ORNL Polyester and Vinylester as Possible Materials for Large-Scale 3D Printing

In a paper entitled “Vinylester and Polyester 3D Printing,” researchers at Oak Ridge National Laboratory (ORNL) teamed up with researchers from Polynt Composites USA to evaluate the feasibility of 3D printing vinylester and polyester materials. The two organizations worked together to assess Polynt base material chemistries for large scale polymer additive manufacturing.

The project consisted of three tasks: rheology and reaction kinetics; solvents, build sheets and safety analysis; and proof of concept demonstration.

“The printability of polyester or vinylester resins is driven primarily by the rheology and reaction kinetics of the polymers,” the researchers state. “These properties can be controlled through chemistry modification and by incorporating additives. The ability to control these properties distinguishes reactive additive manufacturing(AM) from thermoplastic AM, which is driven largely by temperature gradients that can’t be controlled. Polymers tested in Phase 1 of this project had viscosity of 300-700 centipose (cP), with reaction times ranging from 9 to 40 minutes.”

The researchers then evaluated safety considerations for the large scale 3D printing of vinylester and polyester materials. Some of the main concerns addressed involved explosion and health and safety properties of styrene. Low cost Mylar sheets were used for the first phase of the project, and acetone was used for the cleaning of the equipment.

As a proof of concept, the researchers used a Thermobot from Magnum Venus Products to 3D print demonstration articles to show the feasibility of printing vinylester and polyester materials. Quasi-status tensile tests were performed on the 3D printed items for both the X and Z axes. Results showed that this new class of reactive polymers will outperform existing thermoplastic materials used for large scale additive manufacturing. Also, the reduction of properties from print direction (X) to build direction (Z) is only 29 percent, a less significant decrease than for most thermoplastic materials.

“Standard toolpath planning strategies were adopted from thermoplastic printers,” the researchers continue. “However, it was demonstrated that materials evaluated in this project allowed greater freedom in toolpath planning since it was possible to cross a previously deposited bead without stopping and pausing the print. Eliminating stops at bead cross-overs will result in significant time savings and possibly an improvement in the mechanical properties of printed structure.”

Overall, the project showed that polyester and vinylester materials are promising for large scale additive manufacturing.

“High strength values compared to existing thermoplastic additive material have been demonstrated along with less than 30% reduction in Z strength compared to print direction strength,” the researchers conclude. “These materials require no energy input during printing and have been shown to offer increased freedom in toolpath planning. Additionally, carbon fiber, or other additives with low coefficients of thermal expansion, are not required to achieve large scale prints, presenting the possibility of introducing low cost materials for large scale AM.”

The researchers successfully met their goals in Phase 1 of the project, demonstrating the feasibility of using polyester and vinylester for large scale additive manufacturing. The next step is to achieve taller builds and optimize material properties for consistent deposition with available equipment. The researchers believe that these materials could be used in applications requiring strength beyond the reach of existing thermoplastic 3D printing materials.

Authors of the paper include John Ilkka, Steve Voeks, John Lindahl and Vlastimil Kunc.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

 

3D Printing Industry Review of the Year April 2018

In April 2018, automotive and architecture dominated on the 3D printing applications front. This month, 3D Printing Industry also became an official media partner of AMUG, one of the most exclusive groups in the industry – and we featured big releases from the likes of Stratasys, BMW, Oak Ridge National Laboratory, and Markforged. 3D Printing […]

Oak Ridge National Laboratory Investigates New Lignin-Nylon Composite 3D Printing Material

Lignin is an organic polymer that is present in the cell walls of many plants, giving them rigidity such as in wood and bark. It’s also a byproduct of biorefinery processes, and, thanks to work by researchers at Oak Ridge National Laboratory (ORNL), it could make up a new kind of 3D printing material. The research is documented in a paper entitled “A path for lignin valorization via additive manufacturing of high-performance sustainable composites with enhanced 3D printability.

“Finding new uses for lignin can improve the economics of the entire biorefining process,” said ORNL project lead Amit Naskar.

The researchers combined a melt-stable hardwood lignin with conventional plastic – a low-melting nylon – and carbon fiber to create a composite with excellent mechanical properties and strength between layers, as well as extrudability. One of the issues of lignin is that it chars easily and can only be heated to a certain temperature before it becomes too viscous to be extruded. When the researchers combined it with nylon, however, they found that its room temperature stiffness increased while its melt viscosity decreased. The composite had tensile strength similar to nylon alone and lower viscosity than ABS or polystyrene.

The researchers conducted neutron scattering at the High Flux Isotope Reactor and used advanced microscopy at the Center for Nanophase Materials Science to investigate the composite’s nuclear structure. They discovered that the combination of lignin and nylon “appeared to have almost a lubrication or plasticizing effect on the composite,” according to Naskar.

“Structural characteristics of lignin are critical to enhance 3D printability of the materials,” said ORNL’s Ngoc Nguyen.

The researchers were also able to mix a higher percentage of lignin – 40 to 50 percent by weight – and then add 4 to 16 percent carbon fiber. The result was a new composite that heats up more easily, flows faster, and results in a stronger 3D printed product.

“ORNL’s world-class capabilities in materials characterization and synthesis are essential to the challenge of transforming byproducts like lignin into coproducts, generating potential new revenue streams for industry and creating novel renewable composites for advanced manufacturing,” said Moe Khaleel, Associate Laboratory Director for Energy and Environmental Sciences.

The lignin-nylon composite is patent-pending, and the researchers will continue to work with it to refine it and find other ways to process it. ORNL has been working with lignin for several years, and has done a lot of work with other novel 3D printing materials as well. As the researchers point out, petroleum-based thermoplastics still dominate the 3D printing materials market; the market for wood- and plant-based 3D printing materials is still limited because of their inherent difficulties in melt processing.

“Our study opens a new avenue of using isolated lignin as a feedstock for formulating 3D-printing materials having superior mechanical and printing characteristics,” they conclude. “Our findings have the potential to create additional revenue streams for biomass processing industries via the added value of lignin. In addition, it may accelerate installation of pilot biomass fractionation units in rural areas before feeding the whole biomass to a biorefinery and boost local polymer compounding industries that manufacture or compound materials for 3D printing and injection molding.”

Authors of the paper include Ngoc A. Nguyen, Sietske H. Barnes, Christopher C. Bowland, Kelly M. Meek, Kenneth C. Littrell, Jong K. Keum and Amit K. Naskar.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

[Source/Images: ORNL]

 

IMTS Highlights: traditional manufacturers integrating additive manufacturing

The International Manufacturing Technology Show (IMTS) 2018, in Chicago, Illinois, where 3D Printing Industry has been reporting live comes to a close this weekend. With a variety of announcements from industry leaders such as HP, EOS,3D Systems and GF Machining Solutions, companies adopting additive manufacturing within its conventional machining systems should also be recognized. Thus, […]

Day One of IMTS 2018, new metal 3D printing technology and more

3D Printing Industry has returned to Chicago for the 2018 edition of IMTS. Held in every even-numbered year, IMTS is North America’s leading manufacturing technology show. The 2,123 booths cover 1,424,232 sq. ft., and final visitor numbers are expected to exceed 120,000 by the end of the week. One attendee with a background in the […]

ORNL Develops a New 3D Printing Material and Showcases Several Others

Lignin is a complex organic polymer that is an important part of the cell walls of many plants, making them woody and rigid. It’s also a 3D printable material, much like cellulose, another building block in plant cells. Oak Ridge National Laboratory (ORNL), a research organization that has done a great deal of important work with 3D printing,  has developed a new 3D printing material using lignin.

[Image: Ngoc Nguyen/Oak Ridge National Laboratory, U.S. Dept. of Energy]

The plant-based material, according to ORNL, has excellent printability and performance. Lignin also happens to be a byproduct of the biofuels process, and could become a valuable coproduct with its use as a 3D printing material.

The material is made by combining lignin, rubber, carbon fiber and ABS. Components 3D printed with the material have 100 percent improved weld strength between layers compared to ABS alone.

“To achieve this, we are building on our experience with lignin during the last five years,” said ORNL’s Amit Naskar. “We will continue fine tuning the material’s composition to make it even stronger.”

The details of the patent-pending process have been published in a paper entitled “A general method to improve 3D-printability and inter-layer adhesion in lignin-based composites,” which you can access here. Authors of the paper include Ngoc A. Nguyen, Christopher C. Boland, and Amit K. Naskar.

More of ORNL’s 3D printing expertise was in the spotlight recently as Secretary of Energy Rick Perry traveled to the facility to dedicate Summit, the world’s fastest and smartest scientific supercomputer. Perry didn’t stand at any ordinary wooden podium – he stood behind a futuristic 3D printed podium, courtesy of ORNL. With the exception of the microphone and the wiring, every part of the podium was 3D printed, using different technologies and materials.

The top of the podium was 3D printed with 20% carbon fiber ABS, using a Blue Gantry large-scale polymer deposition system. The printing took six hours, and then the piece was coated with a Tru-Design sand coat with clear paint and a flattening agent. The pedestal was 3D printed with 30% bamboo reinforced with 70% PLA, also using a Blue Gantry System and Tru-Design clear paint and a flattening agent. The component took three hours to 3D print. The Department of Energy seal on the podium was 3D printed from a titanium alloy using an Arcam electron beam melting system. It took nine hours and 44 minutes to print.

The podium is a showcase of the speed and effectiveness of 3D printing, no matter what the technology used. The complex DOE seal traditionally would have to be cast, but 3D printing it was much faster and did not require the use of a die. Attendees at the presentation were able to see how ORNL’s Manufacturing Demonstration Facility saved money, time and reduced waste through its use of technology. The final product is attractive, with a twisting, multi-sided brown pedestal and a silvery top with the DOE seal prominently displayed. It’s also a highly functional podium, sturdy and durable, with the advanced coatings applied to it making it resistant to rain, sun, or other outdoor elements.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

[Sources/Images: ORNL, Department of Energy]

 

World’s largest composite 3D printer installed by Thermwood at Local Motors to make self-driving vehicles

A Thermwood LSAM 10’x40′ 3D printer was recently installed at ground mobility company Local Motors. Large Scale Additive Manufacturing The Phoenix, Arizona headquartered Local Motors recently restructured under LM Industries and announced a Chandler, AZ microfactory focused on the low-volume production of specialist vehicles. LM Industries is also working with the U.S. Marine Corps to […]