Phil Schultz of 3D Systems on 3D Printing Supply Chain Assurance

Phil Schultz is executive vice president of Operations at 3D Systems. As a seasoned 3D printing exec, he leads all on-demand operations there. Before that, he lead Foxconn’s printing business and spent 25 years at HP, ultimately leading their consumer inkjet offering. I interviewed Phil and enjoyed his measured, thoughtful responses, which showed his deep understanding of the possible and impossible of additive. 

The current crisis has exposed the brittleness of our just-in-time manufacturing world. Small ripples in the system can propagate, reinforce themselves, and cause waves that, in turn, build up to a storm, collapsing the system. A factory in Thailand closing or a freighter being diverted can wreak havoc on the intricate supply chains that connect our globalized society. A system that is so massive and world-spanning as global commerce and transport turned out to shatter easily in a difficult situation. Many global organizations are now discovering that they need to do more to audit and update their supply chains. Supply chain resilience once meant that you had more than one supplier for critical components. But now we all know that we need to look further to assure supply. What role can 3D printing play in this? 

Phil differentiates between “short-term and long-term supply chain interruptions.” “Especially in an emergency…3D printing can help” and do so much faster than other technologies can. If “additive is a contingency or it is used in bridge manufacturing,” it is often an excellent choice. We “don’t need any tooling…and we’re not bound to a geography” with 3D printing “through a distributed manufacturing model…or one order being delivered globally” we can respond in a crisis, and we’re “lightning fast.” Especially for “small parts in runs of a 100, 1,000 or 10,000…additive has the advantage.” 

The “downside with 3D printing is the materials…that your parts are different than injection molded parts,” and “part properties and strength may not be the same.” “Your parts could be good enough for the application,” but he cautions customers against entering into production “without qualification…because then you’re carrying a lot of risk.” There will also be “cost differences…and often increased costs mean that without mass customization additive may not always make sense.” 

He likes to take customers through “a simple calculation…that often shows that pricing represents “multiples of an injection-molded part—not 20% or 30% higher—multiples” and, in that case, if “you’re going to do a replacement of a conventional part,” the business case falters. In that case, “you’d only do it because you have no choice.”

However, if you “learn to design for the technology…and use it to combine parts…lose weight…bring value,” it changes the equation. “Why would you want this is part to be 3D printed…and what does that mean for your business?” He maintains that “3D printing is…not a replacement for CNC or injection molding…it is just another tool” and “you must use it wisely.” 3D printing can help you “guard against the future…and find your future more quickly,” but it is no panacea. 

A 3D Systems On Demand site in Lawrenceburg, TN.

A 3D Systems On Demand site in Lawrenceburg, TN.

There are often overlooked alternatives, made possible by 3D printing, that allow for more scale and lower costs. This includes “3D printing positive investment casting print patterns,” “using Real Wax for lost wax casting,” or “directly 3D printing low-pressure injection molds.”

“By casting urethane..or through thermoforming inserts” relatively low-cost parts can be made in the millions, as Invisalign already does with the latter technology. In “thermoforming, some customers are making over 400,000 parts a day,” through the use of 3D printing as an intermediate. Yes, in an emergency, he understands that people are printing face shields. But, if we step back, then we can consider making the headband through thermoforming or urethane casting and using an acetate screen to sterilize the parts more easily. Phil continually seeks to use additive for the right applications, the right parts. “We are geometry agnostic, require no tooling, and we are fast to the first part, but must be aware of the tradeoffs in materials and more expense.” 

3D Systems MJP Wax

He’s excited “by making spare parts out of polyamide…through sintering…especially of filled materials” and, also, “new possibilities in TPU.” Higher temperature resins for SLA are also pushing the envelope of what is possible there. Now, “we are getting resins with good flexural strength, elongation…that make parts that can bend well while being less brittle.” 

When he does introduce 3D printing for manufacturing at a firm, he likes to “start with the applications people..and walk the (production) lines…to see how we can help… We can evaluate our services…your parts…and see what sense it makes to outsource or do in-house.” Ideally, he’d like to “get into the design phase…and help companies with qualification..or share with them how to qualify products for additive.” Surprisingly, one of the sectors that he is most excited about is EMS and contract manufacturing firms.

“They have tonnes of injection molded parts…many indirect parts…and can often use additive in the short term…but have not considered it for more.” With these businesses, “almost every fixture and tool can be improved, adjusted or is now more quickly consumed,” making it more suitable for additive. “An iPhone production line may have 600 people on it and as many steps. Imagine a five percent improvement.”

He likes asking manufacturing firms, “what do you need?” and then “having complex conversations about matching material properties to needs…avoiding tooling…and the level of proof required for them to proceed.”  He’s now increasingly seeing “ducts, knobs, connections, functional parts in gear trains…and on the whole, things that are more functional in assemblies” being made with additive. A few years ago, he only used to “talk to R&D, and now we talk with [operations]…about things that I care about, such as cycle time.”

3D printing “is emerging as a backup plan….but you have to design for it… 3D printing services could, through their hundreds of machines…solve customer problems,” but firms could also have 3D print capacity in-house for the most relevant materials to them. Either way, qualified parts can be manufactured at scale, but not all parts can be made cost-effectively through 3D printing.

It is clear from Phil’s recent experience that additive is maturing and new applications are being discovered all the time. New realism is unlocking actual manufacturing and, in due time, we could provide true supply chain reassurance through 3D printing. Ultimately, “I want to go in front of every industrial engineer in the world and show them how their creativity can be unleashed with 3D printing.” 

The post Phil Schultz of 3D Systems on 3D Printing Supply Chain Assurance appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Interview with Phil Schultz Executive Vice President Operations 3D Systems

Phil Schultz is the Executive Vice President, Operations, 3D Systems. Phil spent 25 years at HP rising to become GM and VP of their Imaging & Printing group. Then he initiated and created Foxconn’s printing business from the ground up turning it into a $2 billion revenue unit for the company. Now he’s heading up all Operations for 3D Systems after expanding their Quickparts and on-demand businesses previously. He is a key leader at 3D Systems that is part of the righting the 3D System ship and steering it into a profitable growth-oriented more efficient future. We interviewed him to learn more about on demand, the future of manufacturing and Phil’s thoughts on our industry.

A vent printed with 3D Systems’ Figure 4 technology, a plated version of the same vent is on the right.

Why should I use 3D Systems On Demand?

3D Systems’ On Demand offers the broadest portfolio of services in the industry – including both additive and subtractive manufacturing. We invented stereolithography (SLA) and we make extensive use of this technology plus many others including selective laser sintering (SLS), direct metal printing (DMP), colorjet printing (CJP), cast urethane/vacuum casting, CNC machining, sheet metal, die casting, low-volume injection mold tooling & parts, and investment casting patterns. In addition to the broad technology portfolio, 3D Systems has the broadest application and experience in the industry. This allows us to truly partner with our customers to help them meet their specific business needs. Our complete portfolio accelerates businesses and production for both novices and experienced professionals.

There are a number of new 3D printing services out there, how do you differentiate yourselves?

3D Systems is the only end-to-end solution provider in the industry, and also one of the only players with both metal and plastics technology. Additionally, our deep expertise allows us to partner with our customers to meet their business needs.

We have four offerings in our On Demand portfolio:

Quick prototyping (i.e., QuickParts) – This is table stakes for anyone in the on demand services business

– Functional prototyping is our QuickParts service offering with post processing and secondary steps added. This tends to be more of a project-based service.

– Our low volume production service is available to produce hundreds to thousands of parts per month.

– We also create product concept/appearance models which include finishing to deliver a part that is representative of a final product to support marketing campaigns and customer testing.

A bracket made on a Projet and then cast.

Do you see yourselves developing more capabilities than just 3D printing?

We already do, and to be a true service bureau provider, you need to have more than additive manufacturing (AM). Keep in mind, AM is not the right solution for every challenge or situation.. And this is one area where the breadth and depth of our expertise comes to bear for our customers. It’s important to help customers understand where AM is appropriate versus other technologies. We do this because it’s essential to helping customers meet their business challenges.

What do you think the future of prototyping is?

Prototyping is critical for product development – specifically, accelerating learning for someone developing new offerings. The closer you can get to the end-product early in the product development lifecycle, the better off you are. Prototyping allows designers to run turn cycles faster and reduce investment in tooling.

Over the past couple years, additive manufacturing and prototyping have “taken the next step” if you will with materials that possess enhanced properties enabling a prototype that closely mirrors the end-product. These prototypes can seamlessly transition to production.

3D Systems’ Figure 4 platform can take a manufacturer from prototyping to full production on the same platform. This isn’t possible with other technologies in the industry.

What do you see happening in end-use manufacturing of 3D printed parts at the moment?

The key to getting to end-use manufacturing is in materials. We are seeing new materials in-market whose properties are inching ever closer to those of end use. There are essentially two types of materials: sintered and photo reactive polymers. The sintered materials are capable of producing durable end-use parts. For example, sintered materials are being used in aerospace, specifically for cabin parts. Adoption today is limited, but we believe this will proliferate, and will also become more commonplace in other industries. When you look at injection molding in a broad sense, this is a very large market. As a result, it won’t take a huge portion of the market to adopt to make a huge impact in the industry.

Is being a turnkey manufacturing solution your future?

3D Systems is already a turnkey manufacturer in the metal 3D printing world. We already do this in healthcare, for example. Some customers would prefer to engage with us on a piece/parts basis. Our customers and market evolution will take us where we need to go in this space. We already provide a turnkey manufacturing solution in low volume today with On Demand, but we haven’t formally called it a turnkey solution. What is most important to 3D Systems is doing what our customers need us to do to solve their business challenges in unique ways. That’s where we deliver value.

What should companies know before they try to get parts made with 3D printing?

It’s important to understand 3D printing is not a replacement for injection molding. If a customer has a high-value application for injection molding, they should stay with it. One of the most valuable reasons to move to additive manufacturing is, the technology deals with complexity better than traditional manufacturing. Additive is tremendous at producing complex parts. But this also requires mechanical engineers to transform how they think about designing parts. Everything they were taught over the last 30 years is backward from what makes design work for additive. There are different constraints, however, it dramatically opens the design space. The other thing to be aware of is choosing the right material with the right properties for the application. Matching material properties for every property of a thermoplastic is challenging. Fortunately, you don’t need to match all properties for all applications with additive to get to a durable, end-use part. With additive, manufacturers can reduce cost, simplify their supply chain, and also simplify assembly through part count reduction.

What advice would you give firms that wish to industrialize 3D printing for manufacturing?

I believe what was just addressed is all very important: understand the application, how to design for additive as well as select the most appropriate material for the application. Other points to consider include:

– Start with prototyping to fully understand how 3D printing fits into your supply chain.

– Know that with additive, there is no such thing as per part tooling.

– Understand that the part is not final when it’s done printing. It’s important for a manufacturer to understand all post processing requirements – including labor requirements – before taking the leap to additive. And also know that some post-processing systems are not as easy as others. One of the things that I am particularly proud of with Figure 4 is that it has a very easy post-processing system.

Will automation in depowdering/post processing be a key development for your business?

Absolutely. Post processing is a key development area for the entire 3D printing industry, particularly as we industrialize AM. Support removal, curing, washing – these are all important areas to develop. We’re seeing many smaller companies investing in this area today.

For 3D Systems, we are ultimately concerned about enabling our customers to create parts; therefore, we must think about the entire value chain. We talk about the power of additive manufacturing to lower total cost of operation (TCO). TCO includes the entire value chain which entails labor and post processing. And the more we can automate this process, the better it is for our customers.

Surface quality has always been a bugbear of 3D printing, what steps are you doing to improve it?

We designed the Figure 4 platform to deliver some of the best surface quality in the industry. Figure 4 allows the designer to build in surface texturing , and also has some of the best thermal control in industry. This is also on par with dimensional accuracy. The Figure 4 platform delivers part accuracy and repeatability, with Six Sigma repeatability (Cpk > 2) across all materials. The combination of speed and accuracy complemented by a light-based UV curing process that takes minutes versus hours with heat-based curing processes, yields the world’s fastest additive manufacturing throughput and time-to-part. Additional proof can also be seen with our ProX SLS 6100 as well as our MultiJet printing technologies. We have been able to achieve great surface finish with wax which has allowed us to penetrate the jewelry market. The ability to achieve the right surface finish allows you to unleash an industry.

3D printed part strength has also been a limitation. Are there any recent developments there?

To address this, I believe we need to focus on the materials and look at photo reactive versus sintered materials.

With sintered, we are not changing the chemistry of the materials as we cure and process. In this case, the strength of the materials is a function of materials themselves. If you look at 3D Systems’ ProX SLS 6100, we have made significant advances with the thermal control of system. With photo reactive polymers, the thermosets are behaving more like thermoplastics. We have a new chemistry in development that when it is released will allow us to create new property sets not seen before. This is part of the reason we’re so excited about the industrialization of additive manufacturing – with new materials and enhanced properties, what is achievable is absolutely game-changing.

What have been some key developments in SLS (powder bed fusion, Laser Powder Bed Fusion, Selective Laser Sintering)?

I believe the three key developments are thermal control, speed and temperature.

– The challenge with thermal control is a wide temperature variation across the print queue. Higher temperatures lead to more challenges with not only part creation but also part consistency. 3D Systems has spent quite a bit of time reducing temperature variation (from 10°C to 3°C).

– By moving to multi-laser systems with advanced power handling and slicing techniques, the speed of processing parts is improving dramatically.

– Temperature is the third key area of development. Most SLS printing is done with nylon and polypropylene. When you look at applications for aerospace and automotive, there is a need for higher temperature plastics. As a result, there is a need to build 3D printers that can handle these higher temperature materials.

How do you see the future of SLS?

There is a tremendous opportunity with this technology. SLS is a perfect technology to produce parts for the automotive and aerospace industries because of its ability to process true end- use materials not changed by reactions, but just the sintering process. There are significant opportunities for continued innovation in SLS because of the applications. Medical devices – such as orthopedics – is also a big opportunity for SLS. From 3D Systems’ perspective, this technology will be a key part of our portfolio for a very long time as it captures segments which are difficult to address with other technologies.

On the polymer side what do you see as nascent advances?

I believe the biggest change we are going to see is delivering thermoset materials that behave closer to thermoplastics. We’ll have tough materials that are not brittle, handle high temperature, and produce durable parts that have a long life. The key next step will be to move polymers beyond prototyping into more production-type applications.

3D Systems launches on demand medical 3D printing service

From the landmark case of the conjoined McDonald Twins, to 3D printing over 600,000 medical devices to date, 3D Systems (NYSE:DDD) has launched its On Demand Anatomical Modeling Service. A service for medical professionals, On Demand Anatomical Modeling makes custom 3D printed models to be used in surgical planning and patient education. “For more than 25 years, […]