Azul 3D Raises $12.5 Million for Large, Fast HARP 3D Printing Technology

Azul 3D, known for its ongoing development of high area rapid printing (HARP) technology, is certainly not lacking in financial resources—or faith from investors. Having just raised another $12.5 million in seed financing, the Skokie, IL startup will expand its printing technology further, along with developing a line of commercial 3D printers. This latest round of funding follows recent financing of over $8 million in May, along with a previous $5.4 million for development and release of their HARP printers.

Investors for this round of funding included:

  • Louis A. Simpson, former CIO for Geico, former manager of Berkshire Hathaway and founder of SQ Advisors
  • Wally Loewen Baum, former chairperson of 3D Systems
  • Joe Allison, former CEO of Stratasys Direct Manufacturing
  • Hugh Evans, former senior vice president of corporate development for 3D Systems

“Investors recognize the paradigm shifting and disruptive nature of Azul’s proprietary HARP 3D printing technology,” said Chad Mirkin, Azul 3D cofounder and chair. “HARP’s throughput allows Azul to substantially lower the upfront and sustained costs in the manufacturing of goods, spanning many sectors. The company intends to secure major partnerships validating this point in the very near future.”

As the COVID-19 pandemic continues on in the US and worldwide, Azul 3D has been involved in 3D printing medical face shields. Currently, the company can produce 1,000 parts every 12 hours per HARP printer. The PPE is being used by hospitals, prisons and first responders. The Azul 3D team is expecting to make twice as many shields once their new printers are launched within the next 18 months.

Azul 3D emerged from a research group at Northwestern University upon developing the proprietary HARP technology, a futuristic technique offering powerful on-demand manufacturing capable of printing a part or prototype the size of a human—in just two hours. HARP printers are 13 feet tall, with a 2.5 square footprint bed, and are capable of producing half a yard of material.

3D printing is controlled thermally with a mobile liquid interface allowing for continuous and rapid print process.

A) A hard, machinable polyurethane acrylate part (print rate, 120 μm/s; optical resolution, 100 μm) with a hole drilled against the print direction. Traditional noncontinuous layer-by-layer printing techniques typically delaminate and fracture when drilled in this orientation. (B) A post-treated silicon carbide ceramic printed lattice (print rate of green polymer precursor, 120 μm/s; optical resolution, 100 μm) stands up to a propane torch (~2000°C). (C and D) A printed butadiene rubber structure (print rate, 30 μm/s; optical resolution, 100 μm) in a relaxed state (C) and under tension (D). (E) Polybutadiene rubber (print rate, 30 μm/s; optical resolution, 100 μm) returns to expanded lattice after compression. (F) A ~1.2-m hard polyurethane acrylate lattice printed in less than 3 hours (vertical print rate, 120 μm/s; optical resolution, 250 μm). Scale bars, 1 cm. (Image: ‘Rapid, large-volume, thermally controlled 3D printing using a mobile liquid interface’)

“One of the reasons we’re doing so well is because our technology offers a solution to unexpected surges in demand and supply-chain bottlenecks that occur during global crises, such as in the current pandemic,” said David Walker, Azul 3D cofounder and chief technology officer. “With the ability to manufacture nearly anything quickly and on demand, we can meet these unexpected needs as they arise to quickly fill gaps in the supply chain.

“That’s the big difference between HARP and traditional manufacturing as well as many other forms of 3D printing, which either don’t have the throughput or material properties to meet the required specifications. We don’t have to change a whole assembly line or machine new molds. The concerns that accompany a stressed supply chain simply vanish.”

The first series of beta HARP 3D printers will be shipping early next year, meant to be used in a variety of different applications and supply chains.

Find out more about the unique HARP process here, as well as at Azul 3D.

The post Azul 3D Raises $12.5 Million for Large, Fast HARP 3D Printing Technology appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Aerosol Jet Printing used to produce low-cost graphene food toxin sensor

Researchers based in the USA have used Aerosol Jet Printing (AJP) technology from New Mexico-based 3D printer manufacturers Optomec to develop a graphene-based electrochemical sensor for testing food. According to the study, the sensor is capable of detecting histamines (allergens) and toxins in food much faster than standard laboratory tests. The ability to alter the […]

Zurich researchers create universal carrier bioink for 3D printing

Researchers at the Swiss Federal Institute of Technology Zurich (ETHZ) have produced a universal nanocarrier ink platform, that provides tailored rheology for extrusion‐based 3D printing, and facilitates the formulation of biofunctional inks.  The Universal Nanocarrier Ink (UNI), can be combined with a range of functional secondary polymers, to enable the stabilization of printed constructs via […]

Sigma Labs signs new contracts with Northwestern University, Materialise

Two pieces of news show how Sigma Labs’ PrintRite3D software will be used by Materialise and Northwestern University. Santa Fe-based Sigma Labs has signed a contract to implement its quality assurance software for metal additive manufacturing at Northwestern University for the first time. Furthermore, Sigma Labs has signed a joint sales agreement with Belgium headquartered Materialise, advancing an earlier MoU to develop an integrated in-situ […]

Stratasys appoints Yoav Zeif as new CEO

Leading 3D printer OEM Stratasys has appointed Yoav Zeif as its new Chief Executive Officer, effective February 18, 2020. The company’s current interim CEO Elchanan Jaglom will continue in his role as Chairman. “Stratasys has led the expansion of the 3D printing industry for more than three decades, but the potential impact of this transformative […]

Northwestern University: Researchers Produce Large Scale 3D Printer & Control Heat with HARP Technology

3D printing technology is often seen from the ‘bigger is better’ perspective, especially as researchers and manufacturers continue to out-do each other in digital fabrication of enormous proportions. Now, a team at Northwestern University has created a large-scale, ‘futuristic’ 3D printer capable of printing a prototype or part that is the size of an adult human—and in just two hours.

Using high-area rapid printing (HARP), the research team has made enormous technological progress with throughput never seen before in on-demand manufacturing. And while historically 3D printing users want it all, there are usually numerous trade-offs with that ideal, including missing out on some of the advantages of such technology due to strength in one area and great loss in another—often at the risk of diminishing performance or quality or causing restrictions.

The researchers state that such compromises are not required with HARP technology, featuring a 13-foot-tall printer with a print bed measuring 2.5 square feet. The prototype—projected to be on the market in around 18 months—is currently able to print half a yard of material (whether single, large, or different parts at one time) in one hour, which the research team states is a record.

Chad Merkin (Photo: Northwestern)

“3D printing is conceptually powerful but has been limited practically,” said Northwestern’s Chad A. Mirkin, product development leader. “If we could print fast without limitations on materials and size, we could revolutionize manufacturing. HARP is poised to do that.”

This project evolved as chemists Joseph DeSimone and Mirkin, long-time friends, began working together in the 3D printing field in 2015. DeSimone and colleagues at the University of North Carolina in Chapel Hill wrote about continuous liquid interface production (CLIP). And while it has been groundbreaking, undeniably, CLIP technology still offers challenges in production also—notably during curing, causing warping and cracking, often due to size. Mirkin’s developers, working within their new company Azul 3D, have worked past such issues by circulating coolant beneath the resin, and then sending it through a unit made for cooling—literally ‘pulling’ the heat from printed parts. This has allowed researchers so far to print objects that are one square meter in cross-section—and over 4 meters high.

Using ‘tiling,’ the researchers use light positioned from four projectors sitting side-by-side during the new SLA process.

(A) A hard, machinable polyurethane acrylate part (print rate, 120 μm/s; optical resolution, 100 μm) with a hole drilled against the print direction. Traditional noncontinuous layer-by-layer printing techniques typically delaminate and fracture when drilled in this orientation. (B) A post-treated silicon carbide ceramic printed lattice (print rate of green polymer precursor, 120 μm/s; optical resolution, 100 μm) stands up to a propane torch (~2000°C). (C and D) A printed butadiene rubber structure (print rate, 30 μm/s; optical resolution, 100 μm) in a relaxed state (C) and under tension (D). (E) Polybutadiene rubber (print rate, 30 μm/s; optical resolution, 100 μm) returns to expanded lattice after compression. (F) A ~1.2-m hard polyurethane acrylate lattice printed in less than 3 hours (vertical print rate, 120 μm/s; optical resolution, 250 μm). Scale bars, 1 cm. (Image: ‘Rapid, large-volume, thermally controlled 3D printing using a mobile liquid interface’)

“Tiling, with our technology, is theoretically unlimited,” Mirkin says.

Converting liquid plastics into solid parts, HARP prints vertically, curing under UV light. Parts can be used in applications for the automotive industry, aerospace, dentistry, and different areas of medicine. More detailed information about their work has also just been published in the recently published ‘Rapid, large-volume, thermally controlled 3D printing using a mobile liquid interface.’

Most 3D printers generate an obvious amount of heat, which can be prohibitive in design on a larger scale. In this case, light is projected through a window, that allows for the removal of heat and circulation through the cooling unit.

The HARP system 3D prints vertically (Image: Northwestern Now)

“Our technology generates heat just like the others,” Mirkin said. “But we have an interface that removes the heat.”

“When you can print fast and large, it can really change the way we think about manufacturing,” Mirkin also added. “With HARP, you can build anything you want without molds and without a warehouse full of parts. You can print anything you can imagine on-demand.”

3D printing varies from one extreme to another, which is one facet of this technology that makes it so exciting. One day you may be reading about 3D printing on the micro-scale or experimenting with nano-composites, and the next, learning about manufactures fabricating parts on the large scale.

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

(A) Stationary print interface. (B) Mobile interface. (C) Mobile interface with active cooling. Elapsed time between panels (left to right) is ~500 s; scale bars, 25 mm. Data and thermal color mapping correspond to movies S1 to S3. (Image: ‘Rapid, large-volume, thermally controlled 3D printing using a mobile liquid interface’)

[Source / Images: Science; Northwestern Now; ‘Rapid, large-volume, thermally controlled 3D printing using a mobile liquid interface’]

The post Northwestern University: Researchers Produce Large Scale 3D Printer & Control Heat with HARP Technology appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Northwestern researchers develop large scale SLA HARP 3D printer with record throughput

Researchers at Northwestern University in Evanston, Illinois, have developed a new 3D printer that they claim can print half a yard (457.2 mm) in an hour, a reportedly record-breaking throughput in 3D printing.  Called HARP (high-area rapid printing), the speed and size of the system, standing at 13-feet (3962 mm) tall, can allow users to […]

Scientists apply 3D printed hyperelastic bone to skull reconstruction

Researchers from Northwestern University, and the University of Illinois at Chicago (UIC) have used 3D printed hyperelastic bone to regenerate skull defects in rats. The results could eventually lead to the development of a much needed cost-effective solution for craniofacial bone grafts.   Though further experimentation is required, the researchers state, “Our study underscores the promising […]