Indiana University and Lung Biotechnology Partner to Advance 3D Printing of Organs

One of the reasons why I really enjoy writing about 3D printing is because it is a fabulous mix of the fun and the important. The stories we cover can be anything from the enjoyable experience of standing before a giant 3D printed skeleton to the very serious nature of fabricating necessary objects on a 3D printer onboard the International Space Station. The work done by these machines and the people that operate them has, time and again, proven to offer a helping hand (sometimes literally as in the case of prosthetics) to boosting the quality of life of a growing number of individuals.

From left to right: Lester Smith, PhD, Burcin Ekser, MD, PhD and Ping Li, PhD [Image:Eric Schoch, IUSM]

One area in which 3D printing is making particularly important contributions is in the field of medicine. Over the past several years, we have seen stories about students getting hands-on experience through 3D printed models and of improved patient outcomes as a result of preparation and the fabrication of custom surgical equipment for the medical team. With the introduction of bioprinting, the ultimate dream in medicine has been to advance to the point of being able to 3D print whole organs that could be used to replace those that are failing in patients. Thus far, that is still a dream for the future, but important advances are being made in that direction, sometimes great strides, other times only baby steps.

One of the most recent steps forward has come in the form of an agreement between faculty at Indiana University (IU) School of Medicine and the Maryland-based company Lung Biotechnology PBC, that is focused on organ transplantation technologies. The hope is that the $9 million project will result in the knowledge necessary to make the dream of 3D printing organs into a reality. They won’t be starting from scratch; the IU team is already able to generate tissues, but they will use the funding provided through this partnership to analyze the tissues and their structures in order to possibly unlock the key to more advanced organ creation. Dr. Lester Smith, an Assistant Professor of Radiology and Imaging Sciences at IU School of Medicine and the head of the research team, explained the prolonged nature of any such investigation:

“[I]f someone has a skin burn, maybe we can replace skin. Or if someone has a bad liver then we can replace the liver entirely. But this is way down the road. Most of our tissues which make up our organs have a lot of different cell types. They are also vascularized, which means they have a lot of blood vessels that are basically channeling through them. When we get there that’s when I can tell you how long it took. That’s because the body is so complex and there’re so many different parts and so many responses. I couldn’t tell you how long it would take but we’re on the road to that destination.”

Luckily, Indiana University and Lung Biotechnology don’t have to make all the headway by themselves; there are a large number of organizations, from large to small and public to private, pursuing the dream of fabricating organs. This is more than just an effort to do something to see if it can be done; there are people dying every year because they cannot get access to the organs that they need, and further deaths and astronomical medical expenses to deal with for those whose bodies strongly reject the foreign organs. Should it become possible to create a custom organ for someone using their own cells, the entire process from the surgery to simple day to day functionality would be vastly improved, and this partnership should help push that research closer to the gold standard.

What do you think of this news? Let us know your thoughts; join the discussion of this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

[Source: Indiana Public Media]

 

Print My Part Uses 3D Printing to Help Premature Babies Develop Vision

According to the World Health Organization, an estimated 15 million babies are born prematurely every year. Of these babies, one in 20 is likely to be born blind or with significant vision loss – a rise of 22% in the past decade. When a premature baby is born, hospitals rush it into an incubator to help foster its development outside of the womb. During that time, it is also vital for the baby to experience visual stimuli in order to try to develop its vision. Currently, this visual rehabilitation typically consists of visually exposing and training eye gaze using 2D and 3D pictures and objects.

Cambridge-based 3D printing service Print My Part has been working with Ramiro M. Joly-Mascheroni, a PhD student within the Cognitive Neuroscience Research Unit at City, University of London to develop and produce visual stimuli for premature infants. Print My Part has been designing and 3D printing black and white objects by using FDM technology to produce plastic slices which are later assembled in alternating-color layers to form objects like cones and spheres. The sharp contrast between the layers is an important feature for the development of the babies’ eyesight.

Print My Part’s in-house design engineer was also able to improve the design by adding tabs to the objects’ base plates so that they can be more easily held. The company also attached a mounting part that can be attached to the incubator door.

Research also shows that it is important for these babies to be exposed to human features, particularly those of their parents. Babies prefer human faces to objects, and they recognize their mothers’ voices and facial expressions even when born extremely premature. Due to immunological risks and other factors, however, it’s difficult for premature infants to have contact with their parents. Being deprived of this contact can have a negative effect on the infants’ development.

Joly-Mascheroni and Print My Part want to expand their project to create a tool that can improve parental social contact with newborns – both improving the babies’ eye gaze further and providing them with valuable social interaction. Print My Part plans to use SLA 3D printing as it deepens its involvement in the project.

Having a premature baby is frightening, as there is a long list of problems that can affect infants who do not develop to full term before they are born. These medical conditions, however, like any others, are benefiting from the development of 3D technology in the medical field. 3D printed simulators are allowing surgeons to prepare for complex surgical procedures on premature babies, and 3D mapping tools are helping medical professionals to better understand the infant brain and the potential issues that may affect it should the infant be born prematurely. Even better baby bottles for preemies have been developed using 3D printing. Every premature baby has a long and difficult road of development ahead, but 3D printing can make that road easier.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

[Source/Images: Print My Part]

 

3D Printing and Global Cooperation to Create New Cost-Effective Field Kit for Disease Diagnosis

According to the World Health Organization, there are up to 1 million new cases of leishmaniasis, a parasitic disease spread through the bites of sandflies, each year. The disease is curable if it’s diagnosed and treated early on, but it can lead to ulcers, and is responsible for 30,000 deaths annually, most often among people who are malnourished, in poverty, and/or living in unsanitary conditions.

But this month the Armauer Hansen Research Institute (AHRI) in Ethiopia is trialling a new 3D printed field kit, which could help save lives with more efficient diagnosis of leishmaniasis. The kit is part of a program meant to change up how we test and treat diseases.

Dr. Endalamaw Gadisa, based out of Addis Ababa, has been collaborating on the kit with PandemicTech, a virtual infectious disease incubator in Austin, Texas, and the New Venture Institute (NVI) at Flinders University, which is located in a former car factory that’s now an advanced manufacturing hub called the Tonsley Innovation Precinct in Austin’s sister city of Adelaide, South Australia.

Dr. Gadisa determined several issues with the disease testing in Ethiopia, including the difficulty of viewing samples under available microscopes; fragile test tubes which store a liquid medium (reagent) for testing; the cost of the reagent; and the fact that it can take over a week to get results.

These types of  issues make it necessary to develop more practical and effective diagnostic equipment and tools; 3D printing has helped with this type of project multiple times in the past.

“We don’t need more software to solve problems already solved 10 times over, what we do need is innovation which has impact, that creates value by applying new approaches to global challenges,” said Matt Salier, the director of NVI.

Dr. Gadisa developed a test tube design that could provide test results in just three days and only needs 10 microliters of reagent, as opposed to 25 milliliters. However, he was unable to build the prototype on his own. So Andrew Nerlinger, the director of PandemicTech, offered to work with him on his design as an original pilot project for the incubator, and then contacted Salier.

Nerlinger explained, “When I eventually described the project to Matt Salier during the South by Southwest conference in March 2017, he offered to collaborate and introduced me to NVI’s Raphael Garcia, who ultimately worked directly with Dr Gadisa and me on several design iterations resulting in the prototype depicted in the most recent photos.”

According to Salier, these types of projects are why Flinders NVI always works to demonstrate how business models can combine with new technologies to address society’s large-scale problems. The sister city relationship between Adelaide and Austin helped get the conversation going.

“Flinders NVI has had an office presence in our sister city Austin for over four years now with our local partner, Tech Ranch,” said Salier. “I met Andrew from Endura Ventures as he was establishing PandemicTech and we saw an opportunity to apply our design and innovative manufacturing expertise at Tonsley.”

The first prototype was 3D printed in three parts – a cork on top to plug the culture tube, a main body to hold the fluid and make diagnosis through microscopic inspection possible, and a removable bottom plug.  The design of the tube’s main body was refined multiple times in order to increase the body’s durability and clarity.

The body features a central hole, which connects to the plug, making the tube reusable, and was printed out of clear liquid resin, while different materials were used for the plugs so they can completely seal the body but still be removed easily for cleaning and sterilization.

3D printed test tube and caps that form part of the test kit.

The prototyping process took less than four months – after several solutions were considered through a Design-Thinking process, the best was designed using CAD software, and 3D printed on NVI’s Stratasys Objet Connex.

It cost less than AUD$5,000 to develop the final kit, which is packed inside an off-the-shelf Pelican case using foam laser-cut at Flinders. Additionally, the field kit includes 3D printed microscopes, made by South Australian education startup Go Micro, that can be attached to a smartphone camera in order to turn it into a powerful, 60x magnification microscope, capable of collecting photos for disease diagnosis.

Even though Adelaide, Addis Ababa, and Austin are separated by thousands of miles, Nerlinger said that the collaboration between the three has helped create high-quality, reusable prototypes for far less than the normal cost for “a neglected disease that causes immense morbidity and mortality in the most austere and resource limited environments in the world,” according to The Lead.

Nerlinger said, “We were also excited that NVI was able to match Dr Gadisa with one of its own technologies, the microscope attachment used on a smartphone that is able to read the results of the leishmaniasis testing.

“The new testing device will allow more patients to be treated earlier and decrease the amount of time it takes to obtain a diagnosis. It will also potentially allow health workers to provide a diagnosis to patients while conducting medical work in the remote regions often most impacted by leishmaniasis.

“If the testing is successful then the opportunity exists to build a financially sustainable social impact company around the testing kit that brings together resources from Ethiopia and Australia.”

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

 

 

Zero Gravity Bioprinter is Ready for Delivery to the International Space Station

An amazing thing happened two years ago, when Techshot and nScrypt worked together to 3D print a human heart – in zero gravity. Not a working heart, yet, but the two companies were the first to 3D print cardiac and vascular structures in zero gravity using adult human stem cells. Why would they do such a thing, you might ask? The reasoning is much more than “because they can,” as 3D bioprinting in zero gravity is actually easier and more effective than it is on Earth.

Earth-based bioprinting requires thick, viscous bioinks that can contain chemicals or other materials necessary for providing structural support. The lack of gravity in space, however, means that thinner, purer bioinks can be used, as well as thinner print nozzles, allowing for more precision and control. When the first viable human organ is 3D printed, it may very well happen in space.

After nScrypt and Techshot pulled off their successful zero-G bioprinting feat, they began work on the 3D BioFabrication Facility, or BFF, a 3D bioprinting system for the International Space Station. The BFF can 3D print thick tissue and organs using adult stem cells. The printing will happen on an nScrypt 3D Bio Assembly Tool, or BAT; the bioink will be printed into a specialized cell culturing bioreactor cassette designed by TechShot and conditioned in the TechShot ADvanced Space Experiment Processor (ADSEP). The BFF and ADSEP are scheduled to launch on their way to the ISS in February 2019.

The nScrypt BAT 3D printer features high-precision motion and extreme dispensing control, and will use nScrypt’s patented SmartPump, which has 100 picoliter volumetric control and uses super-fine nozzles, down to 10 microns, to dispense biomaterials. This enables the highly controlled and repeatable placement of bioink, which is necessary for printing the fine details of tissues and organs.

“Especially when dealing with something as important as tissue, it is vital to place the correct amount of material in the correct position every time,” said nScrypt CEO Ken Church. “This is what our machines offer and what has contributed to our success in bioprinting as well as other applications. This is an exciting time for discovery and more importantly a time of impact for those that are seriously seeking solutions to grow thick vascularized tissue, which is the basis for a fully printed organ.”

The first complete print, after the initial test prints, will be a cardiac patch for damaged hearts. Cells will be printed into the bioreactor cassette, and the bioreactor will then provide media perfusion to deliver nutrients and remove toxins from the tissue, keeping it alive while providing electrical and mechanical stimulus to encourage the cells to become beating heart tissue.

Rendering of the BFF in an EXPRESS rack [Image: nScrypt]

The BFF may truly be an astronaut’s BFF; in addition to 3D printing tissue for people on Earth, it can print pharmaceuticals and even food on demand for people on the International Space Station.

“We are very excited to see this project, and all that it can provide, come to life,” said Techshot President and CEO John C. Vellinger. “With the goal of producing everything from organs, to pharmaceuticals, to perhaps even food, the BFF has the ability to improve the lives of people on earth and help enable deep space exploration.”

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

 

BIOMODEX Continues to Build Momentum in 3D Printed Medical Models

The 3D printing of medical models is something of an art form, and it’s one that startup BIOMODEX does well. Based in Paris and Boston, the company provides 3D printed anatomical models to surgeons, helping them prepare for complex and difficult surgeries. BIOMODEX has seen a lot of forward momentum lately, raising $15 million in Series A funding at the end of May and recently sharing perspective on the growth of additive manufacturing. In 2017, BIOMODEX 3D printed 1,000 medical models and is on track to print five times that number in 2018. The company’s approach to 3D printed medical models is an innovative and exciting one, based on a patented algorithm that forms the core of its INVIVOTECH technology.

“It is the algorithm that builds the composite material and that will distribute the different materials at a micron level; we can control every single drop of the material to match the mechanical target we have,” said BIOMODEX CEO Thomas Marchand. “We are inventing new composite materials thanks to this algorithm.”

What sets BIOMODEX apart from other 3D printed medical model companies is that in addition to matching the exact shape of the organ to be operated on, BIOMODEX adds its functionality. This adds an extra layer to the benefits that such models provide, enabling surgeons to operate with greater accuracy and efficiency.

“The vision is that our personalized, 3D printed patient-specific models will enable surgeons to gain a better understanding of their patient’s unique anatomy – so they will be able to plan the most complex procedures in an optimal way,” Marchand told Stratasys’ Mary Christie. “Our goal is to help surgeons choose the best medical device and operating strategy to reduce risks and improve medical and financial outcomes.”

[Image via Stratasys]

Current estimates suggest that one out of every six surgeries in the United States experiences a complication – a frightening statistic. Policy initiatives are appearing that would hold hospitals accountable for the costs of complications, and reduce Medicare payments for hospitals with high readmission rates, poor patient satisfaction, and high incidences of hospital-acquired conditions, including through surgical complications.

3D printed models can reduce the risk of complications by allowing the surgeons to plan and practice their exact procedure before the patient ever gets on the table. This results in quicker surgeries, less risk to the patient, and lower exposure to anesthesia and radiation.

“The first $3.6M fundraising in 2016 allowed us to develop EVIAS, a unique product in the field of interventional neuroradiology, aimed at reducing operational risks during the treatment of intracranial aneurysms,” Marchand said. “The latest financing will be used to develop new products in the interventional cardiology space and enable the opening of a new manufacturing facility outside Boston, Massachusetts. Boston is an ideal location for us with its mecca of world renowned medical centers and high concentration of medical device companies as we evolve and grow from our entrepreneurial roots.”

[Image: BIOMODEX via Facebook]

In the near future, BIOMODEX will be introducing its first cardiovascular product: LAACS, a software program unique to left atrial appendage patient-specific models. It will be introduced at the Transcatheter Cardiovascular Therapeutics (TCT) meeting in September, and will be available for purchase in 2019.

Marchand and BIOMODEX are also considering opening a service bureau for PolyJet users to send their imaging files, like MRIs and CTs, for file optimization prior to 3D printing.

“This would certainly bolster the use of 3D printing for pre-surgical planning where technical expertise at segmentation and file preparation are lacking or availability is constrained,” said Marchand.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

 

3D Printing News Briefs: June 29, 2018

In today’s 3D Printing News Briefs (the last one this month, how is the summer going by so quickly?!), a few companies are announcing special honors and recognitions, and then we’re sharing stories stories about some interesting new 3D printing projects, and finally wrapping things up before the weekend with some business news. Renishaw’s Director of R&D has been honored by the Royal Academy of Engineering, while MakerBot earned an important designation for its 3D printing certification program for educators and Renovis Surgical Technologies received FDA approval for its new 3D printed implant. Festo is introducing three new bionic robots, one of which is partially 3D printed, and CINTEC is using 3D printing for its restoration of a famous government house. GE wants to use blockchains for 3D printing protection, and ExOne announced a global cost realignment.

Royal Academy of Engineering Honors Renishaw’s Chris Sutcliffe

Earlier this week, the Royal Academy of Engineering (RAE) awarded a Silver Medal to Professor Chris Sutcliffe, the Director of Research and Development of the Additive Manufacturing Products Division (AMPD) for global metrology company Renishaw. This award is given to recognize outstanding personal contributions to British engineering, and is given to no more than four people a year. The Silver Medal Sutcliffe received was in recognition of his part in driving the development of metal 3D printed implants in both human and veterinary surgery, and also celebrates his successful commercialization of 3D printed products with several companies, including Renishaw, and the University of Liverpool.

“Throughout my career I’ve worked hard to commercialise additive manufacturing technology. As well as AM’s benefit to the aerospace and automotive sectors, commercialisation of AM and associated technologies has been lifechanging for those with musculoskeletal diseases,” said Sutcliffe. “The award celebrates the successes of the engineers I have worked with to achieve this and I am grateful to receive the award to recognise our work.”

MakerBot’s Certification Program for Educators Gets Important Designation

One of the leaders in 3D printing for education is definitely MakerBot, which has sent its 3D printers to classrooms all over the world. Just a few months ago, the company launched a comprehensive, first of its kind 3D printing certification program, which trains educators to become 3D printing experts and create custom curriculum for STEAM classrooms. An independent review of the program showed that it meets the International Society for Technology in Education (ISTE) standards, and it has earned the prestigious ISTE Seal of Alignment from the accreditation body. In addition, a survey conducted over the last three years of over 2,000 MakerBot educators shows that the percentage of teachers reporting that MakerBot’s 3D printers met their classroom needs has doubled in just two years.

“This data shows that MakerBot isn’t just growing its user base in schools. We’re measurably improving teachers’ experiences using 3D printing,” said MakerBot CEO Nadav Goshen. “Much of this impressive teacher satisfaction is thanks to the effort we’ve put into solving real classroom problems—like the availability of 3D printing curriculum with Thingiverse Education, clear best practices with the MakerBot Educators Guidebook, and now training with the new MakerBot Certification program.”

Earlier this week, MakerBot exhibited its educator solutions at the ISTE Conference in Chicago.

FDA Grants Clearance for 3D Printed Interbody Spinal Fusion System 

California-headquartered Renovis Surgical Technologies, Inc. announced that it has received 510(k) clearance from the FDA for its Tesera SA Hyperlordotic ALIF Interbody Spinal Fusion System. All Tesera implants are 3D printed, and use a proprietary, patent-pending design to create a porous, roughened surface structure, which maximizes biologic fixation, strength, and stability to allow for bone attachment and in-growth to the implant.

The SA implant, made with Renovis’s trabecular technology and featuring a four-screw design and locking cover plate, is a titanium stand-alone anterior lumbar interbody fusion system. They are available in 7˚, 12˚, 17˚, 22˚ and 28˚ lordotic angles, with various heights and footprints for proper lordosis and intervertebral height restoration, and come with advanced instrumentation that’s designed to decrease operative steps during surgery.

Festo Introduces Partially 3D Printed Bionic Robot

German company Festo, the robotics research of which we’ve covered before, has introduced its Bionic Learning Network’s latest project – three bionic robots inspired by a flic-flac spider, a flying fox, and a cuttlefish. The latter of these biomimetic robots, the BionicFinWave, is a partially 3D printed robotic fish that can autonomously maneuver its way through acrylic water-filled tubing. The project has applications in soft robotics, and could one day be developed for tasks like underwater data acquisition, inspection, and measurement.

The 15 oz robot propels itself forward and backward through the tubing using undulation forces from its longitudinal fins, while also communicating with and transmitting data to the outside world with a radio. The BionicFinWave’s lateral fins, molded from silicone, can move independently of each other and generate different wave patterns, and water-resistant pressure and ultrasound sensors help the robot register its depth and distance to the tube walls. Due to its ability to realize complex geometry, 3D printing was used to create the robot’s piston rod, joints, and crankshafts out of plastic, along with its other body elements.

Cintec Using 3D Printing on Restoration Work of the Red House

Cintec North America, a leader in the field of structural masonry retrofit strengthening, preservation, and repair, completes structural analysis and design services for projects all around the world, including the Egyptian Pyramids, Buckingham Palace, Canada’s Library of Parliament, and the White House. Now, the company is using 3D printing in its $1 million restoration project on the historic Red House, which is also known as the seat of Parliament for the Republic of Trinidad and Tobago and was built between 1844 and 1892.

After sustaining damage from a fire, the Red House, featuring signature red paint and Beaux-Arts style architecture, was refurbished in 1904. In 2007, Cintec North America was asked to advise on the required repairs to the Red House, and was given permission to install its Reinforcing Anchor System. This landmark restoration project – the first where Cintec used 3D printing for sacrificial parts – denotes an historic moment in structural engineering, because one of the reinforcement anchors inserted into the structure, measuring 120 ft, is thought to be the longest in the world.

GE Files Patent to Use Blockchains For 3D Printing Protection

According to a patent filing recently released by the US Patent and Trademark Office (USPTO), industry giant GE wants to use a blockchain to verify the 3D printed parts in its supply chain and protect itself from fakes. If a replacement part for an industrial asset is 3D printed, anyone can reproduce it, so end users can’t verify its authenticity, and if it was made with the right manufacturing media, device, and build file. In its filing, GE, which joined the Blockchain in Transport Alliance (BiTA) consortium in March, outlined a method for setting up a database that can validate, verify, and track the manufacturing process, by integrating blockchains into 3D printing.

“It would therefore be desirable to provide systems and methods for implementing a historical data record of an additive manufacturing process with verification and validation capabilities that may be integrated into additive manufacturing devices,” GE stated in the patent filing.

ExOne to Undergo Global Cost Realignment

3D printer and printed products provider ExOne has announced a global cost realignment program, in order to achieve positive earnings and cash flow in 2019. In addition to maximizing efficiency through aligning its capital resources, ExOne’s new program will be immediately reducing the company’s consulting projects and headcount – any initial employee reductions will take place principally in consulting and select personnel. The program, which has already begun, will focus first on global operations, with an emphasis on working capital initiatives, production overhead, and general and administrative spending. This program will continue over the next several quarters.

“With the essential goal of significantly improving our cash flows in 2019, we have conducted a review of our cost structure and working capital practices. We are evaluating each position and expense within our organization, with the desire to improve productivity. As a result, we made the difficult decision to eliminate certain positions within ExOne, reduce our spending on outside consultants and further rely on some of our recently instituted and more efficient processes,” explained S. Kent Rockwell, ExOne’s Chairman and CEO. “Additional cost analyses and changes to business practices to improve working capital utilization will be ongoing over the next several quarters and are expected to result in additional cost reductions and improved cash positions. All the while, we remain focused on our research and development goals and long-term revenue growth goals, which will not be impacted by these changes, as we continue to lead the market adoption of our binder jetting technology.”

Discuss these stories, and other 3D printing topics, at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

 

Copper3D Introduces Antibacterial 3D Printing Filament for Medical Devices

Losing a limb is traumatic enough, but adjusting to a prosthetic device can be a brand new challenge in itself. Not only is the person getting used to working with an artificial limb, but those limbs can present complications. In fact, 40% of prosthetic device uses suffer from some kind of skin condition, as do non-amputee patients who use some sort of orthopedic device. This is due to the fact that these devices are typically quite difficult to clean, as they’re made from porous material and have complex geometries – especially 3D printed ones.

The conditions caused by these devices include dermatitis, folliculitis, or other fungal or bacterial infections. These aren’t just annoyances – if they progress to a serious state, they can cause permanent damage or even be fatal. The World Health Organization estimates that in the United States, nearly 100,000 people die from intrahospital infections every year, including skin infections.

Chilean startup Copper3D believes that it may have the solution to prosthetic- and orthopedic-caused skin problems. The answer: antibacterial 3D printing materials.

“We started prototyping a new polymer for 3D printing with an internationally patented additive containing copper nanoparticles among other elements, extremely effective in eliminating fungi, viruses and bacteria, but harmless to humans at the right concentrations,” said Daniel Martínez, Director of Innovation.

Copper3D was founded by Martínez, a physical therapist, along with civil engineer Andrés Acuña and Claudio Soto, MD. Preliminary trials in Chile were successful, so the company began the industrial manufacture of the material in the Netherlands for subsequent commercialization. Copper3D’s first product is already available: a high-quality PLA polymer with additive concentrations of 1, 2 and 3%. The product is called PLACTIVE, as it is active in the elimination of microorganisms.

“We already have developed a medical grade material called NANOCLEAN, which is made with a high quality PETG polymer with additive concentrations of 2 and 3% and aimed at more specific purposes in the world of medical devices,” said Martínez.

The 3D printing materials and the items printed with them have been studied and validated as antibacterial by the Microbiology Laboratory at the Universidad Católica de Valparaíso, and PLACTIVE is already being used in the United States – by Jorge M. Zuniga PhD, a 3D printing expert and researcher in the Department of Biomechanics at the University of Nebraska Omaha. Dr. Zuniga is conducting a study on partial finger prostheses for war veterans. In addition, microbiological tests are being performed with an independent US laboratory to confirm the antibacterial properties of PLACTIVE.

[Image provided by Dr. Jorge Zuniga]

As more and more prosthetics, orthopedics and other medical devices are being 3D printed, a material like PLACTIVE could go a long way in making these devices safer.

“I believe that this new technology represents a before and after in the 3D printing industry for biomedical purposes,” said Dr. Zuniga. “PLACTIVE solves one of the major problems of the 3D printing industry, the bacterial burden housed in these materials and devices. This new 3D printing filament could be the beginning of a whole new family of customized items with antibacterial properties, a huge breakthrough for developers, manufacturers, physicians and patients.”

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

 

3D Printing News Briefs: June 26, 2018

We have plenty of business, material, and 3D printer news to share with you in today’s 3D Printing News Briefs. 3D printing led to increased savings for GM over the last two years, which is now increasing its use of the technology as a result. ExOne is saying goodbye to one CEO and hello to another, while Polymaker announces a global distribution arrangement with Nexeo Solutions and CollPlant receives R&D project approval in Israel. The US Patent and Trademark Office will be hosting its annual Additive Manufacturing Partnership Meeting this week, and RP Platform has announced a rebrand and a new AI software platform. Finally, the UK’s National Centre for Additive Manufacturing has decided to add Digital Metal’s binder jetting technology to its portfolio.

GM Increasing Use of 3D Printing at Plants

Zane Meike, AM lead at GM’s Lansing Delta Township assembly plant, holds a common 3D printed tool used to align engine and transmission vehicle identification numbers. [Photo: Michael Wayland]

According to Dan Grieshaber, the Director of Global Manufacturing Integration for General Motors (GM), most of the company’s factories have 3D printers, which are used to build accessories and tools for workers. A $35,000 3D printer at GM’s Lansing Delta Township assembly plant has actually helped save the company over $300,000 over two years: it’s used to make multiple items, such as part hangers, socket covers, and ergonomic and safety tools. A common tool used to align engine and transmission vehicle identification numbers cost $3,000 to buy from a third party, but is less than $3 to 3D print at the factory. Realizing that these kinds of savings can add up quickly, GM is increasing the use of 3D printing – part of its new Manufacturing 4.0 processes – at its plants in order to help streamline operations.

“We’re quickly evolving, creating real value for the plant. This will become, as we progress, our footprint. We’ll have this in every one of our sites,” Grieshaber said.

Grieshaber also said that GM is working to standardize 3D printing, as well as share best practices across all of its global plants.

ExOne Welcomes New CEO

The ExOne Company, which provides 3D printers and 3D printed products, materials, and services to its industrial customers around the world, has announced that its CEO, James L. McCarley, is departing the company, effective immediately, to pursue other interests and opportunities; he will be assisting the company in transitioning his responsibilities to the new CEO. ExOne’s Board of Directors has also announced who the new CEO will be – S. Kent Rockwell, the company’s Executive Chairman, who has served in the position in previous years. Rockwell’s new title is effective immediately.

“On behalf of our Board and management team, I would like to thank Jim for his efforts and wish him all the best in his future endeavors,” said Rockwell.

Polymaker Makes Distribution Arrangement with Nexeo Solutions

Shanghai-based 3D printing material producer Polymaker has entered an arrangement with chemicals and plastics distributor Nexeo Solutions, Inc., also based in Shanghai. Nexeo will be a global distributor for three new materials in the Polymaker Industrial line, but plans to introduce more of its materials over the rest of the year. C515 is an advanced polycarbonate (PC) filament that has excellent toughness and a low warping effect, while C515FR is a flame retardant PC with high impact resistance. SU301 is a polyvinyl alcohol (PVA)-based polymer that’s water soluble and was developed as a support material for FFF 3D printers.

Paul Tayler, the Vice President of EMEA at Nexeo Solutions, said, “Expanding our portfolio to include industrial grade filaments from Polymaker Industrial gives our customers access to a wider range of filaments that solve new 3D printing challenges and meet the demands of manufacturers. Industrial customers benefit from Nexeo Solutions’ access to world leading plastic producers coupled with additive manufacturing technical expertise.”

CollPlant Receives R&D Project Approval

Two years ago, regenerative medicine company CollPlant received funding from Israel’s Ministry of Economy for its research in developing collagen-based bioinks for 3D printing tissues and organs. CollPlant, which uses its proprietary plant-based rhCollagen (recombinant human collagen) technology for tissue repair products, has now announced that the Israel Innovation Authority (IIA) has approved a grant to finance the continued development of its rhCollagen-based formulations intended for use as bioinks. Terms of the grant require CollPlant to pay royalties to the IIA on future sales of any technology that’s developed with the use of the funding, up to the full grant amount. The total project budget is roughly $1.2 million (NIS 4.2 million), and the IIA will finance 30%, subject to certain conditions.

“In addition to providing immediate non-dilutive funding, this grant from the Israel Innovation Authority represents an important validation of our BioInk technology and its market potential. With the recent opening of our new cGMP production facility in Rehovot, Israel, we are well positioned to meet growing demand for our BioInk and tissue repair products. We are grateful to the IIA for this recognition,” said CollPlant CEO Yehiel Tal.

Additive Manufacturing Partnership Meeting Hosted by US Patent and Trademark Office

For the last several years, the US Patent and Trademark Office (USPTO) has been hosting the Additive Manufacturing Partnership Meeting, and this year’s meeting takes place tomorrow, June 27th, from 1 to 5 PM at the USPTO headquarters inside the Madison Building in Alexandria, Virginia. The USPTO will be seeking opinions from various participants at the informal meeting, which is really a forum for individual 3D printing users and the USPTO to share ideas, insights, and personal experiences.

“We value our customers and the feedback provided from individual participants is important in our efforts to continuously improve the quality of our products and services,” the USPTO meeting site reads. “Your willing participation in this informal process is helpful in providing us with new insights and perspectives.”

Scheduled speakers at this year’s meeting are coming from CIMP-3D, HRL, Kansas State University, Lawrence Livermore Laboratories, and the NextManufacturing Center, and an RSVP is required to attend the AM Partnership Meeting.

RP Platform Launches New AI Software and Rebrand

London-based RP Platform, which provides customizable workflow automation software for industrial 3D printing, is launching a new software platform, which will use AI for the first time to automate 3D printing production. With customers in over 30 countries, the company is one of the top automation software providers for industrial 3D printing. In addition to its software launch, RP Platform has also announced that, as it continues to expand its software capabilities to target AM end part production, it is rebranding, and has changed its name to AMFG.

“We want to help companies make their 3D printing processes much smoother so that they can produce more parts with greater visibility and less effort. And we have more exciting releases to our software over the coming months that will further enhance our production automation capabilities,” said Keyvan Karimi, the CEO of AMFG.

“Ultimately, we’re creating a truly autonomous manufacturing process for industrial 3D printing. For us, this means taking manufacturing to a new era of production. The launch of our new software, as well as our company rebrand, fully reflects this vision going forward.”

NCAM Installing a Digital Metal 3D Printer

The National Centre for Additive Manufacturing (NCAM) in the UK, headquartered at the Manufacturing Technology Centre (MTC) in Coventry, has decided to add the unique binder jetting technology developed by Digital Metal to its large range of advanced manufacturing equipment, and will soon be installing one of its high-precision metal 3D printers – which are not available anywhere else in the UK. The 3D printer will be available for use by NCAM’s member companies, and other organizations, who are interested in testing the capabilities of Digital Metal’s proprietary binder jetting technology.

Dr. David Brackett, AM Technology Manager at the NCAM, explained, “The Digital Metal binder jetting technology falls into the category of ‘bind-and-sinter AM’, where a multi-stage process chain incorporating sintering is required to achieve full density. It’s a very fast technology that can create complicated and highly detailed designs, and there is potential for wider material choice than with AM processes that use melting. We are delighted to be able to offer this to the companies we work with.”

The Digital Metal 3D printer will be operational later this summer, and NCAM personnel are already training with it to ensure they can operate it efficiently and safely.

Discuss all of these stories, and other 3D printing topics, at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

 

Second Annual Additive Manufacturing Strategies Summit to Feature Startup Competition and Exhibit Floor

This past January, experts in the fields of medicine, dentistry, and 3D printing gathered for the first annual Additive Manufacturing Strategies Summit. Titled “The Future of 3D Printing in Medicine and Dentistry,” the summit highlighted the growing number of applications for 3D printing in the medical and dental fields, discussed where these sectors were heading in the future, and advised attendees on the best ways to capitalize on 3D printing in medicine and dentistry. The event was a successful one, and it’s already time to start planning for the next summit, which will be taking place from January 29th to the 31st, 2019.

Next year’s summit will be in Boston and once again will be co-produced by 3DPrint.com and SmarTech Markets Publishing, the leading provider of market research reports and industry analysis for the 3D printing industry. The summit will be set up to guide managers, practitioners, entrepreneurs and investors to the most effective procedures and profitable opportunities in 3D printed medical and dental applications. It will focus on several topics, including 3D printed prosthetics, implants, medical models and personalized medicine, as well as dental devices.

The Additive Manufacturing Strategies Summit will take place at Boston’s Hynes Convention Center.

There will be a few key differences in next year’s summit. First of all, there will be an exhibition hall in which organizations from the medical and dental 3D printing arena will showcase their products and research. Secondly, there will be a startup competition. Five early stage companies from the medical and dental 3D printing industry will be invited to present their pitches for the chance to win a $15,000 SAFE investment from Asimov Ventures. The winning company will also be profiled on 3DPrint.com.

In order to be considered for the startup competition, companies must submit an application by December 1st. They must have a medical or dental 3D printing focus; they can be centered on bioprinting, hardware, software or materials. Final selections will be announced on December 15th, and the competition will take place at the summit on January 30th. If you’re interested in applying, you can do so here.

Attendees at the summit will hear from experts in the additive manufacturing and regulatory sectors, as well as practitioners and academics. There will also be several pre-conference workshops from leading technology and solution providers. Those who attend the conference can expect to learn about how 3D printing is transforming procedures at hospitals, doctor’s offices and dental offices and labs. They will gain a better understanding of which 3D printing technologies are relevant now and which are still in the development stage, and will learn about revenue expectations and where the money is in medical and dental 3D printing. Regulatory requirements will also be discussed, and there will be plenty of networking opportunities.

There’s plenty to read about 3D printing in the medical and dental industries, but there’s nothing like learning directly from experts in the field on a face-to-face level. This is a summit you won’t want to miss if you’re involved in medicine or dentistry, because 3D printing is affecting every aspect of these industries and will only continue to do so more and more. Registration is now open, and you can save 44% if you register by October 11th. If you’d like to attend, you can register here.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

 

Researchers 3D Print Tissue That Mimics Human Bile Duct

[Image via Cancer.org]

A bile duct plays a crucial role in the body, carrying bile from the liver to the intestine to facilitate digestion. Cancer of the bile duct has an alarmingly low survival rate, and treatment requires that the disease be caught early enough for the affected part of the bile duct to be removed. But there’s some good news for those suffering from conditions of the bile duct, as researchers at Northwestern University have 3D printed a mini-tissue that mimics it.

The research is documented in a study entitled “Tailoring nanostructure and bioactivity of 3D-printable hydrogels with self-assemble peptides amphiphile (PA) for promoting bile duct formation,” which you can access here. Lead author Ming Yan and colleagues 3D printed a nanostructure consisting of peptides amphiphile, or PAs, bioink and bile duct cells, or cholangiocytes.

“3D-printing has expanded our ability to produce reproducible and more complex scaffold architectures for tissue engineering applications,” the abstract states. “In order to enhance the biological response within these 3D-printed scaffolds incorporating nanostructural features and/or specific biological signaling may be an effective means to optimize tissue regeneration. Peptides amphiphiles (PAs) are a versatile supramolecular biomaterial with tailorable nanostructural and biochemical features. PAs are widely used in tissue engineering applications such as angiogenesis, neurogenesis, and bone regeneration. Thus, the addition of PAs is a potential solution that can greatly expand the utility of 3D bioprinting hydrogels in the field of regenerative medicine.”

The PAs and cholangiocytes were mixed with thiolated gelatin at 37°C and 3D printed at 4ºC using an EnvisionTEC 3D-Bioplotter, one of the most-utilized bioprinters on the market. The material retained integrity as the bioinks printed into filaments capable of supporting multi-layered scaffolds. The researchers stabilized the scaffold by cross-linking a derivative of ethylene glycol with calcium ions; scaffold stability was observed in culture for more than a month at a temperature of 37°C.

First author Ming Yan. [Image: Northwestern via Physics World]

The researchers also explored the use of a laminin-derived peptide (Ile-Lys-Val-Ala-Val, IKVAV) and the influence its inclusion in the bioink would have on the bile duct cells. Laminin is a molecule necessary for cell adhesion, and after bioprinting, the bile duct cells remained viable in vitro. Staining revealed the formation of functional bile-cell-based tube structures; when cultured in IKVAV bioink, the structures showed enhanced morphology, forming functional tubular structures.

This is the first time that a bioink-based system supplemented with PAs was used for bile duct tissue engineering. The research shows a lot of promise; the bioprinted bile ducts as well as in vitro systems created with the bioinks have the potential to be valuable for research into bile duct cancer as well as the testing of treatments. Right now, bile duct cancer is a grave diagnosis to receive, but the enhanced research that could be made possible by this work offers hope for better understanding and more effective treatments.

As a next step, the researchers now want to optimize the peptide concentration and test other signaling molecules within the bioinks to enhance the formation of functional tubular structures that mimic those found in the liver.

Additional authors of the research paper include P.L. Lewis and R.N. Shah.

[Source: Physics World]