3D Printing News Briefs, July 25, 2020: MakerBot, ANSYS, Sintavia, Nexa3D & Henkel

We’re all business in today’s 3D Printing News Briefs! MakerBot has a new distribution partner, and ANSYS is launching a new product. Sintavia has acquired an additional Arcam 3D printer from GE Additive. Finally, Nexa3D and Henkel are introducing a new material for 3D printing medical and athletic devices.

MakerBot Welcomes New Distribution Partner

MakerBot announced that it has expanded its distributor network by entering into an agreement with the Distrinova division of the Unitum Group, which will distribute the MakerBot METHOD 3D print platform throughout Belgium, the Netherlands, and Luxembourg. This partnership will increase the availability of the entire platform, which offers industrial capabilities and engineering-grade materials, to more customers in the Benelux region who need professional, powerful 3D printing solutions. The METHOD platform consists of the METHOD and METHOD X printers, various accessories like an experimental extruder, METHOD Carbon Fiber editions, and materials like Nylon Carbon Fiber, ABS, ASA, SR-30, and PC-ABS FR, and Distrinova’s network of channel partners will distribute all of them, in addition to MakerBot’s educational 3D printing solutions.

We are very proud to introduce MakerBot and the METHOD technology into our product portfolio,” said Guy Van der Celen, CEO of Unitum Group BV. ” With the METHOD range we can provide our resellers network not only reliable, state-of-the-art 3D printers, but also the opportunity to offer their customers high value-added solutions for a broad range of new application areas. In addition, the introduction of MakerBot corresponds perfectly with Distrinovas’ strategy to develop strong partnerships with the leading innovative global manufacturers of 3D printers.”

ANSYS Event to Launch Discovery Product

Engineering simulation software company ANSYS released its Discovery Live tool for real-time 3D simulation back in 2017, and will soon be introducing a brand new ANSYS Discovery product, kicking things off with a virtual launch event on July 29th. The company states that the  product can help companies improve their product design processes, increase ROI, and provide answers to important design questions earlier, without having to wait for the results of a simulation.

“This reimagining of the Discovery line of products aims to maximize ease of use, speed and accuracy across thermal, structural, fluids and multiphysics simulation all from within a single consistent user interface (UI),” Justin Hendrickson, Senior Director, Design Product Management, wrote in a blog post about the new ANSYS Discovery.

“Traditionally, simulation has been used during later stages of design when making corrections can be costly and time consuming. However, with the new Ansys Discovery, every engineer will be able to leverage simulation early during concept evaluation as well as during design refinement and optimization. This means that they will be able to optimize products and workflows faster and on a tighter budget.”

The launch event will feature a keynote address from Mark Hindsbo, Vice President and General Manager, Design Business Unit, a product demonstration by Hendrickson, two customer success stories, and several interactive breakout sessions, including one focusing on thermal simulation and another exploring the tool’s generative design capabilities. You can register for the event here.

Sintavia Acquires Second Arcam Q20+ 3D Printer

Tier One metal additive manufacturer Sintavia announced that it has acquired a second Arcam Q20+ 3D metal printer from GE Additive, bringing its total number of electron beam printing systems to three and its overall number of industrial metal 3D printers to nineteen. This additional Arcam Q20+ will be installed next month in Sintavia’s Hollywood, Florida production facility, where the other Q20+ is located with an Arcam A2X, a Concept Laser M2, three SLM 280 systems, a Trumpf TruPrint 3000, and nine EOS 3D printers – six M400s and five M290s.

“Over the past several years, we have worked to qualify the Q20+ for aerospace manufacturing and now have several aerostructure product lines that depend on this technology. Electron beam printing is an excellent option for complex titanium aerospace components, and this business line will continue to grow for us. Even in a difficult overall manufacturing environment, the demand we have seen for EB-built components is very encouraging,” stated Sintavia CEO Brian R. Neff.

Nexa3D and Henkel Commercializing New Material Together

Nasal swabs

Together, SLA production 3D printer manufacturer Nexa3D and functional additive materials supplier Henkel are commercializing the polypropylene-like xMED412, a durable, high-impact material that can be used to print biocompatible medical and wearable devices. Henkel is the one manufacturing the medical-grade material, which is based on its own Loctite MED412 and was designed to offer high functionality and consistent part performance—perfect for printing products like athletic and diving mouth gear, respirators, orthotic guides and braces, and personalized audio projects. The lightweight yet sturdy xMED412 material, which can withstand vibration, moisture, and impact, has been tested by Henkel Adhesive Technologies on the NXE400 3D printer, and is now also cleared to print nasal swabs.

“We are thrilled to bring this product to market in collaboration with Nexa3D. We developed and tested with Nexa3D’s NXE400 3D printer a multitude of approved workflows designed to unleash the full potential of xMED412’s outstanding physical properties and biocompatibility,” said Ken Kisner, Henkel’s Head of Innovation for 3D printing. “Nexa3D and Henkel have provided a digital manufacturing solution for a growing number of medical devices, athletic wearables and personalized audio products. Especially with regard to the current Covid-19 pandemic, we are pleased that nasopharyngeal swabs manufactured with xMED412 on the NXE400, in accordance with our published procedures, have already been cleared through clinical trials and are in compliance with ISO 10993 testing and FDA Class I Exempt classification.”

The post 3D Printing News Briefs, July 25, 2020: MakerBot, ANSYS, Sintavia, Nexa3D & Henkel appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

AMFG Publishes Additive Manufacturing Landscape Report 2020: Breaking Down the Industry and Looking at the Future

Today, London-based company AMFG, which provides MES and workflow software for industrial additive manufacturing (AM) that helps companies streamline and manage their production workflows, has released the second edition of its annual Additive Manufacturing Landscape report and infographic. Since the first report was published in April of 2019, there have been some big changes in the AM industry, including new materials and technologies, investors and companies, and new applications – all of which are strong indicators that the sector is continuing to move towards greater industrialization.

“While the start of 2020 has ushered much uncertainty globally, the progress within the 3D printing industry shows no signs of slowing down,” said Keyvan Karimi, the CEO of AMFG. “In these extraordinary times, we are witnessing the continued maturation of 3D printing into an industrialised technology, driving digital transformation.”

The Additive Manufacturing Landscape 2020 edition provides some very important insights into the current AM market, breaking down the current landscape of the technology and providing industry stakeholders and manufacturing companies with some meaningful and shrewd observations regarding the trends that are molding the industry, both this year and into the future.

“In a time of global need, 3D printing is playing a key role in demonstrating its ability to respond to the need for on-demand production and help alleviate supply chain disruption,” the report’s Executive Summary states. “In addition to external factors, new players continue to enter the AM market, while acquisitions and partnerships continue to flurry across the industry.”

AMFG has customers across a range of industries in over 25 countries, and, so, has a breadth of experience to draw from in compiling this report. A total of 231 organizations were included in the 2020 landscape’s infographic, shown above, with hardware, materials, post-processing, and materials companies all included. However, as this report focuses on the industrial side of the industry, consumer 3D printing companies were not included.

The report, running 27 pages, breaks down the 2020 AM landscape, stating that the major “several factors driving the industry’s growth” include users focusing on establishing clear AM applications and the fact that the technology is now part of the broader trend of digitization in the manufacturing world. It also offers a look at the trends expected to come in 2021, and discusses some of the many milestones that occurred in 2019, such as:

  • the launch of Jabil’s Materials Innovation Center
  • the announcement that Orbex had produced the largest single-piece metal rocket engine
  • the new 5200 series of HP’s Multi Jet Fusion 3D printers
  • Carbon’s major investments
  • Angel Trains and Stratasys partnering to 3D print components for passenger trains
  • the collaboration between Made In Space and CELLINK to develop bioprinting technology for space.

HP’s industrial Jet Fusion 5200 Series 3D Printing Solution (Image: HP)

The white paper covers insights regarding the major segments within the industry, with an entire section just for AM service providers and online platforms. Additive Manufacturing Landscape 2020 takes a look at the rate of 3D printing adoption all over the world, from North America and the Asia-Pacific region to Europe, Africa and the Middle East, and features some expert observations from Joseph Crabtree, the CEO of Additive Manufacturing Technologies and Scott Dunham, the Vice President of Research at SmarTech Analysis.

Scott Dunham at Additive Manufacturing Strategies 2020 (Photo: Sarah Saunders for 3DPrint.com)

“Based on our tracking and models, 2019 was the lowest growth total across the board of any year since I started providing consulting and research services to the additive community back in 2012,” Dunham said. “But while I don’t anticipate that any markets will be totally immune from the litany of negative impacts of COVID-19, I can see much of the additive manufacturing market actually coming out of this for the better.”

Some of the major points that the report makes include that the industry’s largest segment is metal machines, which make up 22.5 percent of the overall AM landscape, and hardware, at 56 percent, is the largest category. This category has a new segment this year in composite 3D printers, which are often niche, but have the potential to grow into a more profitable market.

Additionally, the white paper states that an estimated $1.1 billion worth of investments were made last year in 77 early-stage AM companies, with 3D printer manufacturers receiving the largest piece of the funding pie. Another important point stated in the report is that connectivity and collaboration will continue to be vital in helping the fragmented additive manufacturing industry consolidate into a more unified front.

To learn more, you can check out the entire Additive Manufacturing Landscape 2020 here, and you can also find a link to the report on our White Paper page.

Discuss this news and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

The post AMFG Publishes Additive Manufacturing Landscape Report 2020: Breaking Down the Industry and Looking at the Future appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing News Briefs: June 25, 2019

Recently, HP released its sustainable impact report for 2018, which is the first item we’ll tell you about in our 3D Printing News Briefs. Then it’s on to more good news – the 3D Factory Incubator in Barcelona is reporting a very positive first 100 days in business, while AMUG has named the winners from its Technical Competition. We’ll close with some metal 3D printing – Nanoscribe published a fly-over video that illustrates the design freedom of nano- and microscale 3D printing, and Laser Lines is now a UK reseller for Xact Metal.

HP Releases 2018 Sustainable Impact Report

HP recycling bottle shred: Through its recycling programs, HP is transforming how we design, deliver, recover, repair, and reuse our products and solutions for a circular future.

HP has released its Sustainable Impact Report for 2018, which talks about the company’s latest advancements in achieving more sustainable impact across its business, as well as the communities it serves, in order to create a better green future. Its sustainability programs drove over $900 million in new revenue last year, and the report shows how HP is using 3D printing to drive a sustainable industrial revolution, such as reducing the amount of materials it uses and expanding its recycling program. The report also states new commitments the company set for itself in order to drive a low-carbon, circular economy.

“Companies have critically important roles to play in solving societal challenges, and we continue to reinvent HP to meet the needs of our changing world. This isn’t a nice to do, it’s a business imperative,” explained Dion Weisler, the President and CEO of HP Inc. “Brands that lead with purpose and stand for more than the products they sell will create the most value for customers, shareholders and society as a whole. Together with our partners, we will build on our progress and find innovative new ways to turn the challenges of today into the opportunities of tomorrow.”

To learn more about HP’s efforts to reduce the carbon footprint, such as investing in an initiative to keep post-consumer plastic from entering our waterways and the recycling program it started with new partner SmileDirectClub, visit the company’s dedicated Sustainable Impact website.

Successful First 100 Days at 3D Factory Incubator

On February 11th, 2019, 3D Factory Incubator – the first European incubator of 3D printing – was officially inaugurated in Barcelona. It’s now been over 100 days since the launch, and things are going very well. In that time period, the incubator is reporting a total of 15,000 3D printed pieces, and 20 incubated companies, and still has room for more interested projects, though all its private spaces are now occupied. The original goal is to incubate 100 companies in 5 years, and it seems as if 3D Factory Incubator is well on its way.

Located in the Zona Franca Industrial Estate, the unique initiative is led by El Consorci de Zona Franca de Barcelona (CZFB) and the Fundación LEITAT, and has received an investment of €3 million. The goal of the incubator is promote the growth of 3D printing initiatives, and there are a wide variety of companies hosted there, including consumer goods, a logistics company, healthcare companies, design initiatives, and mobility.

AMUG Technical Competition Winners Announced

(top) Erika Berg’s digitally printed helmet liner components and Riddell’s SpeedFlex Precision Diamond Helmet; (left) Maddie Frank’s cello, and (right) Bill Braune’s Master Chief reproduction.

At the Additive Manufacturing Users Group (AMUG) Conference in April, 17 entries were on display to compete for the gold in the annual Technical Competition of excellence in additive manufacturing. The winners have finally been announced, and it seems like the panel of judges had a hard time deciding – they were unable to break the tie in the Advanced Finishing category. Maddie Frank of the University of Wisconsin, with her 3D printed electric cello, and Bill Braune of Met-L-Flo, with his 30 inch-tall model of “The Master Chief” Halo video game character, are co-winners in this category for their attention to detail and “exceptional execution,” while Erika Berg of Carbon won the Advanced Applications category with her digitally printed helmet liner for Riddell’s SpeedFlex Precision Diamond Helmet.

“The 17 entries in the Technical Competition were amazing in their beauty, innovation, and practicality,” said Mark Barfoot, AMUG past president and coordinator of the Technical Competition. “Our panel of judges deliberated at length to make the final decision.”

The winners each received a commemorative award, as well as complimentary admission to next year’s AMUG Conference.

Nanoscribe Shows off Design Freedom in Fly-Over Video

The versatility sample impressively illustrates the capabilities of Photonic Professional systems in 3D Microfabrication.

German company Nanoscribe, which manufactures and supplies high-resolution 3D printers for the nanoscale and microscale, is showing the world how its systems can up many opportunities in 3D microfabrication, with a new fly-over video, which truly highlights the design freedom it can offer when making 3D microparts with submicron features. The video shows actual scanning electron microscope (SEM) images of extreme filigree structures that were 3D printed on its Photonic Professional GT2.

From a variety of angles, you can see diverse geometries, which show off just how versatile Nanoscribe’s high-resolution 3D printing can be – all 18 of the objects and structures were printed in just over an hour. The company’s microfabrication technology makes it possible to create designs, like undercuts and curved shapes, and customizable topographies that would have been extremely difficult to do otherwise. To streamline the microfabrication process for its customers, Nanoscribe offers ready-to-use Solution Sets for its Photonic Professional GT2 printers, which, according to the company, “are based on the most suitable combination of precision optics, a broad range of materials and sophisticated software recipes for specific applications and scales.”

Xact Metal Names Laser Lines New UK Reseller

Pennsylvaniastartup Xact Metal welcomes Laser Lines – a total solutions provider of 3D printers and laser equipment – as a UK reseller for its metal 3D printers. These machines, which offer extremely compact footprints, are meant for customers in high-performance industries that require high-throughput and print speed, such as medical and aerospace. Laser Lines will immediately begin distributing the Xact Metal XM200C and XM200S systems, as well as the XM300C model once it becomes available next year.

“We are delighted to be the chosen UK supplier for Xact Metal, whose metal printing systems are establishing new levels of price and performance. Making quality metal printing accessible requires innovation. Xact Metal’s printing technology is built on the patent-pending Xact Core – a high speed gantry system platform where light, simple mirrors move quickly and consistently above the powder-bed on an X-Y axis. It’s another step change for our industry and opens a whole range of exciting opportunities,” stated Mark Tyrtania, the Sales Director at Laser Lines.

Discuss these and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

Nexxt Spine Increases Investment in GE Additive’s Concept Laser Metal 3D Printing

Founded in 2009, Indiana-based medical device company Nexxt Spine first invested in metal 3D printing two years ago, with the purchase of its first Concept Laser Mlab 100R system. The company works in the expanding spinal cage sector and is working to increase procedural efficiency and patient outcomes for those suffering from debilitating spinal conditions. While Nexxt Spine originally used more traditional manufacturing methods to fabricate specialty spinal plates, rods, and screws, the business is scaling rapidly and increasing its metal additive investment with the installation of its fourth and fifth Mlab 100R systems from GE Additive this month.

Alaedeen Abu-Mulaweh, the director of engineering at Nexxt Spine, stated, “Additive is booming.”

Nexxt Spine aims to drive medical device innovation, and designs, manufactures, and distributes all of its spinal implants from its Noblesville facility. With its latest 3D printer purchase, the company is looking to, as GE Additive put it, “tap further into the growing global spinal implant market.”

“We are seeing ongoing adoption of additive manufacturing in the orthopaedic industry and an exciting shift from research and development to serial production,” said Stephan Zeidler, senior global and key accounts director for the medical sector at GE Additive. “Early innovators like Nexxt Spine are scaling up and there is a significant increase in production volumes.”

By continuing to invest in Concept Laser’s LaserCUSING metal 3D printing technology, which has been used in medical and military applications, to name just a few, Nexxt Spine is able to eliminate the need for contract manufacturers. Because it now owns the whole design, production and distribution process on-site, the company can increase how quickly it develops and commercializes its spinal implants.

Alaedeen Abu-Mulaweh

“We used the first Mlab primarily for R&D purposes, but we soon realised that further investment in additive technology could add value not only to our overall growth strategy, but also at a clinical application level with the ability to develop implants with very intricate micro-geometries that could maximise healing,” Alaedeen explained. “Over the past two years, we have made a seamless jump from R&D to serial production and in doing so have significantly accelerated the time from concept to commercialization.

“Like I said, additive is absolutely booming. It is driving our business and innovation strategy forward and our design team is actively developing and testing new applications, parameters and surgical devices to target new markets. We are excited for what the future holds for us.”

Nexxt Spine knows what it’s talking about when it comes to designing, developing, and fabricating spinal fusion implants – its products use interconnected micro-lattice architectures to promote osteoconduction, osteointegration, and boney fusion. A flagship product introduced in 2017 is the company’s Nexxt Matrixx System, which includes multiple porous titanium spinal fusion implants that combine novel 3D printed cellular scaffolding with highly differentiated surface texturing technology.

The company blends cellular porosity that’s inspired by the natural biology of bones with the underlying fundamentals of engineering in order to create fusion-optimized, structurally sound medical devices. This is a big difference from other medical manufacturers that use 3D printing to create devices which merely mimic the trabecular geometry of bone.

“Titanium – porous or otherwise – is physically incapable of biological remodeling, so using additive to directly mimic the structural randomness of bone doesn’t make a whole lot of sense,” Alaedeen explained. “Rather than simply looking like bone, Nexxt Matrixx® was designed with functionality in mind to fulfil our vision of actively facilitating the body’s natural power of cellular healing.”

Now that Nexxt Spine has shifted to serial additive manufacturing production and moved all of its design, manufacturing and distribution functions on-site in Indiana, it will be able to service customers and scale up as much as it needs to continue meeting the increased demand for better spinal fusion implants.

Zeidler concluded, “Nexxt Spine is another great example that shows the power of our Mlab machine, which is proven to be an easily accessible machine for research & development, with the capability to be a reliable, scalable and modular production machine at the same time.”

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the comments below.

[Images provided by GE Additive]

3D Printing News Briefs: March 9, 2019

We’re taking care of business first in today’s 3D Printing News Briefs, and then moving on to education. Optomec has announced two new additions to its LENS series, and CRP Technology is introducing a new commercial strategy for its Windform composite materials. HP India is building a new Center of Excellence for 3D Printing, while the South Korean government continues its investment in the technology. The GE Additive Education Program is now accepting applications for 2019-2020, and a Philadelphia-based university and health system has integrated Ultimaker 3D printers into its teaching curriculum. Speaking of health, Sweden is looking into 3D printing food for the elderly.

Optomec’s New LENS Systems

This week, production-grade metal 3D printer supplier Optomec announced that it was releasing two new Directed Energy Deposition (DED) 3D printers in its Laser Engineered Net Shaping (LENS) Classic System Series: the CS 600 and the CS 800 Controlled Atmosphere (CA) DED Systems. Both of the systems are configurable, and are designed to maximize the process build envelope, while at the same time lowering the system footprint and chamber volume. They have CA chambers that make it possible to process both non-reactive and reactive metals, and are both compatible with the company’s latest generation LENS deposition head.

“These new systems come packed with next-generation DED components all born from signature Optomec know-how and built to provide affordable, high-quality metal additive manufacturing capabilities for industry’s most demanding requirements. The LENS CS 600 and CS 800 systems represent the latest in DED processing from precision deposition to cladding applications and extend our product portfolio to continue to provide high-value metal additive manufacturing solutions,” said Tom Cobbs, Optomec’s LENS product manager.

The first customer shipments of the CS 600 and the CS 800 CA systems have already begun this year.

New Commercial Strategy for Windform Materials

CRP Technology has for years made components and also sold its Windform composite materials. Now the company has decided to revise its commercial strategy for the materials: from now on, they will no longer be sold to service bureaus for the toll-manufacturing of 3D printing components. However, the materials will continue to be sold to companies that produce their own components, while CRP Technology and CRP USA will continue to offer support for service and assistance in producing Windform parts.

“The change in the strategy of CRP Technology is because we believe we can ensure the highest quality in the manufacture of 3D printed components; indeed the increase in production capacity -both in Europe and in the United States- will guarantee the volumes necessary to satisfy any request from our customers based all over the world, in compliance with the high standards of service and quality that has always been a distinctive element of CRP Technology and CRP USA’s activities,” CRP Technology told 3DPrint.com in an email.

HP Building Center of Excellence for 3D Printing in India

HP introduced its Jet Fusion 4200 3D Printing solutions to India last year, and is now planning to build a Center of Excellence (CoE) for 3D Printing in Andhra Pradesh, which is the country’s seventh-largest state. This week, the company signed a Memorandum of Understanding (MoU) with the Andhra Pradesh government to build the CoE, which will give small and medium businesses (SMBs) and startups in the state the opportunity to learn more about the benefits of adopting 3D printing. HP India will be the main knowledge provider for the CoE, while the Andhra Pradesh Innovation Society (APIS) will enable accreditations and certifications and provide infrastructure support, and the Andhra Pradesh Economic Development Board (APEDB) will encourage and drive public sector enterprises and government departments to use the CoE.

“Manufacturing in Andhra Pradesh has great potential as a lot of demand is slated to come from domestic consumption,” said J. Krishna Kishore, the CEO of APEDB. “Andhra Pradesh’s impetus in automotive, electronics and aerospace makes technologies like 3D printing market-ready.”

South Korea Continues to Invest in 3D Printing 

For the last couple of years, the government of South Korea has been investing in 3D printing, and 2019 is no different. The country’s Ministry of Science and ICT announced that it would be spending 59.3 billion won (US $52.7 million) this year – up nearly 17% from its 2018 investment – in order to continue developing 3D printing expertise to help nurture the industry. According to government officials, 27.73 billion of this will be allocated to further development of 3D printing materials technology, and some of the budget will go towards helping the military make 3D printed components, in addition to helping the medical sector make 3D printed rehab devices.

“3D printing is a core sector that can create innovation in manufacturing and new markets. The ministry will support development by working with other related ministries and strengthen the basis of the industry,” said Yong Hong-taek, an ICT ministry official.

GE Additive Education Program Accepting Applications

In 2017, GE Additive announced that it would be investing $10 million in the GE Additive Education Program (AEP), an educational initiative designed to foster and develop students’ skills in additive manufacturing. To date, the global program has donated over 1,400 polymer 3D printers to 1,000 schools in 30 different countries, and announced this week that it is now accepting applications for the 2019-2020 cycle from primary and secondary schools. While in previous years the AEP also awarded metal 3D printers to universities, that’s not the case this time around.

“This year’s education program will focus only on primary and secondary schools,” said Jason Oliver, President & CEO of GE Additive. “The original purpose of our program is to accelerate awareness and education of 3D printing among students – building a pipeline of talent that understands 3D design and printing when they enter the workplace. We already enjoy some wonderful working relationships with universities and colleges, so this year we have decided to focus our efforts on younger students.”

The deadline for online AEP applications is Monday, April 1st, 2019. Packages include a Polar Cloud premium account, a Polar Cloud enabled 3D printer from either Dremel, Flashforge, or Monoprice, rolls of filament, and – new this round – learning and Tinkercad software resources from Autodesk. Check out the video below to learn about GE Additive’s ‘Anything Factory’ brand campaign, the heart of which was formed by a young student who had just discovered 3D printing and what it’s capable of creating…this is, of course, the purpose behind AEP.

Ultimaker 3D Printers Integrated into Medical Teaching Curriculum

Dr. Robert Pugliese and Dr. Bon Ku of Philadelphia’s Thomas Jefferson University and Jefferson Health wanted to better prepare their students for real-world hospital challenges, and so decided to integrate Ultimaker 3D printers into the system’s Health Design Lab. The Lab is used for multiple medical and educational applications, from ultrasound training and cardiology to ENT surgery and high-risk obstetrics, and students are able to work with radiologists on real patient cases by helping to produce accurate anatomic models. The Lab houses a total of 14 Ultimaker 3D printers, including the Ultimaker 2+ Extended, the Ultimaker 3, and the Ultimaker S5, and the models 3D printed there help enhance patient care and improve surgical planning, as well as teach students how to segment critical features and interpret medical scan data.

“When we introduce these models to the patients their eyes get big and they ask a lot of questions, it helps them to understand what the complexity of their case really is. It’s just so much better to have the patient on the same page and these models really help bring that reality to them,” said Dr. Amy Mackey, Vice Chair of the Department of Obstetrics and Gynecology at Jefferson’s Abington Hospital.

3D Printing Food for the Elderly in Sweden

Swedish care homes hope to make pureéd chicken indistinguishable from a drumstick [Image: EYEEM]

If you’ve attended a meal at a nursing home, or care home, then you know the food that’s served is not overly appetizing. This is because elderly people can also just have a more difficult time eating regular food. Roughly 8% of adults in Sweden have trouble chewing or swallowing their food, which can easily cause them to become malnourished. That’s why the Halmstad municipality on the country’s west coast wants to use 3D printing to stimulate these residents’ appetites, which will be accomplished by reconstituting soft, puréed food like chicken and broccoli to make it look more realistic.

Richard Asplund, a former head chef at the luxury Falkenbergs Strandbad hotel who’s now the head of Halmstad’s catering department, said, “When you find it hard to chew and swallow, the food that exists today doesn’t look very appetising.

“So the idea is to make something more aesthetic to look at, to make it look good to eat by recreating the original form of the food.”

The state innovation body Rise is coordinating the project, which is currently in the pre-study phase and plans to serve the first 3D printed meals in Halmstad and Helsingborg by the end of this year.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

10 Ways 3D Printing Played a Part in Education in 2018

3D printing is often used in education these days, whether it’s being taught as a subject or used to enhance another one. As we’re moving ever closer to the start of a new year, we decided to save you some time and gather the ten best education stories from 2018 in one article.

Siemens STEM DAY

The Siemens Foundation focuses on philanthropic efforts in order to continue the advancement of STEM-related education and workforce development, and has invested millions of dollars for this cause in the US. In early 2018, the Siemens Foundation worked with Discovery Education to re-brand its annual Siemens Science Day into a program for more modern educational opportunities: Siemens STEM Day, which is an opportunity for US schools to promote STEM activities for both students and teachers. The program, which doesn’t actually happen on one specific day but is a promotion of STEM lessons and hands-on activities, is meant to be used by students in grades K-12, and offers multiple tools and resources to help reboot STEM curriculum.

New 3D Printing Educational Initiatives

[Image: 3D PARS]

In February, we provided a round-up of some of the many educational initiatives that were looking to provide adults with a deeper understanding of 3D printing. Included in this round-up was a new online course for professionals by MIT, new 3D printing courses from the Sharebot Academy program, and a joint two-day training course in additive manufacturing from German consulting firm Ampower and full service prototyping and 3D printing provider H & H. Additional educational initiatives shared in the round-up were 3DPrint.com’s own Additive Manufacturing with Metals Course.

learnbylayers Partnered with Kodak

In 2017, educator Philip Cotton launched an online 3D printing resource for teachers called learnbylayers that offers lesson plans, project ideas, assessments and more that were designed by teachers for teachers. The site grew quickly, and in February Cotton announced that it had reached a distribution agreement with Kodak. The learnbylayers educational curriculum was added to the Kodak 3D Printing Ecosystem, as the company began offering the internationally-taught curriculum along with its Portrait 3D printer’s launch.

Renishaw Deepened Its Commitment to 3D Printing Education

This spring, Renishaw announced that it would be deepening its commitment to 3D printing education. The company established a new Fabrication Development Centre (FDC) at its Miskin facility in South Wales, with the goal of inspiring young people to pursue STEM careers. The FDC has two classrooms, staffed by qualified teachers and Renishaw’s STEM ambassadors, that can be used for free by schools or groups of young people for lessons or workshops. The FDC was actually in use by Radyr Comprehensive School students long before it was officially launched by Andy Green, a driver for Bloodhound SSC, a 3D printing user and Renishaw partner which also devotes many resources to education about the technology.

Ultimaker Launched New 3D Printing Core Lessons for STEAM Education

Lesson 1: Coin Traps

In April, Ultimaker launched its new Ultimaker Core Lessons: STEAM Set for educators. Eight free lessons, published under a Creative Commons Attribution-ShareAlike 4.0 International License, are included in the set, which can help teachers in informal, K12, or Higher Ed classrooms incorporate 3D printing into their educational practices and STEAM curriculum. Some of the beginner lessons include 3D printing a coin trap, flashlight, and penny whistle, and can teach young students important skills like how to align objects, using symbols to communicate ideas, and how to effectively work together on creative projects.

PrintLab Teamed Up with CREATE Education Team

UK-based global 3D printing distributor and curriculum provider PrintLab partnered with UK 3D printing company CREATE Education, a collaborative platform that provides educators with free resources and support, in order to support schools all across the UK with 3D printing. Each company’s educational 3D printing offerings will be combined in this partnership so that UK schools can enjoy unlimited access to full 3D printing solutions for the classroom, which will be locally supported for life by CREATE. Multiple initiatives came out of this partnership to support teachers, like  3D printer loan schemes, funding advice and resources, special training and curriculum workshops, and new educational 3D printing bundles.

3Doodler Introduced New Educational Kits

3Doodler has long supported education, and often releases new STEM-centered educational packages, including its latest classroom product line: the 3Doodler Create+ EDU Learning Pack and 3Doodler Start EDU Learning Pack. Each pack, designed for and with teachers, was designed specially for classrooms from kindergarten to 12th grade and includes 6 or 12 3Doodler pens (Create or Start, depending on the package) and 600 or 1,200 strands of plastic, as well as other tech accessories, lesson plans, and classroom materials. Additionally, the company released its 3Doodler Create+ EDU Teacher Experience Kit and 3Doodler EDU Start Teacher Experience Kit, which are designed to be trial packs for teachers who are thinking about introducing the 3Doodler into their classrooms.

Robo Acquired MyStemKits

3D printer manufacturer Robo announced this summer that it had acquired Atlanta company MyStemKits, which provides the largest online library of STEM curriculum in the world. Thanks to this acquisition, Robo is now offering educational bundles that include its classroom-friendly 3D printers, a supply of filament, one-year subscriptions to MyStemKits, and additional professional development and online learning.

GE Additive’s Education Program Provided Five Universities with Metal 3D Printers

GE’s Additive Education Program (AEP) – a five-year, $10 million, two-part initiative to provide 3D printers to as many schools as possible – chose five universities this summer to receive an Mlab 200R from the program. 500 proposals were submitted for this round of the program, and GE Additive chose German’s Coburg University of Applied Sciences and Arts, Ireland’s University of Limerick, the Calhoun Community College in Alabama, the University of Illinois at Urbana-Champaign, and West Virginia University as the lucky winners.

3D Printing In Fashion Education

In a recently published paper, titled “Integration of 3 Dimensional Modeling and Printing into Fashion Design Curriculum: Opportunities and Challenges,” Nicole Eckerson and Li Zhao from the University of Missouri discussed whether 3D printing should be integrated into fashion design curriculum. The researchers noted that while 3D printing has been recognized as a major influence in the work of designers and engineers, educators in the fashion industry are facing a lack of time, resources, and knowledge to teach the technology to students. The two conducted semi-structured interviews with eight 3D printing industry  experts and academic professionals for their research, and came up with three distinct themes from their data about why 3D printing should be adopted, and taught, in fashion.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

3D Printing News Briefs: November 9, 2018

Buckle your seat belts, because we’ve got a of news to share with you in today’s 3D Printing News Briefs, starting with more event announcements and moving on to several new partnerships, a workshop, and a 3D printing project. Nanogrande introduced its new 3D printer for nanometer metallic particles at Fabtech this week, while Sartomer and Nanoe are launching new 3D printing innovations at formnext. Creatz3D is working to accelerate ceramics 3D printing in Singapore, while partnerships were announced between Valuechain and Clad Korea, PostProcess and Rösler, and Additive Manufacturing Technologies and Mitsubishi Electric. Finally, two Fraunhofer Institutes are hosting an AM materials workshop, and a maker from YouTube channel Potent Printables is sharing a new project.

Nanogrande Introduced First 3D Printer for Nanometer Metallic Particles

At FABTECH 2018 in Atlanta this week, Nanogrande officially introduced its new 3D printer. The MPL-1, enabled with the company’s Power Layering Technology, is actually the first nanoscale 3D printer for metallic particles in the world, and could successfully open up new 3D printing horizons. Nanogrande has spent years working to develop the new 3D printer.

“Power Layering, while maximizing particle compaction, allows MPL-1 to use particles of all shapes, sizes and types. With this approach, we can easily print with particles as small as a nanometer, but also particles of 5 microns, what the industrial sector is currently seeking. At this size, the particles stick to each other, virtually eliminating the need for support structures typical to 3D printing. In this way, there is a considerable reduction in post- printing costs,” said Juan Schneider, the President and Founder of Nanogrande.

“Today we are witnessing the culmination of a long process of research and development that has given us the chance to set up a team that generates many innovative ideas. Alone, it is possible to have excellent ideas; but, as a team, we can bring these ideas to life. I am very pleased to highlight the success of the efforts of the people who work for Nanogrande.”

Sartomer Europe Introducing New UV-Curable Resins

At formnext in Frankfurt next week, the European division of specialty chemical supplier Sartomer, a business unit of Arkema, will be launching new products in its N3xtDimension line of UV-curable engineered resins as part of its new commercial 3D printing-dedicated platform. The new materials will help companies fulfill performance and regulatory requirements for multiple industrial applications, thanks to their excellent tunability and mechanical properties. At its booth H58 in Hall 3.1 at formnext, Sartomer will introduce N3D I-2105, with impact resistance for manufacturing functional parts; N3D-F2115, which can achieve varying levels of flexibility depending on post treatment; and N3D P-2125, which is perfect for prototyping with its homogeneous network and limited evolution of mechanical properties after post-curing is complete.

“We are addressing the needs of demanding and innovative 3D printing markets by partnering with global leaders to deliver custom material solutions for end-use applications. Through our range of products and services dedicated to additive manufacturing, we are supporting the 3D printing sector as it grows and continues to develop new applications,” said Sumeet Jain, the Global Director for 3D Printing Business at Sartomer.

Nanoe Launches Ceramic and Metal 3D Printer

In other formnext news, French company Nanoe, which is a leader in high-tech raw materials and also specializes in ceramics 3D printing, will be introducing its new Zetaprint system for desktop 3D printing of ceramic and metal materials. The team will perform a live demonstration of the 3D printer at the event, and explain the full 3D printing, debinding, and sintering process.

Additionally, the company will be launching its new stainless steel 16L Zetamix filament. These filaments, made up of a ceramic or metal powder and a polymer matrix, can be used to make high density parts in any FDM 3D printer.  Nanoe, which is also developing materials in Inconel and titanium, will also soon be launching a complete line of adapted FDM 3D printers. Visit the company at booth A74 in Hall 3.0 next week at formnext to see a live Zetaprint demonstration and 3D printed parts in various Zetamix materials.

Creatz3D Accelerating Ceramics 3D Printing in Singapore

Speaking of ceramics, Creatz3D Ceramics Service Bureau is dedicated to 3D printing ceramics parts. Founded last year, its parent company is Singapore-based 3D printer and AM software solutions seller Creatz3D, which partnered with 3DCeram Sinto in Limoges to create the service. This partnership, signed in 2016, facilitated the first installation in Singapore of 3DCeram Sinto’s Ceramaker 900 Ceramic 3D printer, at the Advanced Remanufacturing Technology Centre. The Creatz3D Ceramics Service Bureau, which offers diverse material options and a hassle-free experience, is the first, and only, ceramics-focused 3D printing service in the country, and is helping to increase awareness and adoption of ceramics for 3D printing.

“The addition of ceramics to Creatz3D’s portfolio ensures that they stay ahead of the pack in the competitive 3D printing landscape, and their expertise can demonstrate the game-changing capabilities that the technology has to offer to help advance design, engineering, and manufacturing,” said Sean Looi, the General Manager of Creatz3D.

Valuechain Signs Strategic Partnership with Clad Korea

British technology company Valuechain reports that it has signed a strategic partnership with manufacturing company Clad Korea, in order to digitalize 3D printing in East Asia. Both companies will be able to grow their association together in the initial agreement, in addition to bringing Valuechain’s solutions, including its flagship DNA am production control software, to the East Asian AM marketplace. This software addresses 3D printing production process niche requirements, like powder traceability and managing AM build plans.

“Valuechain’s DNA am technology is a unique offering to the market, with great potential to enable rapid and mass production of additive manufactured parts. As we look to enter the additive manufacturing market ourselves, we believe this product will give us a competitive advantage in the industry, and we’re excited to be able to contribute to the growth of this technology in Asia by helping to deliver this solution throughout South Korea,” said Brandon Lee, the CEO of Clad Korea Co. Ltd.

PostProcess Technologies Partnering with Rösler

Moving on with strategic partnerships in the 3D printing world, PostProcess Technologies Inc., a pioneer of software-drive 3D post-processing solutions, is working with Rösler Oberflächentechnik GmbH, which sells finishing systems for traditional manufacturing, to bring automated, intelligent post-print solutions to Europe. Rösler will provide PostProcess’ data-driven support removal and surface finishing solutions for 3D printing to the European market, making it the only surface finishing supplier that will be providing solutions tailored to the needs of both traditional and additive manufacturing. The two companies will debut their partnership next week at formnext, with PostProcess’ technology on display in its booth H68, as well as Rösler’s booth E20, both of which are in Hall 3.0.

“The additive space is rapidly growing, especially in Europe, and as such, the demand for an automated post-printing solution is accelerating. Rösler is a unique partner for PostProcess, bringing expertise in finishing systems with a broad European footprint, thousands of existing customers, and a strong presence across a range of industries that will greatly benefit from PostProcess’ proprietary and integrated software, hardware, and chemistry solution,” said Bruno Bourguet, the Managing Director for PostProcess Technologies.

Additive Manufacturing Technologies Announces Partnership with Mitsubishi Electric

Sheffield-based Additive Manufacturing Technologies Ltd (AMT) has entered into a partnership with Mitsubishi Electric in order to further develop its PostPro3D system with an integrated automation solution, which could provide a major productivity boost for 3D print post-processing. This new solution is based on Mitsubishi Electric’s MELSEC iQ-F Series compact PLC, HMIs, SCADA and MELFA articulated arm robots. While PostPro3D is already pretty impressive, with its ability to automatically smooth an object’s surface to 1μm precision, AMT wanted to further develop the system with certified automation products so it would be suitable for Industry 4.0. Now, PostPro3D is equipped with a Mitsubishi Electric power supply and low voltage switchgear, servo drives and motors, FR-D700 frequency inverters and the optional six-axis robot arm.

“To realise our concept, we needed an automation partner that could provide the whole range of machine control systems, as well as the actual robotics. This is fundamental to truly integrate our machine into the production line of the future as well as to benefit from a lean, single vendor distribution model,” explained Joseph Crabtree, CEO at AMT.

“Mitsubishi Electric was the clear choice because it offers a one stop shop for state-of-the-art automation solutions. In this way, we can be sure that the different components are compatible and can share data. Overall, the company can offer us products that adhere to UL, CE as well as Industry 4.0 requirements.”

Fraunhofer AM Materials Workshop 

On November 29 and 30 in Dresden, Germany, Fraunhofer IKTS and Fraunhofer IWS are holding a workshop called “Hybrid materials and additive manufacturing processes.” The two institutes are working together to organize the workshop, which will be held in English and discuss innovative technologies for 3D printing metallic and ceramic components, in addition to application-specific manufacturing of material hybrids. Participants in the workshop’s practical insight sessions will be able to see diverse AM devices for multimaterial approaches live and in action.

“Why is that interesting? Additive manufacturing technologies for material hybrids open up new possibilities in production for diverse industrial branches,” Annika Ballin, Press and Public Relations for Fraunhofer IKTS, told 3DPrint.com. “It is not only possible to realize complex geometries, but also to functionalize components (sensors, heaters), to individualize production (labeling, inscriptions) and to combine different materials properties in one component (conductive/insulating, dense/porous etc.).”

The workshop, which costs €750, will be held at Fraunhofer Institute Center Dresden, and registration will continue until November 22.

DIY 3D Printed Linear Servo Actuators by Potent Printables

A maker named Ali, who runs the Potent Printables YouTube channel, recently completed a neat design project – 3D printed linear actuators. Ali, who was partly inspired by a Hackaday post, said that the project has received a great response on both Twitter and Instagram. He designed the parts in SOLIDWORKS, and controls them with an Arduino Uno. The simple rack-and-pinion design, perfect for light loads, comes in two sizes for different space constraints and force outputs.

“Each design has a pinion that has to be glued to a servo horn, and a selection of rack lengths to suit your needs,” Dan Maloney wrote in a new Hackaday post about Ali’s project. “The printed parts are nothing fancy, but seem to have material in the right places to bear the loads these actuators will encounter.”

Check out the video below to see the 3D printed linear actuators for yourself:

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

3D Printing News Briefs: October 16, 2018

We’re starting with some business news in today’s 3D Printing News Briefs, including stories about a new 3D printer, an anniversary, and a 3D printing investment. Cincinnati Incorporated has launched a new high temperature version of its SAAM 3D printer, and EOS will supply Visser Precision with five new metal 3D printers, including its M 400-4. VBN Components celebrates its tenth anniversary, and an Israeli 3D printing startup has received about $400,000 in funding. Researchers in Iran have successfully 3D printed flexible electronic circuits, and 3D printing was used to replicate a Chinese grotto. Finally, the Golf Channel will be featuring 3D printed golf clubs tonight.

New High Temperature Version of SAAM 3D Printer

Last week at FABTECH 2018 in Georgia, build-to-order machine tool manufacturer Cincinnati Incorporated (CI) launched a brand new high temperature version of its SAAM (Small Area Additive Manufacturing) 3D printer series. The SAAM HT 3D printer has a nozzle that can sustain temperatures up to 450°C and a bed temperature up to 260°C, which makes it possible to process materials like polycarbonate, PEEK, and ULTEM. Courtesy of its continuous patented automatic-ejection mechanism, the SAAM HT can be used for small batch production, and is a good choice for manufacturing tooling involved in high temperature operations.

“All materials compatible with SAAM can be used on the HT version. This level of versatility makes it a valuable asset in any manufacturing setting. We are enabling manufacturers and engineers to create the custom parts they need for their most demanding applications,” said Chris Haid, the General Manager of the NVBOTS Business Unit at CI.

EOS Supplying Visser Precision with New Metal 3D Printers

EOS M400-4

Denver-based Visser Precision, which provides advanced metals manufacturing solutions, has doubled its metal 3D printing capacity, thanks to the terms of an agreement reached with EOS at the recent IMTS trade fair. Visser has purchased three EOS M 400-4 3D printers, and two of the recently introduced EOS M 300-4 systems, making it the first organization to acquire the new platform. Market demands for DMLS-quality metal components in industries like aerospace and defense led Visser to grow its metal 3D printer capacity, and the new EOS systems will be delivered in a few months.

Ryan Coniam, the President of Visser Precision, said, “Our customers require the highest-performance, highest quality components and we feel partnering with EOS – the metal AM industry pioneers and leaders in DMLS – provides us with the capabilities we need to meet market demands now and in the next few years. Nearly anyone nowadays can 3D print something in metal, the trick is repeatability while meeting and maintaining quality and our investments with EOS mean we can deliver that to our customers.”

VBN Components Celebrating 10 Years in Business

Swedish materials development company VBN Components AB was founded in the midst of the 2008 financial crisis, and has come a long way since then. The award-winning company works to continuously develop new and better materials, including its corrosion and wear resistant Vibenite 350 for the plastics industry and Vibenite 290, the “World’s Hardest Steel.”

Martin Nilsson, CEO and one of the founders of VBN Components, said, “After our first patent, describing the process of making extremely clean and low-oxygen-rate materials, we realised that we were on to something big.”

This year, VBN Components is celebrating 10 years in business, with several patents and new, hard materials under its belt. But stay tuned – the company will soon unveil the greatest news in its history, which has been described as “a revolution in material development.”

Israeli 3D Printing Startup Receives Funding

TAU Ventures team, R-L: Nimrod Cohen, Managing Partner at TAU Ventures; Shira Gal, Director of Incubator Programs; Yaara Benbenishty, Director of Marketing and Operations [Image: Eylon Yehiel]

TAU Ventures, the venture capital fund of Tel Aviv University, announced that it has led an investment round worth nearly $2 million for two Israeli startups, including Hoopo and 3D printing company Castor. Founded two years ago by Omer Blaier and Elad Schiller, Castor combines 3D printing with artificial intelligence for its high-tech customers, which enables the companies to lower costs by using advanced technology. Castor’s technology automatically analyzes and determines the cost-effectiveness and feasibility of using 3D printing in the manufacturing process.

The startup will be receiving about $400,000 in combined funding from Stanley Black & Decker, the Techstars Accelerator, British businessman Jeremy Coller, and TAU Ventures, which is the first and only academic-based venture capital fund in Israel.

3D Printing Flexible Electronic Circuits

Researchers from a knowledge-based company in Iran have recently developed 3D printers that can fabricate flexible electronic circuits, which could be used in the future as wearables for clothing, pressure sensors, or industrial talc for cars.

The unnamed company’s project manager, Ali Gharekhani, told Mehr News that these 3D printers only take a few seconds to 3D print the flexible electronic circuits, and that foreign versions of this system are “very expensive.” Gharekhani also said that in light of this new development, his company has already received some proposals for Turkey, and “intends to reach an agreement with the Turkish side on production of clothes by 3D printers” before its rivals in Germany, Canada, and Korea.

3D Printed Replica of Chinese Grotto

Yungang Grottoes are a cradle of Buddhist art, playing host to more than 51,000 sculptures. [Image: Zhang Xingjian, China Daily]

There are over 59,000 statues carved in 45 different caves in the 1,500-year-old Yungang Grottoes, which was named a UNESCO World Heritage site in 2001. This week, a full-size, 3D printed replica of one of the grottoes passed experts’ tests. The Yungang Grottoes Research Institute in northern China’s Shanxi province, a Shenzhen company, and Zhejiang University launched the project, which is based on original cave No 12, also called the “Cave of Music.” The 3D printed replica is 15 meters long, 11 meters wide, and 9 meters high, weighs less than 5 metric tons, and is claimed by the institute to be the world’s largest 3D printed movable grotto. High precision 3D data was collected to print the replica out of resin, which took about six months, and it can be divided in parts and pieced together within a week.

“We plan to color it with mineral pigments before the end of this year,” said Zhang Zhuo, head of the institute. “In this way, the replica will maintain its original size, texture and color.”

In the future, the 3D printed grotto replica will be added to exhibition tours with the institute’s other cultural relics.

3D Printed Golf Clubs on the Golf Channel

Tonight, at 9 pm EDT, EOS will be featured, together with Wilson Golf, on the NBC Golf Channel show Driver Vs. Driver. The seven-episode series follows aspiring designers of golf equipment as they compete against each other for the chance to win $500,000. In addition to the money, the winner will also have the opportunity to have their driver design sold, under the Wilson Staff name, at retail stores.

The show gives viewers a behind the scenes look as advancing teams work with engineers at the company’s innovation hub, Wilson LABS, to evaluate, refine, and test out their concepts. Tonight is the third episode, and showcases several designers’ use of 3D printing to make the best golf driver club. Wilson is among a few other companies, including Krone Golf, Ping, Callaway Golf Company, and Cobra Puma Golf, that is using 3D printing to produce golf clubs and other equipment.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.