tissue in the microgravity condition of space. Utilizing adult human cells (such as pluripotent or stem cells), the BFF can create viable tissue in space through a technology that enables it to precisely place and build ultra-fine layers of bioink – layers that may be several times smaller than the width of a human hair – involving the smallest print nozzles in existence.

Flight engineer Andrew Morgan works with the BioFabrication Facility (Credit: NASA)

Experts suggest that bioprinting without gravity eliminates the risk of collapse, enabling organs to grow without the need for scaffolds, offering a great alternative to some of the biggest medical challenges, like supplying bioprinted organs, providing a solution to the shortage of organs.

With NASA becoming more committed to stimulating the economy in low-Earth orbit (LEO), as well as opening up the ISS research lab to scientific investigations and experiments, we can expect to learn more about some of the most interesting discoveries that could take place 220 miles above Earth. There are already quite a few bioprinting experiments taking place on the ISS, including Allevi and Made In Space’s existing Additive Manufacturing Facility on the ISS, the ZeroG bio-extruder which allow scientists on the Allevi platform to simultaneously run experiments both on the ground and in space to observe biological differences that occur with and without gravity, and CELLINK‘s collaboration with Made In Space to identify 3D bioprinting development opportunities for the ISS as well as for future off-world platforms. All of these approaches are expected to have an impact on the future of medicine on Earth.

The post Improvements to the BioFabrication Facility on the ISS Thanks to Lithoz appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

El Paso scientists to deliver 3D bioprinted miniature hearts to the ISS

Biomedical researchers from Texas Tech University Health Sciences Center El Paso (TTUHSC El Paso) and The University of Texas at El Paso (UTEP) are collaborating to develop artificial mini-hearts using 3D bioprinting technology for space.  These heart-tissue structures will be sent to the International Space Station (ISS) to gain insight into how microgravity affects the […]

3D Printing News Sliced: PyroGenesis, Under Armour, Onshape, Apollo 11

This week’s edition of Sliced, the 3D Printing Industry news digest, features a 3D printed celebration of the first moon landing, virtual clothes shopping, and the launch of an AM Network Map.  This roundup also includes stories from Knust-Godwin, Torus Group, SPIE, Open Bionics, Geomiq, Onshape, Wikifactory, ETH Zurich, 3DEO, AlphaSTAR, PyroGenesis, Hermeus and more. […]

Russian scientists plan 3D bioprinting experiments aboard the ISS in collaboration with the U.S. and Israel

3D Bioprinting Solutions, a Russian bio-technical research laboratory, has announced plans to collaborate with scientists from the U.S. and Israel to deliver muscular tissue biomaterials to the International Space Station (ISS) in September as part of a microgravity 3D bioprinting experiment. The materials will be used with 3D Bioprinting Solutions’ Organ-Avt 3D bioprinter, which was […]

NASA and TTH use Carbon 3D printing to create Seeker spacecraft inspection robots

The Technology House (TTH), a product development service provider, has used Digital Light Synthesis (DLS) 3D printing technology from Silicon-valley based Carbon to help produce autonomous robotic systems as part of the SEEKER project for NASA. Costing $3 million, the SEEKER project from NASA comprises of two free flying autonomous robots, Seeker and Kenobi, designed […]

BEEVERYCREATIVE Continues Work with ESA: New ISS 3D Printer to be Developed

BEEVERYCREATIVE first established an outer space connection in 2016, when the Portuguese company was asked by the European Space Agency (ESA) to develop a breadboard, or prototype, 3D printer for the International Space Station. Project Manufacturing of Experimental Layer Technology, or MELT, was successfully delivered to the ISS last May as a fully functional 3D printer prototype capable of 3D printing in microgravity conditions and utilizing engineering polymers with high end mechanical and thermal properties.

Now BEEVERYCREATIVE has been recruited by the ESA again. Project Imperial, like Project MELT, will be carried out by an international consortium of organizations. It will be led by OHB System AG, one of Europe’s three leading space companies. OHB System has been heavily involved in space manufacturing over the last three years, having participated in Project MELT as well as a study called URBAN, which involved the conception of a lunar base using 3D printing technologies.

The goal of Project Imperial is to design, develop and test a fully functioning 3D printer model that can perform under the requirements of the International Space Station. The printer will use engineering thermoplastics and alleviate build volume constraints. In order to demonstrate the 3D printer’s functionality, several parts will need to be 3D printed and tested. The printed parts, according to BEEVERYCREATIVE, will demonstrate the capability of in-space manufacturing to enable new maintenance and life support strategies for human space flight.

“This new project is a validation of our ability to develop technology in an area, aerospace, which will certainly have a great impact on our future lives,” said Mario Angelo, CTO of BEEVERYCREATIVE.

Also involved in the project will be German space company Sonaca Space GmbH and Ireland’s Athlone Institute of Technology.

Project Imperial is the latest endeavor to advance in-space 3D printing, a long-term project with many participants that began with the first 3D printer delivered to the ISS in 2014. A lot of the news surrounding 3D printing in space relates to that 3D printer and its follow-up, the Additive Manufacturing Facility, manufactured by Made In Space and sponsored by NASA. While NASA grabs many of the headlines, however, the ESA is plenty busy with the development of 3D printers capable of performing in zero gravity, as demonstrated by Project MELT and now Project Imperial.

Regardless of who is building the 3D printers, however, the fact is that in-space manufacturing is thriving, with 3D printing becoming the go-to technology for creating spare parts, medical supplies, and other needed items for astronauts on board the ISS. In-space 3D printing has come a long way since that first 3D printer was delivered, with ISS printers now capable of printing with engineering-grade materials and growing more advanced with every iteration.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

[Images: BEEVERYCREATIVE]

 

Allevi partners with Made In Space for first zero gravity tissue 3D printer

Allevi, the 3D bioprinting company formerly known as BioBots, has announced a partnership with U.S. microgravity 3D printer developer Made In Space. Together, the two companies are to work on the Allevi ZeroG, a 3D bioprinter capable of working in low-gravity conditions. 3D printing in space Made in Space is the company behind the Additive Manufacturing […]