Interview with Glassomer’s Dorothea Helmer: 3D Printing Fused Silica Glass on Desktop SLA Machines

Dr. rer. nat. Dorothea Helmer specializes in organic and inorganic chemistry and works at Glassomer. Along with Prof. Dr.-Ing. habil. Bastian E. Rapp and Dr.-Ing. Frederik Kotz she co-founded the company. Glassomer is trying to solve one of the most difficult and elusive problems in 3D printing, 3D printing glass, and optically clear components. The path they have chosen is to use stereolithography resins to make fused silica glass. The firm has found methods to make glass through methods usually reserved for polymers. Glassomer’s work really blew me away and I was just as amazed that there wasn’t more press about this incredible technology. In a technologically-astounding manner, we can now create optical objects with standard desktop machines (and debinding and sintering equipment).

The Glassomer Team (Image: Markus Breig/KIT.)

What is Glassomer?

The Glassomer GmbH is a start-up situated in Freiburg, Germany. Glassomer invented and patented a technology that lets us process glass like a polymer – hence Glass-o-mer. The process is based on a resin that contains a large amount of glass particles that can be structured by UV light, for instance in the 3D printer. After developing the parts are processed in an oven to give transparent fused silica glass.

What products do you make?

We sell the resins for molding and for stereolithography printing. We further do feasibility studies and small series prototyping of custom glass products.

Why is fused silica glass interesting?

Fused silica glass is a highly interesting material due to its outstanding optical transparency combined with its high chemical and thermal resistance and pleasant haptics. That makes it interesting for optics, as well as chemical glass ware but also decorative objects.

How can I 3D Print it?

The Glassomer material can be printed using standard benchtop stereolithography printers as long as the printer is material open.

From start to finish how does the manufacturing of a part work?

Glassomer resins can be shaped using a benchtop stereolithography printer or by casting against molds made our of e.g. silicones. Like other resins, the material polymerizes under UV light. The parts are washed and then processed at high temperature to give transparent fused silica glass. This process is executed in two steps: removal of the resin and sintering of the glass particles.

Do I need specialized equipment?

The printing process needs a standard, material open stereolithography printer. The thermal debinding process needs a programmable oven with temperatures up to 600 °C. Sintering requires an oven that withstands 1300 °C.

Is the process predictable?

During the sintering process the part shrinks but the shrinkage is completely isotropic (the same in each direction) and thus highly predictable and can be easily calculated in advance. For makers, they just need to resize their original print by the percentage of the shrinkage. For the Glassomer L50 formulation the linear shrinkage is 15.6 %.

Is it optically clear?

The finished part is completely transparent and clear. Fused silica is the purest glass out there, and it shows a high optical transparency throughout the wavelength spectrum of ultraviolet, visible and infrared light.

What can It be used for?

It can be used for printing optical parts, small chips or decorative objects. In general, for everything that requires high transparency and small structures, Glassomer is the material of choice.

What customers are you seeing?

Glass is a versatile material used in a great variety of fields. Our customers come from different fields like optics & photonics, chemistry, MedTec. But we also get a lot of interest form the jewellery, art and design sectors.

What do you hope to achieve?

Glassomer has the potential to revolutionize the way we fabricate glasses. Glass shaping has always been a challenge – up until now it is not something that people could be easily be doing at home. Now working with glasses is as simple as working with polymer clay. We want to make glasses accessible to every modern fabrication technology – besides 3D printing that includes high-throughput processes like industrial molding. This way high precision glass parts will become customizable and affordable. In the future, all compact optics like the cameras in smartphones will be made from glass – ensuring a higher quality and robustness.

What do you expect to be able to make in mSLA?

Glasses are the number one material used in data transfer – fast internet connections rely on glass fibre cables. Those cables need to be connected to the electronics that we ultimately use for generating the data. Using mSLA and 2-photon polymerization we want to make compact optics and connectors to ensure a higher transfer efficiency.

How strong and durable is it?

The material is real fused silica glass. It is not the same glass we use for e.g. windows, it is of much higher purity. Fused silica is very stable against chemicals or heat. Upon heating it almost does not expand, thus you can (other than our everyday glassware) put it in a flame of 1000 C and then instantly cool it under water without causing cracks. It is, however, a glass – if you hit it with enough force, it will break.

What other variants will you develop?

So far the material is accessible to stereolithography printing we will further develop technologies for fused deposition modeling and other forms of 3D printing and industrial molding.

What is holding back 3D Printing?

We still live in a world of abundance – the industry will need more time to understand that the future of fabrication is high-quality on-demand customized products instead of unspecific over-production. 3D printing still needs to improve in terms of production fidelity, production speed as well as available materials. At Glassomer we constantly work on expanding the material palette of 3D printing and hope to contribute a significant part to the industrial advance of 3D printing.

The post Interview with Glassomer’s Dorothea Helmer: 3D Printing Fused Silica Glass on Desktop SLA Machines appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Longer3D Announces Two Affordable Desktop 3D Printers: Orange 30 & LK4 Pro

Orange 30

Longer3D’s first new printer, the Orange 30, is the most cost-effective professional-grade resin 3D printer in the Longer3D Orange range (which includes the Orange10/120/200/300). This resin printer is also a successfully crowd-funded Kickstarter project, and all orders have been fulfilled and shipped.

Longer3D previously released an entry-level SLA 3D printer Orange 10. With good print quality and competitive pricing, it has attracted many users who would convert from FDM to SLA printing. Compared to Orange 10, which has a build size of 98x55x140mm, Orange 30 has a larger print size of 120x68x170, making it slightly larger than most other SLA printers on the market. The Orange 30 has a resolution of 2560×1440 and 47.25 microns. From many of the models it prints, the details are incredibly clear enabling it to meet professional enthusiasts’ strict printing needs. Especially for very small models, high-resolution detail is a must. Although FDM has advantages in printing large objects, it can not meet the requirements of printing fine details. 

It is worth highlighting that all Orange series products use arrayed UV LEDs to provide a uniform surface source. Orange series printers use higher power, up to 72W, for faster printing. The Orange series of products all have a high-temperature warning function. When the LED temperature is high, the printing process will automatically pause and automatically resume printing after sufficient cooling.

Another useful feature of the Orange 30 is the intelligent one-click add support that automatically detects the floating portion of the print and adds mesh support to ensure the success rate of complex model printing.

See here, an example model printed by Orange 30:

The Orange 30 builds on the light source design technology of the Orange series. It has also been upgraded on spare parts. Now all Orange series printers use a powerful silent fan and improve the user experience of the software, such as adding the pop-up for the file saving, instead of being saved in the folder corresponding to the model by default. Another update is the Orange 30 is compatible with Chitubox, which allows for hollowing, making holes and other functions to save resin. The Orange 30 comes with a 250g bottle of resin and also offers many accessories such as gloves, plastic scraper and paper funnel with filter, and spare FEP film.

Overall, orange 30 has the following outstanding points:

1. Excellent print quality, affordable price, retail price is 339 US dollars.

2. Stable print quality, powerful slicing software.

3. Hardware configuration is high-end and ultra-quiet fan.

4. Simple operation.

Orange 30 specifications:

Where to buy:

Aliexpress: available now!

Amazon US: Orange 30 will available in November.

Join Longer’s Facebook group to get technical support: Longer3D official Facebook group

LK4 Pro

Longer’s other new printer, the LK4 Pro, is the company’s first open source FDM printer, which was upgraded from the original LK4. The LK4 Pro uses the TMC2208 driver and a 4.3-inch display, making it an irresistible advantage. The 4.3-inch display is undoubtedly useful for many people, especially those with clumsy fingers, it allows you to see what you’re doing clearly. The glass building platform is an upgrade of its previous machine LK4, and once the cooling process is complete, the model can be removed more easily.

And its price is very affordable, only $245!

The main features of LK4 PRO:

1 .The latest open source Marlin firmware, expand more functions independently, e.g. automatic bed leveling.

2. Plug and Play TMC2208 driver with higher subdivision, higher running accuracy, and it is ultra-quiet.

3. 4.3 inch touch screen and new UI design engenders ease of use and intuitive response that is unparalleled

4.Glass build platform has better flatness, and the PC sticker ensures a decent print bed adhesion and the model does not warp

Longer LK4 PRO specifications

Buy it here.

Join Longer’s Facebook group to get technical support: Longer3d official Facebook group

The post Longer3D Announces Two Affordable Desktop 3D Printers: Orange 30 & LK4 Pro appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Interview with Martin Forth of RAPLAS on Open Materials Manufacturing With 3D Printing

Martin Forth of RAPLAS wants to bring 3D printing to manufacturing. This is quite a popular narrative at the moment. But, far from the smoke and mirrors of startup land, there are real reasons to believe Martin’s effort over hordes of industry newbies; Martin’s experience, for one. Martin spent two years building RAPLAS and before that spent thirteen years at EnvisionTEC. This already means that he has significantly more experience than 95% of our industry. Only, before EnvisionTEC, Martin spent six years at 3D Systems, joining the 3D printing industry in 1996. 1996. Independence Day, Trainspotting, Braveheart, No Diggity, Unbreak my Heart, Clinton, 1996. Thanks to AMUG, we now consider veterans of 3D printing Dinosaurs, but Martin is practically a fern. He’s seen it all and tried to implement rapid prototyping, free form fabrication, rapid manufacturing and what not previously. So when he gets together a super experienced firm to bring production 3D printing technologies to manufacturing with a focus on resins, sand, and metal, all with open materials, we take notice.

What is Raplas? 

Raplas was set up in 2014 and develops technical solutions for industrial manufacturing and high-quality prototype development. Currently, we have released systems for the production of plastic parts and for casting applications and have shown early samples from our metal printing technology. We are focusing on high-end manufacturing applications hence the size and performance of our equipment.

How did you evolve as a firm? 

Raplas grew from the experiences of the board within the additive industries, who have all worked within the additive industries since the mid 1990’s, we felt that current technology was not addressing the needs of production manufacturing entirely , either through cost of equipment or materials, repeatability for large batch production, accuracy, surface finish  or speed. So we set about designing and marketing technology that could satisfy these requirements. All of the board, management and staff of the company have come with many years of valuable experiences of using, designing and marketing this type of technology as well as the knowledge of operations in associated industries.

What kind of machines do you make?

We make machines and materials for all additive applications all are large frame to suit the professional production markets and fully open allowing the users the widest choice of materials at competitive prices.

Why large scale SLA?

We always felt that SL has always been the gold standard when the combined attributes were added together, but had a long way to go to realise its true possibility. Our understanding of capabilities and requirements showed there was a strong need in the market for a machine that moved the technology on to another level- this was what we brought to our first beta customers with our generation one machines. When we introduced our gen2 machines we really moved forward by another considerable step in productivity and capabilities . Our Gen 2 Systems are very fast compared to other competing technologies, that is consistently physically accurate to within 50 micron over the entire build area, so it makes sense to utilise a large build area for production purposes. For instance we have a client that produces over 1000 electrical components in one build which lasts approx. 4 to 5 hours so they can produce 4000 components per day. The total annual production is 15,000 sets with 6 components per set… so the annual requirement is 90,000 parts in total. All of these  parts can be printed in less than a week and have no need for 6 injection mould tools.

What do your customers use the systems for? 

Manufacturing end use parts as well as prototypes and short test batches.

What industries use your systems?

All applications from Automotive to Audiology, Dental, Medical, NPD, through to tooling and casting.

Why should I work with you?

We feel the merits of our technology and experience of our customers is a compelling reason for potential customers to work with us. We always put the customer’s needs first and are prepared to tailor our solutions to particular clients needs if required. We recognise that a one size fits all approach doesn’t work in a production environment as clients have existing processes that we have to work alongside with. This may mean matching various speeds or material properties to fall in line with current expectations through optimisation of the system through to developing new materials specific for that client.

What kinds of materials do you offer?

We have a general purpose ABS resin in white, gray and crystal clear , class IIb medical grade resin and castable resins that have a low HDT and low ash. For mold manufacture we offer Sand and Ceramic options as well as polymer solutions for direct mold manufacturing. With our forthcoming metal solution, there will be a number of technical materials and it will initially be offered with stainless and aluminium.

What exciting new applications are you seeing emerge?

We’re seeing strong demand for extra mechanical properties and we are working with a number of different players to deliver unique solutions to customer needs. As we see Electronic devices getting smaller more precise components are required; this is pushing the boundaries of injection moulding.

3D printing has the ability to  disrupt traditional manufacturing process as a solution and not just because of low volume requirements, but because of our ability to produce small technical features which are easy to produce in AM, but in the conventional manufacturing world this can be unjustifiable or economically impossible for the moulding market.

So as electronic packaging becomes more of a technical issue we will see more firms endorse 3D printing as manufacturing solution.

What is holding back 3D printing?

Poor understanding of the value of the technology to customers and the constant attempts to shoehorn the wrong technology to customers by some manufacturers. Another thing is the cost of materials. Often the process is disregarded as production solution because of high component costs , now the 3D Printers are becoming faster the largest cost element of the component is now the material.

What advice would you give a company interested in using 3D printing for manufacturing?

“Listen to your customers and suppliers more and deliver what they want not necessarily what you think he wants…”

The post Interview with Martin Forth of RAPLAS on Open Materials Manufacturing With 3D Printing appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Only 3 days left for the Longer Orange 30 Crowdfunding On Kickstarter

 

The Longer Orange 30 has received more than $135,000 in crowdfunding on Kickstarter, representing funding of 451% of its original goal. Only three days remain to pledge for the Orange 30 ultra-high precision SLA 3D printer. Shipping will begin from August 2019. 

Longer3d is a manufacturer dedicated to providing desktop 3D printers and industrial 3D printers, based in Shenzhen, China. With the popularity of desktop 3D printers in recent years, Longer3d is entering the field with its industrial-grade 3D printer technology. The price for an Orange 30 printer is $249 which compares favorably to many other desktop 3D printers which can run $1,000 or more.

Below are the jewelry models printed by Longer’s Orange 30 under a microscope:

One distinguishing feature of Longer3d’s technology is that it uses a linear guide and slider to ensure the accuracy of Z-axis. This approach can match the LED exposure time, intensity, algorithm, and other factors well.

Moreover, Longer3D plans to update functions of the Orange 30 including:

  1. Opening for 3rd Party Slice Software. Currently working on Chitubox, Slic3r.
  2. Upgrading to 10um for Layer Thickness.
  3. Resin Calibration Test.

The U.S. Department of Energy estimates that 3D printing can enable great savings on raw materials and manufacturing costs. 3D printing technology eliminates the limitation of traditional product design and can stimulate people’s innovation potential. 3D printers are widely used in aerospace and national defense, medical equipment, animation industry, crafts industry, ceramics industry, education, manufacturing industry, protection of cultural relics industry, construction industry, automobile manufacturing, jewelry and so on.

Stay tuned for more updates and news about Longer3d’s Orange 30 machine, and its other products such as its FDM printer Longer LK4 and industrial 3D printers. The Longer3d Kickstarter is here.

Interview With Steve Moran of Stereolithography Company RPS Limited

When I first heard from an F1 team that they were using an SLA machine made in the UK I was a bit confused. What was this mysterious RPS company?  What did they do? How were they able to make and deliver specialized resins? Tucked away in Buckinghamshire in a 53,000 person town with a Roald Dahl kids museum, RPS Limited manufactures SLA systems that are widely used in many niche manufacturing applications. For over a decade the firm has serviced machines and now makes it’s own as well, the NEO while the firm also resells HP MFJ systems and others. RPS is a hybrid of a company that is an OEM, reseller and service company in one. They’re also real SLA nerds and are magicians in creating specialized 3D printing applications for manufacturing using photopolymers and powders. They’re a highly experienced team that routinely solves some very exciting materials and manufacturing challenges for the most demanding of customers. We interviewed RPS’ Steve Moran to find out more.

What is RPS?

We are an industrial 3D printing specialist, based in Aylesbury, UK.  The company was founded in 2008 initially servicing and supporting customers who owned existing 3D printing systems.  The company has since developed its own industrial 3D printing equipment (NEO800) and grown to become a leader in industrial 3D printing technology and service support.  RPS also resell other well-known industrial 3D printing brands providing materials, hardware and software.

How did you get started in 3D printing? 

In 1994 the industry was known as Rapid Prototyping. I was employee number five at 3D Systems in the UK where I was a Customer Support Engineer. After five years at 3D Systems, I decided to offer customers an alternative source of support, upgrades to their SLA machines and alternative materials. 

Why should people work with you?

3D printing is a technology that is driving change in manufacturing and design across a range of industries.  RPS has a huge resource of skilled people with 150+ years of 3D printing knowledge between them. We are making an impact in our customers’ businesses and fast becoming a market global leader in industrial 3D printing. 

The team at RPS are offered opportunities to develop their role and are given the autonomy to make a difference within the company. This again has a benefit for end users, as employees are highly motivated and enjoy their chosen role.  We offer fantastic work packages, benefits, training and the ability to have a flexible working pattern when necessary, to suit modern family life.

What is the 3D printing market like in the UK?

I see the three main segments driving the UK market as being F1, Automotive and Bureaux with manufacturers also looking to adopt and add capability in house.   

CNC companies and Jigs and Fixture manufacturers are starting to adopt 3D printing as they are now understanding the benefits of additive vs subtractive manufacturing, which are cost, time and weight savings.  Companies are also able to develop detailed parts that you can’t manufacture traditionally, and also able to get their products to market faster.

This has been driven by the new and innovative materials (both resin and powder), that are now available which helps customers look at changing to 3D printing and adapt to an additive manufacturing method.  Customers can also choose from a range of 3D printing technologies that now build parts with greater accuracy with the desired mechanical properties to suit their application than in the past.

Which segments are growing?

We are seeing more companies wanting speciality material to be used for specific applications.  An F1 customer approached us to help them create a new, black glass filled material.  Working with ALM (Advanced Laser Materials, a subsidiary of EOS), we helped customise and formulate a laser sintering powder to achieve the mechanical properties and colour required. 

Although the range of 3D printing material options is growing, they still do not have the optimal properties to produce complete end-use parts, in particular with stereolithography.  

What new 3D printing materials do you see making an impact?

We are excited about the manufacture of new photopolymers/resins that will be available in the market in the future.  At the moment the lack of materials available with the mechanical properties needed for end-use part development is holding 3D printing back.  The potential of new materials in the market can only happen with hardware to assist in this development, which is why we developed the NEO800 with an open resin platform.  We have also recently developed the NEO Resin Development Kit to help customers with the development of these new photopolymers.

Everyone loves the accuracy and surface finish of stereolithography but the mechanical properties have always been lacking. This is starting to change with more investment by new suppliers in this market. It will be great to see end use parts in automotive with textures and finishes straight out of the equipment with little or no finishing.

The NEO resin development kit gives customers the platforms, calculation tools and software to help customers develop material easily.  We have already been approached by material development companies wanting to use the NEO800 as a tool to develop their materials and have exciting ideas, so I am confident this this step-change in new materials with end-use mechanical properties will happen soon.

What advice would you give me if I were a company new to 3D printing?

3D printing offers a range of cost and time-saving benefits compared to traditional manufacturing.  At RPS we provide advice and talk through what the customer is doing today. By looking at all their processes to manufacture products, we can advise where technologies fit, with which tasks etc.  Only then can customers make informed decisions about how 3D Printing would work with their application.  For example, would ceramic moulds via SL help to get an injection moulded product through the initial testing in real materials prior to tooling being made and commissioned?  If so, look at stereolithography 3D printing technology.  Or if you were looking at a small run of final production parts, possibly looking at HP’s Multi-Jet Fusion technology as it prints end-use parts with strong mechanical properties.  You need to know what application you want to print and the technology you want to print from.  Analyse the output of each technology and seek independent advice to weigh up the pros and cons of each. 

What is currently exciting in SLS materials? 

RPS provides a great range of ALM SLS materials that can suit applications ranging from automotive to footwear.  For example, ALM’s HT-23 is a high heat deflection powder that can maintain mechanical properties up to 270 °C perfect for F1.  Or there is the ALM FR-106 aerospace grade fire retardant Nylon 11, that exhibits superior mechanical properties and can withstand intense functional testing.  In particular, the ALM 640-GSL gives customers a black glass filled material that is unlike any in the market. The glass spheres are lightweight and produce stiff parts, making the material perfect for F1, automotive and lightweight applications like drones. 

When do I need a custom material? 

Nearly every 3D printing application requires a custom material to meet the mechanical properties required.  Every existing material out there is a comprise at the moment so the opportunity to formulate specific material (laser sintering) required through RPS and ALM is a great way to achieve this.  In regards to SLA, we knew what customers wanted when servicing and supporting their hardware.  One of these features was an open-platform to give customers this freedom of material selection.  This is why we developed and manufactured our NEO800 with an open-resin platform, which gives customers an opportunity to develop their own materials.

Where are your customers using the HP machines?

Bureaus, end use part manufacturers, automotive and tooling manufacturers are just some of the industries that our customers belong to that use the HP Multi-Jet Fusion technology.  It is a great, easy-to-use system to run small, end use parts which we actually utilise at RPS in house.  Using the HP Multi-Jet Fusion we print the air-filter assembly used on our NEO800 system.  This allows us to print a small run of parts when needed, saving time and costs.  We also have a partnership with Oxford Brookes Racing.  With the help of RPS, OBR18 built an engine intake plenum in Nylon 12 using HP’s Multi-Jet Fusion technology.  3D printing the plenum on HP’s MJF saved OBR over 50% in weight savings compared to the OBR18 car where they used aluminide.  This is a great example of how the HP’s Multi-Jet Fusion 4200 is perfect for producing detailed, end use parts faster and at a lower cost than traditional manufacturing.

How has the development of photopolymers improved over the years? 

Twenty years ago if you dropped an SLA part it would shatter.  The first generation of polymers produced amber, brittle and inaccurate parts.  The next generation has seen more durable and accurate parts due to epoxy chemistry.  I can envision the next generation of photopolymers to mimic end-use parts.  This is why we chose to manufacture an open-source stereolithography system to enable users to develop materials to achieve this.

How did you come to design and sell your own machine?

When we started RPS, the team focused on servicing and supporting customers with SLA and SLS hardware.  During our time supporting customers we were listening to their needs and understood the limitations of some of the hardware that was available at that time.  We felt that this was a great opportunity to use our engineering skills to develop stereolithography hardware that could produce outstanding parts, but in a system that was more user friendly. 

What is different about it?

What makes the NEO800 different to many stereolithography systems is that it’s an open resin system which means it can utilise any 355 nm SL material.  Companies are approaching us wanting to use the NEO800 for material development which is great news for the future of photopolymers in the industry.  With our support background understanding of what customers wanted, we knew we had to develop software that was user friendly and adaptable to the needs of the customer, so we developed the NEO800 Titanium software.  The NEO800 has a built-in camera to monitor builds, which can be adjusted during the print without a pause to see changes in the next layer. Mid-build, recoating build styles and part build styles can be changed, or parts and supports can be deleted.  We always encourage customer feedback and try to incorporate any ideas that may be useful for our customer in our software updates. Example: The system is now able to export reports, detailing monthly builds, machines utilisation, resin consumption etc, which is really important to our end users. Because our software is written in-house we are able and willing to add these type of features and respond to our customers needs.

I’ve heard that it is used a lot in Formula 1? 

Yes.  Formula 1 requires accurate and smooth parts for wind-tunnel testing and prototyping that they achieve with the NEO800.  They find the sidewall quality of the parts produced on the NEO a benefit as it reduces the post processing time by up to 50% and with the 800x800x600mm platform, it offers the size that they require.

Is it meant for production? 

The NEO800 is mainly used for applications such as prototyping and model making, however the next generation of material development will change this.  With new and innovative materials, users will have the capability to build end-use parts for production using stereolithography.  When this material is available, it will open more doors and opportunities in manufacturing that can only be achieved with 3D printing.

Interview with 3D Print Pioneer Kevin McAlea EVP Healthcare and Metals 3D Systems on Industrializing 3D Printing

There are not a lot of people out there with over 25 years of experience in 3D Printing. One of those people is Kevin McAlea. He is currently an EVP at 3D Systems and in charge of the company’s Healthcare and Metal Printing Business Units. In Healthcare 3D Systems is deploying 3D printing and 3D scanning into various medical markets from medical models to patient-specific implants and surgical planning. The company has software for doctors and hospitals, can also sell 3D printing as a service or can sell machines. In metal printing 3D Systems’ sells specialized metal printers for dental as well as larger production systems for industry such as its DMP Flex 350 and DMP Factory 500 systems. Previously Kevin worked as VP for Europe, VP Marketing, SVP for Production Printers at 3D Systems. Before this Kevin was the Vice President of Marketing and Business Development at venerable laser sintering company DTM which was acquired by 3D Systems. Kevin started at DTM in 3D printing in 1993. Not only are there few people with this much experience there are very few people that have fullfilled so many different operational roles in 3D printing businesses and barely any people that additionally have as deep an experience with polymer sintering, metal sintering, inkjet and stereolithography. It’s a real treat to be able to interview a true pioneer and veteran such as Kevin.

What have you learned in your 25 years in 3D printing?

Over the course of my career in 3D printing, what I find most interesting has always been the potential applications. In the early years of 3D printing, it was about prototyping. But the realization has existed for quite some time that at some point manufacturers would be able to migrate from prototyping to production. The transformative potential of the technology enables compelling use cases and applications. The industry has gone through several hype cycles, but if you’ve been in industry long enough, you’ve seen steady growth in use for production manufacturing such as for hearing aids and dental aligners. Manufacturing with additive is real today, and will drive this industry beyond what we’ve seen in last 25-30 years – that’s what makes this so exciting.

What have been some of the biggest changes?

For more than 15 years, 3D printing was largely a hidden cottage industry – no one knew anything about it. Today, everyone has heard of it, but with this broad awareness, there have also been some misconceptions about how it can be used and its maturity. In the last 10 years, we’ve seen quite a shift. When 3D printing began, it was initially an industry with a small number of players and limited investment. Today, we’re seeing lots of investment money coming in to the industry. Along with additional money, we’re seeing a lot of new players and technologies. While these will not all prove to be long-term winners, it creates churn in the market – pushing all the technology providers to grow and push the boundaries of what is possible. And this is what helps drive growth and innovation.

What has it been like working in this industry?

In a macro sense, it’s been something of a roller coaster ride. In the history of 3D printing, some have seen its potential as poised for huge success but then they’ve written it off. It’s very cyclical. If you’re fortunate enough to be on the inside of this industry, what makes it so compelling is all the new applications being developed and taking off. Not many people in their careers get the opportunity to work on transformational applications.

Where is our industry now?

With the sheer amount of investment going into the industry right now, new technologies are being developed and existing technologies are expanding. We’re seeing manufacturers implementing new applications and setting up factories. And many large companies are embarking on research and exploration to determine how they can integrate 3D printing into their business. Over the next decade, there will be a big sorting out that will take place as many of these pieces fall into place.

What are some things that need to change?

While the industry has made tremendous strides over the past 30 years, the technology is still relatively immature. And we also see many manufacturers out there that still don’t fully understand where to apply 3D printing, where it makes sense, what parts can benefit from 3D printing and the resulting cost benefit, as well as truly embracing the capital required to set up their factory. There is still quite a bit to be done in terms of educating the market, and providing partnership and counsel to help manufacturers.

What are some of the biggest challenges?

In addition to what I just mentioned, we need to take stock of what is available in the industry with regard to technology, materials and how they can be applied to parts selection and cost. We also need a broader portfolio of materials to expand the range of applications which can be addressed through enhanced speed and parts cost reduction.

A 3D Systems DMP Factory 500 Metal 3D Printing System

What have been some key developments in metal printing?

The fact that we can produce 3D printed parts with excellent properties from traditional metal alloys has been major part of the success story for metal 3D printing. This allows us to create 3D printed parts for aerospace and medical with limited risk that are better or as good as conventionally manufactured parts.

We’ve also seen Increases in print speed which is driving down parts cost, and the ability to make parts in larger sizes that customers like aerospace require.

I believe the third key development to be the ability to certify and validate parts and printers in regulated industries. This is a major breakthrough allowing us to enter advanced manufacturing segments and be successful.

How do you see the future of Direct Metal Printing?

To date, we’ve seen on-going, increased adoption in advanced manufacturing segments such as aerospace, power generation, and medical devices. This is all still in the early stages, but we’ve seen enough demonstrated success that it will drive advancements in next 5-10 years. I believe the technology will also continue to improve – for example, process control, QA, several-fold increase in speed, and the holes in materials portfolio will close – driving increased adoption.

A DMP Factory 350

What have been some of the key advancements in healthcare?

Healthcare like aerospace is a heavily regulated industry. To be successful, a technology partner must demonstrate they can print a part and meet all the requirements for its use in a very rigorous way. It’s also imperative to demonstrate you can install and validate this (3D printing) equipment for a medical environment. The FDA is very transparent in how they operate and their regulatory requirements. Multiple OEMS and service providers have been able to show they can validate use of the printers to make these parts to meet regulatory approval coupled with quality work in factory environment. Huge breakthroughs have been made in this area which have resulted from lots of work by lots of people. You can talk ad nauseam about parts that could be designed by 3D printing, but without validation and approval, there’s no forward movement.

How difficult is it to manufacture medical devices with 3D printing?

It depends. This is a tough question to answer. It’s important for the manufacturer to understand how to apply 3D printing and what parts to select to print. Right now, this is still very much in its infancy. People are still sorting out the range of potential medical devices (i.e., implants and instrumentation) that make good sense for 3D printing. Before production can even take place, a manufacturer must ensure they can operate correctly in a factory environment and validate the printers for production. Many medical device companies can validate traditional factory equipment, but 3D printers are a whole different animal. Today, this is still not a common practice, nor well-understood.

What advice would you give a company interested in manufacturing medical devices?

If a company wants to manufacture medical devices they need to find the right partner with the know-how to set up and validate these environments. And currently, the know-how exists in pockets. 3D Systems has it with experience in our facilities in Denver, CO and Leuven, Belgium,, and the expertise of application teams that understand how to optimize processes, and validate those processes in-house. When a manufacturer works with the right partner, it reduces the time it takes to get from “want to do this” to actually executing.

· Do you see printing medical devices as something that will be done in-house, by specialized manufacturers, by services?

There are two primary routes for medical device manufacturing. Of course, there is in-house production and all large medical device companies will do some amount of in-house manufacturing. However, even for these large manufacturers, there will still be certain classes or types of parts they choose to outsource. Mid-size manufacturers, on the other hand, will primarily outsource the production based on the segment they’re addressing and how large a percentage of their business it is.

The supply chain will be comprised of large OEMs producing some of the parts complemented by traditional contract manufacturers who already supply these device manufacturers who are considering 3D printing as a new option to deliver those parts. Again, the important piece to keep in mind is selecting a well-trusted vendor partner that has the experience, certifications, and post-processing capabilities required. 3D Systems has an objective to enable this. We’re setting up a certified partner network and acting as the trusted vendor.

In metal printing for dental, what are some interesting recent developments?

There is an on-going good opportunity in dental for direct production of crowns & bridges as well as implants. And, specifically for implants, there are some opportunities for hybrid manufacturing – that is, blending additive manufacturing with traditional manufacturing. There is also a small but interesting opportunity to produce crowns from precious metals.

A 3D printed exhaust made on 3D Systems Equipment is on the right while the conventionally made exhaust on the left would have a much higher part count. 

What is needed to truly industrialize metal printing?

First and foremost, we need strong tools for process control and QA. In situ QA tools are pretty essential to fully industrializing a technology. With these tools we are able to reliably predict the output – or final part – based on inputs. Tools for both are in the early stages right now, but we currently have more and more tools to understand what’s going on in-process. These tools help us learn something about the quality of parts produced prior to inspecting them.

To industrialize metal printing, we also need a closer integration of additive and subtractive manufacturing. In almost all cases we don’t simply take 3D printed parts out of the machine and use them as-is. Typically, there is fairly significant post-processing involving multiple steps to get to the final part including machining and wire EDM. Today, that transition is fairly awkward and not very smooth.

It will also be imperative for manufacturers to have a deeper understanding of parts selection and cost prediction. What parts make the most sense to 3D print? How can we predict the cost to produce them? And then how do we select the right projects to start and ensure a profitable outcome?

In medical printing I see a lot of consumers thinking that they’ll get a heart printed a few years from now. Meanwhile, on the research side, people tell me that it will take 20 years for us to print complex organs. What’s your view?

I believe it’s important to separate the potential proof of concepts and all the fascinating work currently ongoing from all the steps needed to actually put this inside a person. As discussed previously, healthcare is a highly regulated industry. So while there are lots of interesting demonstrations of what’s possible, there is a pretty significant gap to actually going through regulatory steps to get these into a person.

You’ve worked in inkjet for a long time. Binder jetting metal is all the rage. Is this something for 3D Systems to consider?

We track all new technologies, including non-laser powder bed processes. There could be opportunities for two-stage processes, where a green part is created in a printer and then solidified in a high-temperature furnace. This might be suitable for parts that would normally made by MIM (Metal Injection Molding). With no tooling required and the ability to use lower-cost powders, there might be some very interesting opportunities for this approach. However, I have some doubts as to whether the properties are sufficient to target the applications we address today.

What advice would you give firms that wish to industrialize 3D printing for manufacturing?

In my years in the industry, I’ve seen many companies attempt to truly industrialize additive. The ones who are the most successful are the manufacturers that partner with a company that has the expertise and experience to guide them to successful implementation. The biggest obstacle we see is companies that don’t understand the technology well enough to select the right parts to 3D print. If the wrong part is selected for the process, you run the risk of tainting everyone’s view of 3D printing. The right partner can help not only select the right part, but then help design it in a way that is appropriate for AM. Additionally, and perhaps even more fundamentally, is putting together a business plan and developing the case for how AM can positively impact overall operations.