ORNL and Lincoln Electric to advance large-scale additive manufacturing technology for metal tooling

Oak Ridge National Laboratory (ORNL), Tennessee, and Ohio-based manufacturer of welding products Lincoln Electric (NASDAQ: LECO), have announced a new agreement to advance the development of large-scale metal additive manufacturing technology. Established at the Department of Energy’s (DOE) Advanced Manufacturing InnovationXLab Summit, the collaboration aims to increase the throughput of large-scale additively manufactured industrial metallic […]

3D Printing News Briefs: April 10, 2019

We’ve got some business news for you in today’s 3D Printing News Briefs, before moving on to an upcoming industry event and new materials. 3DVinci Creations and the American University in Dubai will establish a facility for concrete 3D printing, while Telset signed a contract with Relativity. Lincoln Electric has acquired Baker Industries for its 3D printing technology, and Jabil is sharing the results of its survey report on 3D printing. Next month is the NAMIC Summit, with its flagship DfAM event, and Nile Polymers has announced two new PVDF filaments.

Agreement Signed to Establish Center for 3D Concrete Printing

A cooperation agreement was signed between 3DVinci Creations, the American University in Dubai (AUD), Arabtec Construction Company, and global engineering consultancy firm Robert Bird Group to establish The Center for 3D Concrete Printing and Digital Construction on AUD’s campus. The scientific research center, equipped with a 3DVinci Creations 3D printer, will serve researchers from the university’s three project partners, as well as university students and members of the Faculty of Engineering and Architecture. It will build partnerships, create a consortium of academic, government, and industry entities interested in the growing 3D concrete printing and digital construction fields, work with state officials to promote 3D printing culture in construction, and eventually develop and administer training workshops and seminars on concrete 3D printing.

“With this cooperation agreement, we aim to perform strategic analyses of the present and future capabilities of 3D Concrete Printing and of digitally-driven construction systems. The Center will work with local regulatory bodies to develop newly updated building codes that pertain to 3D printed buildings and structures,” said Edouard Baaklini, CEO of 3DVinci Creations. “We will also develop cost models of 3D Printed Concrete buildings and structures together with tools for value analysis vis-à-vis traditional construction methodologies.”

Relativity Signs Contract with Telesat

Los Angeles 3D printed rocket manufacturer Relativity just signed its first public, multi-year commercial contract with satellite services vendor Telesat. This is a big deal, as it’s the first agreement between a major satellite operator and a venture-backed “New Space” industry company. It costs about $10 million for Relativity to launch a 1,250 kg payload to low Earth orbit – a price that’s $10 to $20 million less than it would be using a European Ariane rocket or Indian PSLV rocket. The company can keep its costs down by using automation and metal 3D printing in its design and manufacturing processes, and claims its rockets can be made in just 60 days, with far less components. Relativity has completed 136 engine tests and is currently testing its avionics systems, with the first launch of its 3D printed Terran 1 rocket scheduled for the end of 2020.

“Early in our LEO program we decided that, in addition to working with outstanding leaders in satellite manufacturing and launch services who we know well, Telesat should also include New Space companies whose technologies and manufacturing methods offer lower costs and greater flexibility for deploying our constellation. Relativity is just such a company with their metal 3D printing, use of robotics and other advances,” said Dave Wendling, Telesat’s CTO. “Telesat continues to establish a world-class supplier team to construct, deploy and operate our global LEO network and we are very pleased to welcome Relativity to the Telesat LEO program.”

Lincoln Electric Acquires Baker Industries

According to a report published last year by SmarTech Industries, the global additive manufacturing market grew 18% to reach $9.3 billion in size, and Lincoln Electric (LECO) wanted a piece of that pie. The company announced that it has acquired Detroit-based Baker Industries, which developed 3D printing tech for the aerospace and automotive industries, for an undisclosed sum as part of a previously announced initiative to expand into the AM industry.

Baker was founded in 1992 to manufacture custom fixtures, parts, and tooling that are Nadcap-accredited, AS9100D-certified, and adhere to the tough aerospace quality management standards. While you can learn more about its services in the video below, Baker primarily offers CNC machining, design, fabrication, prototyping, quality assurance, tooling, and 3D printing services to its customers. With its acquisition of Baker, Lincoln will be able to position itself in the ever growing AM, automation, and tooling sector.

Jabil Shares Results of Survey Report

According to the 2019 Additive Materials and 3D Printing study by Jabil, the practical applications in 3D printing have grown significantly over the last two years. The company surveyed over 300 professionals who are responsible for 3D printing at manufacturing companies, and found that the technology has found its way into almost every step of production, though prototyping still remains the most popular application.

Jabil shared how several key industries, such as medical, transportation, and aerospace, are using the technology today, and reported that 25% of respondents said that 3D printing can be as much as 20 times faster than traditional forms of manufacturing – obviously a major benefit. Jabil itself has adopted the technology at some of its sites because it takes 3D printing very seriously, and believes that the technology “has unlimited potential in the future.” Nearly all of the survey’s respondents said they expected their companies’ 3D printing use to increase over the next two to five years. You can read the full survey report here.

DfAM Conference at NAMIC Summit Coming Up

Next month in Singapore, the 2019 NAMIC Summit will take place from May 6-10, with its flagship event – the Design for Additive Manufacturing (DfAM) Conference & AM Industry Showcase – happening on May 7th at the Marina Bay Sands Expo & Convention Centre. You can register now for the event to take advantage of early bird rates.

You can spend the day meeting other like-minded professionals in networking sessions, or take in a presentation by one of over ten distinguished speakers who will be sharing their knowledge about simulation and modeling, industrial applications of digital design solutions, and generative design For example, John Barnes, the founder and managing director of The Barnes Group Advisors, will be speaking about “Design for Manufacturing: The Transformative Role of Design in Driving Innovation in the Future of Manufacturing” at 9:30 am, and the CEO and co-founder of Assembrix Ltd, Lior Polak, will present “Distributed Manufacturing in Action: Dynamic Machine Allocation and Real-Time Monitoring at 1:30 pm.

Nile Polymers Introduces New Additions to Fluorinar PVDF Family

Utah-based Nile Polymers, which offers an industrial-grade PVDF (polyvinylidene fluoride) filament based on Arkema’s Kynar PVDF material, just announced the addition of two new filaments to its Fluorinar PVDF family – Fluorinar-B and Fluorinar-ESD, also built on Arkema’s Kynar. Chemical-resistant Fluorinar filaments differ from other PVDF materials because they don’t have any additional diluents or polymer additives, and they are tough, flexible, high-strength, and offer flame suppression and UV protection qualities. Sample filaments are available for both

Black-colored Fluorinar-B combines the company’s Fluorosmooth adhesive, which increases the surface energy of a print at its interface with a glass build plate, with the dependability of Kynar PVDF, and carbon pigment increases the part’s tensile strength and permeation resistance as well. Graphene-enhanced electrostatic dissipation (ESD) filament Fluorinar-ESD is perfect for applications that have parts which can’t tolerate static build-up, and calibrates impact strength and melt viscosity carefully so the final part is durable and strong.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

Lincoln Electric acquires Baker Industries for additive manufacturing business launch

Lincoln Electric Holdings, Inc. (NASDAQ: LECO), an American multinational manufacturer of welding products has confirmed its intent to launch a metal additive manufacturing service in mid-2019. On April 1, 2019, Lincoln Electric acquired Michigan-based tooling supplier Baker Industries, Inc. that provides polymer and metal additive manufacturing capabilities, alongside traditional machining and fabrication. Commenting on the acquisition […]

3D Printing Industry Review of the Year August 2018

The month of August welcomed various medical innovations within the 3D printing industry. The automotive and aerospace sector also further integrated additive manufacturing through Bugatti’s latest supercar, the Divo, and NASA’s cube satellite set for space from the Hindustan Institute of Technology and Sciences. Moreover, Reebok and BASF  began production of its 3D printed sneaker, […]

Digital Alloys Closes Series B Funding, Receives Patents for Novel Joule Printing Method

Located in Burlington, Massachusetts, 3D printing company Digital Alloys is bringing something brand new to the table. It’s called Joule Printing, and the company claims it will bring metal 3D printing into the mainstream. Although metal 3D printing is becoming more common as costs lower and technologies diversify, it still has its issues, including still-high production costs, slow printing speeds, complexity, and quality issues.

“Current methods take too long to be practical, or require the use of dangerous materials, specialized hardware, and multiple complex finishing steps involving shrink compensation software, chemical baths, and furnaces,” says Digital Alloys CEO Duncan McCallum. “Look past the hype around metal 3d printing, and you’ll find it’s rarely used in manufacturing.”

These challenges, says Digital Alloys, are circumvented by Joule Printing, a wire-feed additive manufacturing process that does not require any sort of metal powder. It works with any metal in wire form, and involves the tip of the wire being positioned in the desired printing location. The system then pushes current through the wire and into the print bed. The current melts the wire using joule heating, also known as resistance heating, which is the same method that heats a toaster coil. The process continues as the print head moves across the bed, laying down beads of metal which are fused together to form fully dense metal parts.

The positioning and melting of the wire occur in a single step, which lowers cost, saves time and increases repeatability. Joule heating, according to Digital Alloys, is the most efficient way to convert electrical energy into heat. Because the wire melts from within, there is no need to wait for the heat to move to where it’s needed. Melting occurs instantly at the desired location, which will allow Digital Alloys’ system to print at 5-10 kg per hour at very low power.

“Joule Printing™ provides precise closed-loop control of melting at the voxel level,” continues McCallum. “Since the wire is held in a precision motion system, we know exactly where the melt is deposited. Unlike a direct energy deposition system, there is no dripping or splashing. We use the precision wire feed system to measure and control how much metal goes into the melt pool. The electric circuit provides measurement and control of how much energy is applied to the melt. This combination of tightly controllable process parameters allows the system to deliver consistently dense (99.5%+) isotropic parts that are stronger than castings. In addition, the process data for every voxel is saved for post analysis. In combination with our machine learning technology, this provides the capability for non-destructive QA of printed parts.”

Digital Alloys was formed last year as a spin-out from NVBOTS, and today announced that it has completed its Series B financing, supported by:

“Our investment in Digital Alloys will help Boeing produce metal structural aerospace parts faster and at higher volume than ever before,” said Brian Schettler, managing director of Boeing HorizonX Ventures. “By investing in companies with emerging additive manufacturing technologies, we aim to strengthen Boeing’s expertise and help accelerate the design and manufacture of 3D-printed parts to transform production systems and products.”

Digital Alloys was also awarded its first two patents on Joule Printing. The technology is capable of 3D printing with multiple metals in one part, and offers higher resolution than other wire-based 3D printing technologies, according to the company.

3DPrint.com spoke with Duncan McCallum the CEO of DigitalAlloys about their technology,

Duncan said that, “the application area for our technology, if we slice the market, is for parts sized between a baseball and a beach ball. Our costs per machine hour are much lower than alternative technologies. We’re manufacturing parts at one Kilogram per hour at the moment. We are aiming for 5 to 10 Kilios of parts per hour in the future.” 

This means that Digital Alloys is already a sea change faster than current generation metal 3D printing speeds. By staying away from crowns and small implants, the traditional stomping ground of powder bed fusion and focusing on larger less expensive parts they may find and exploit their own market. He said that, “Powder Bed Fusion is too slow and the powder too expensive. Wire DED type technologies are fine for large parts but too sloppy for fine ones. We see ourselves as in between these technologies.” That is a wide application area to be in and may make them cost-effective and usable for automotive and larger aerospace parts. In terms of costs there are also significant advantages. Digital Alloys claims that next to no post processing has to be done with their technology but they can make near net shape 99.5% dense parts without post processing. So without destressing, debinding and other costly steps the time to part will be much faster. The cost per part will also be significantly lower as well. 

Duncan stated that, “Our process does not require HIP or other post processing techniques this significantly lowers cost as well. Our wire feedstock is also much less expensive than other 3D printing materials. Overal we have significant cost advantages over existing technologies. We are aiming to produce parts 25% cheaper than conventional manufacturing if we look at buy to fly ratios. Especially in materials that are difficult to cut such as tool steels we aim to be significantly cheaper than conventional manufacturing. By exactly feeding in a material and knowing precisely at which Voxel that material is we can heat it quicker. It forms a circuit and that’s how we can feed in the material precisely into the melt pool and control the melt pool. By doing this we have good control over microstructures and the final part. Joule is simply the most efficient way to heat and its fast as well.” This is quite the claim. If Digital Alloys can deliver on reliability and repeatability then they may have a very exciting manufacturing technology on their hands. Want to try it out? Before launching their machine the company will be acting as a service. If you’re curious as to what geometries are possible and what the pricing is you can contact them to find out more. They already will produce parts for a dozen clients by the end of the year. 

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

[Images: Digital Alloys]