CSIRO 3D Prints First Self-Expandable Stents from Shape-Memory Alloy Nitinol

Peripheral Arterial Disease (PAD) is a condition which sees fatty deposits collect and lower the blood flow in arteries outside of the heart, most commonly in the legs. Those suffering from PAD will often experience pain while walking, and could even develop gangrene if the case is serious enough. Over 10 percent of people in Australia are afflicted with this painful condition. To treat it, a stent can be temporarily inserted inside the blood vessel to keep it open.

We’ve seen 3D printing used to fabricate stents before, which can help improve sizing options and allow for patient-specific diameters and shapes. But ,until now, there hasn’t been a way to print a self-expandable stent made of shape-memory nickel and titanium alloy nitinol. The material is superelastic, and metallurgists have had a difficult time trying to figure out a way to 3D print a self-expandable nitinol stent without compromising the unique properties of the metal alloy.

But researchers from Australia’s national science agency, the Commonwealth Scientific and Industrial Research Organisation (CSIRO), together with its Wollongong-based partner, the Medical Innovation Hub, have finally made it possible.

Vascular surgeon Dr. Arthur Stanton, the Chief Executive of Medical Innovation Hub, explained, “Currently, surgeons use off-the-shelf stents, and although they come in various shapes and sizes, overall there are limitations to the range of stents available. We believe our new 3D-printed self-expanding nitinol stents offer an improved patient experience through better fitting devices, better conformity to blood vessel and improved recovery times. There is also the opportunity for the technology to be used for mass production of stents, potentially at lower cost.”

Stent model

The first 3D-printed nitinol stent is a major medical breakthrough for PAD patients, as surgeons have had to use off-the-shelf, non-custom stents for these procedures in the past. But with 3D printing, individual nitinol stents can be made right at the hospital, with the surgeon there to offer instructions—saving time and money, and reducing inventory, as well.

According to Australia’s Minister for Industry, Science and Technology, Karen Andrews, 3D printing could mark a major paradigm shift in the $16 billion worldwide stent manufacturing industry:

“This is a great example of industry working with our researchers to develop an innovative product that addresses a global need and builds on our sovereign capability.”

The proof-of-concept stents offer the potential for customization to individual patient requirements, but are equally as suitable for mass production.

Back in 2015, CSIRO opened the Lab22 Innovation Center. The specialist researchers there are focused on creating value for Australia’s manufacturing industry by developing future developments in metal additive manufacturing. CSIRO’s Lab22 collaborates with industry partners, like the Medical Innovation Hub, to build important biomedical parts, like the first 3D-printed sternum and titanium heel, and now the first 3D-printed nitinol stent.

CSIRO Principal Research Scientist Dr Sri Lathabai said, “Nitinol is a shape-memory alloy with superelastic properties. It’s a tricky alloy to work with in 3D printing conditions, due to its sensitivity to stress and heat. We had to select the right 3D-printing parameters to get the ultra-fine mesh structure needed for an endovascular stent, as well as carefully manage heat treatments so the finished product can expand as needed, once inside the body.”

The team used selective laser melting (SLM) technology to successfully fabricate the complex mesh stent structures. Due to the level of geometric accuracy that 3D printing achieves, the stents can be made for specific patients, and nitinol allows them to expand once inside the body. CSIRO has established a new technology company, Flex Memory Ventures (FMV), to help commercialize the technology.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

The post CSIRO 3D Prints First Self-Expandable Stents from Shape-Memory Alloy Nitinol appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing News Briefs: January 19, 2019

Welcome to the first edition of 3D Printing News Briefs in 2019! We took a brief hiatus at the beginning of the new year, and now we’re back, bringing you the latest business, medical, and metal 3D printing news. First up, Sigma Labs has been awarded a new Test and Evaluation Program Contract, and Laser Lines is now a certified UK Stratasys training provider. Michigan’s Grand Valley State University, and a few of its partners, will be using Carbon 3D printing to make production-grade parts for medical devices. Cooksongold is launching new precious metal parameters for the EOS M 100 3D printer, and VBN Components has introduced a new metal 3D printing material.

Sigma Labs Receives Test and Evaluation Program Contract

This week, Sigma Labs, which develops and provides quality assurance software under the PrintRite3D brand, announced that it had been awarded a Test and Evaluation Program contract with a top additive manufacturing materials and service provider. This will be the company’s fifth customer to conduct testing and evaluations of its technology since September 2018, and Sigma Labs will install several PrintRite3D INSPECT 4.0 in-process quality assurance systems in the customer’s US and German facilities under the program. It will also support its customer in the program by providing engineering, hardware, metallurgical consulting and support services, software, and training.

“Sigma Labs is deeply committed to our In-Process Quality Assurance tools, supporting and moving forward with them,” said John Rice, the CEO of Sigma Labs. “I am confident that this initiative, which marks our fifth customer signed from diverse industries in the past four months, will validate our PrintRite3D technology in commercial-industrial serial manufacturing settings. We believe that going forward, AM technology will play an increasingly prominent role in the aerospace, medical, power generation/energy, automotive and tooling/general industries, all areas which are served by this customer.”

Laser Lines Announces New Stratasys Training Courses

Through its new 3D Printing Academy, UK-based total 3D printing solutions provider Laser Lines is now a certified provider of Stratasys training courses. The custom courses at the Academy for FDM and Polyjet systems are well-suited for new users, people in need of a refresher, or more experienced users, and include tips and tricks that the company’s certified trainers have personally developed. One-day and two-day courses are available at customer sites, or at the Laser Lines facility in Oxfordshire.

“The training courses are an extension of the advice and education we have been providing to customers for the past 20 years. With our experienced team able to share their knowledge and experience on both the FDM and Polyjet systems and materials, customers who are trained by us will get the value of some real life application examples,” said Richard Hoy, Business Development at Laser Lines.

“We want to ensure that our customers get what they need from our training so before booking, our Stratasys academy certified trainers can discuss exact requirements and advise both content and a suitable duration for the training course so that it meets their needs entirely.”

Exploring Applications in Medical Device Manufacturing

Enabled by Michigan state legislation, the Grand Rapids SmartZone Local Development Finance Authority has awarded a half-million-dollar grant that will be used to fund a 2.5-year collaborative program centered around cost and time barriers for medical devices entering the market. Together, Grand Valley State University and its study partners – certified contract manufacturer MediSurge and the university’s applied Medical Device Institute (aMDI) – will be using 3D printing from Carbon to create production-grade parts, out of medical-grade materials and tolerances, in an effort to accelerate medical device development, along with the component manufacturing cycle. A Carbon 3D printer has been installed in aMDI’s incubator space, where the team and over a dozen students and faculty from the university’s Seymour and Esther Padnos College of Engineering and Computing will work to determine the “tipping point” where 3D printing can become the top method, in terms of part number and complexity, to help lower startup costs and time to market, which could majorly disrupt existing manufacturing practices for medical devices.

“We are thrilled to be the first university in the Midwest to provide students with direct access to this type of innovative technology on campus. This novel 3D additive manufacturing technology, targeting medical grade materials, will soon be the new standard, and this study will be a launch pad for course content that is used in curriculum throughout the university,” said Brent M. Nowak, PhD, the Executive Director of aMDI.

New Precious Metal 3D Printing Parameters at Cooksongold

At this week’s Vicenzaoro jewelry show, Cooksongold, a precious metal expert and the UK’s largest one-stop shop for jewelry and watch makers, announced that it is continuing its partnership with EOS for industrial 3D printing, and will be launching new precious metal parameters for the EOS M 100 3D printer, which is replacing the system that was formerly called the PRECIOUS M 080. The EOS M 100 builds on the powder management process and qualities of the PRECIOUS M 080, and the new parameters make it possible for users to create beautiful designs, with cost-effective production, that are optimized for use on the new 3D printer.

“We are proud to continue our successful partnership with Cooksongold, which was already established 2012,” said Markus Brotsack, Partner Manager at EOS. “The EOS M 100 system increases productivity and ensure high-quality end parts as we know them. Based on our technology, EOS together with Cooksongold plans to develop processes for industrial precious metals applications too.”

VBN Components Introducing New Cemented Carbide

Drill bits in Vibenite 480; collaboration with Epiroc.

In 2017, Swedish company VBN Components introduced the world’s hardest steel, capable of 3D printing, in its Vibenite family. Now it’s launching a new 3D printing material: the patented hard metal Vibenite 480, which is a new type of cemented carbide. The alloy, which has a carbide content of ~65%, is heat, wear, and corrosion resistant, and based on metal powder produced through large scale industrial gas atomization, which lowers both the cost and environmental impact. What’s more, VBN Components believes that it is the only company in the world that is able to 3D print cemented carbides without using binder jetting. Because this new group of materials is a combination of the heat resistance of cemented carbides and the toughness of powder metallurgy high speed steels (PM-HSS), it’s been dubbed hybrid carbides.

“We have learned an enormous amount on how to 3D-print alloys with high carbide content and we see that there’s so much more to do within this area,” said Martin Nilsson, the CEO of VBN Components. “We have opened a new window of opportunity where a number of new materials can be invented.”

Early adopters who want to be among the first to try this new material will be invited by VBN Components to a web conference at a later date. If you’re interested in participating, email info@vbncomponents.com.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

Top 10 3D Printing Aerospace Stories from 2018

3D printing has played an important role in many industries over the past year, such as medical, education, and aerospace. It would take a very long time to list all of the amazing news in aerospace 3D printing in 2018, which is why we’ve chosen our top 10 stories for you about 3D printing in the aerospace industry and put them all in a single article.

Sintavia Received Approval to 3D Print Production Parts for Honeywell Aerospace

Tier One metal 3D printer manufacturer Sintavia LLC, headquartered in Florida, announced in January that it is the first company to receive internal approval to 3D print flightworthy production parts, using a powder bed fusion process, for OEM Honeywell Aerospace. Sintavia’s exciting approval covers all of Honeywell’s programs.

Boeing and Oerlikon Developing Standard Processes

Boeing, the world’s largest aerospace company, signed a five-year collaboration agreement with Swiss technology and engineering group Oerlikon to develop standard processes and materials for metal 3D printing. Together, the two companies will use the data resulting from their agreement to support the creation of standard titanium 3D printing processes, in addition to the qualification of AM suppliers that will produce metallic components through a variety of different materials and machines. Their research will focus first on industrializing titanium powder bed fusion, as well as making sure that any parts made with the process will meet the necessary flight requirements of both the FAA and the Department of Defense.

FITNIK Launched Operations in Russia

In 2017, FIT AG, a German provider of rapid prototyping and additive design and manufacturing (ADM) services, began working with Russian research and engineering company NIK Ltd. to open up the country’s market for aerospace additive manufacturing. FIT and NIK started a new joint venture company, dubbed FITNIK, which combines the best of what both companies offer. In the winter of 2018, FITNIK finally launched its operations in the strategic location of Zhukovsky, which is an important aircraft R&D center.

New Polymer 3D Printing Standards for Aerospace Industry

The National Institute for Aviation Research (NIAR) at Wichita State University (WSU), which is the country’s largest university aviation R&D institution, announced that it would be helping to create new technical standard documents for polymer 3D printing in the aerospace industry, together with the Polymer Additive Manufacturing (AMS AM-P) Subcommittee of global engineering organization SAE International. These new technical standard documents are supporting the industry’s interest in qualifying 3D printed polymer parts, as well as providing quality assurance provisions and technical requirements for the material feedstock characterization and FDM process that will be used to 3D print high-quality aerospace parts with Stratasys ULTEM 9085 and ULTEM 1010.

Premium AEROTEC Acquired APWORKS

Metal 3D printing expert and Airbus subsidiary APWORKS announced in April that it had been acquired as a subsidiary by aerostructures supplier Premium AEROTEC. Premium AEROTEC will be the sole shareholder, with APWORKS maintaining its own market presence as an independent company. Combining the two companies gave clients access to 11 production units and a wide variety of materials.

Gefertec’s Wire-Feed 3D Printing Developed for Aerospace

Gefertec, which uses wire as the feedstock for its patented 3DMP technology, worked with the Bremer Institut für Angewandte Strahltechnik GmbH (BIAS) to qualify its wire-feed 3D printing method to produce large structural aerospace components. The research took place as part of collaborative project REGIS, which includes several different partners from the aerospace industry, other research institutions, and machine manufacturers. Germany’s Federal Ministry for Economic Affairs and Energy funded the project, which investigated the influence of shielding gas content and heat input on the mechanical properties of titanium and aluminium components.

Research Into Embedded QR Codes for Aerospace 3D Printing

It’s been predicted that by 2021, 75% of new commercial and military aircraft will contain 3D printed parts, so it’s vitally important to find a way to ensure that 3D printed components are genuine, and not counterfeit. A group of researchers from the NYU Tandon School of Engineering came up with a way to protect part integrity by converting QR codes, bar codes, and other passive tags into 3D features that are hidden inside 3D printed objects. The researchers explained in a paper how they were able to embed the codes in a way that they would neither compromise the integrity of the 3D printed object or be obvious to any counterfeiters attempting to reverse engineer the part.

Lockheed Martin Received Contract for Developing Aerospace 3D Printing

Aerospace company Lockheed Martin, the world’s largest defense contractor, was granted a $5.8 million contract with the Office of Naval Research to help further develop 3D printing for the aerospace industry. Together, the two will investigate the use of artificial intelligence in training robots to independently oversee the 3D printing of complex aerospace components.

BeAM And PFW Aerospace Qualified 3D Printed Aerospace Component

BeAM, well-known for its Directed Energy Deposition (DED) technology, announced a new partnership with German company PFW Aerospace, which supplies systems and components for all civilian Airbus models and the Boeing 737 Dreamliner. Together, the two worked to qualify a 3D printed aerospace component, made out of the Ti6Al4V alloy, for a large civil passenger aircraft, in addition to industrializing BeAM’s DED process to manufacture series components and testing the applicability of the method to machined titanium components and complex welding designs.

Researchers Qualified 3D Printed Aerospace Brackets

Speaking of parts qualification, a team of researchers completed a feasibility study of the Thermoelastic Stress Analysis (TSA) on a titanium alloy space bracket made with Electron Beam Melting (EBM) 3D printing, in order to ensure that its mechanical behavior and other qualities were acceptable. The researchers developed a methodology, which was implemented on a titanium based-alloy satellite bracket.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.