The Countdown to the “Don’t Stop Me Now” Mission Has Begun for Rocket Labs

Space is one of the most attractive frontiers for humans and 2020 has been one of the most exciting years for space exploration. For starters, companies are sending rockets to space, uncrewed rockets that is, at least for now, as they prepare for future missions to the Moon and later on, to Mars. March is not over yet and we have already witnessed 17 successful rocket launches to orbit. And space technology company Rocket Lab is quickening the pace, now planning its second mission set to launch by the end of the month.

Called “Don’t Stop Me Now”, the next mission launch will deploy payloads for the National Aeronautics and Space Administration (NASA), the National Reconnaissance Office (NRO) and the University of New South Wales (UNSW) Canberra Space.

Founded in New Zealand in 2006 by engineer Peter Beck, Rocket Lab is well known for 3D printing lightweight, high-performance rocket engines, like the Rutherford. The payload on the next mission will launch aboard the company’s Electron rocket, Rocket Lab’s twelfth Electron launch since the company began launches in May 2017.

Overall, this mission will enable university research into Earth’s magnetic field, support the testing of new smallsat comms architecture, and demonstrate a fast, commercial approach for getting government small satellites into space, which helps advance scientific and human exploration.

Rocket Lab’s next launch will be the second for the NRO, a major US intelligence agency, the first one was on board the company’s last dedicated mission, “Birds of a Feather”, which was launched aboard a Rocket Lab Electron rocket on January 31 from Rocket Lab Launch Complex 1, in New Zealand.

Rocket Lab’s last Electron mission also deployed NRO satellites (Image: Rocket Lab)

Beck said the mission is a great example of the kind of cutting-edge research and fast-paced innovation that small satellites are enabling.

“It’s a privilege to have NASA and the NRO launch on Electron again, and we’re excited to welcome the UNSW onto our manifest for the first time, too,” he went on. “We created Electron to make getting to space easy for all, so it’s gratifying to be meeting the needs of national security payloads and student research projects on the same mission.”

Peter Beck, Rocket Lab founder (Image: Rocket Lab)

According to the company, the rideshare mission will launch several small satellites, including the ANDESITE (Ad-Hoc Network Demonstration for Extended Satellite-Based Inquiry and Other Team Endeavors) satellite created by electrical and mechanical engineering students and professors at Boston University (BU). The satellite will launch as part of NASA’s CubeSat Launch Initiative (CSLI) and will conduct a groundbreaking scientific study into Earth’s magnetic field.

Once in space, the ANDESITE satellite will initiate measurements of the magnetosphere with onboard sensors, later releasing eight pico satellites carrying small magnetometer sensors to track electric currents flowing in and out of the atmosphere, a phenomenon also known as space weather. These variations in electrical activity racing through space can have a big impact on our lives here on Earth, causing interruptions to things like radio communications and electrical systems.

The ANDESITE satellite follows on from Rocket Lab’s first Educational Launch of Nanosatellites (ELaNa) launch for NASA, the ELaNa-19 mission, which launched a host of educational satellites to orbit on Electron in December 2018, as part of an initiative to attract and retain students in the fields of science, technology, engineering and mathematics.

The mission also carries three payloads designed, built and operated by the NRO. The mission was procured under the agency’s Rapid Acquisition of a Small Rocket (RASR) contract vehicle. RASR allows the NRO to explore new launch opportunities that provide a streamlined, commercial approach for getting small satellites into space, as well as provide those working in the small satellite community with timely and cost-effective access to space.

“We’re excited to be partnering with Rocket Lab on another mission under our RASR contract,” indicated Chad Davis, Director of NRO’s Office of Space Launch. “This latest mission is a great example of the collaborative nature of the space community and our goal as space partners to procure rideshare missions that not only meet our mission needs but provide opportunities for those working with smallsats to gain easy access to space.”

A statement by the company also suggests that the ANDESITE and NRO payloads will be joined on the mission by the M2 Pathfinder satellite, a collaboration between the UNSW Canberra Space and the Australian Government. The M2 Pathfinder will test communications architecture and other technologies that will assist in informing the future space capabilities of Australia. The satellite will demonstrate the ability of an onboard software-based radio to operate and reconfigure while in orbit.

The Spacecraft Project Lead at UNSW Canberra and space systems engineer, Andrin Tomaschett, revealed that “we’re very excited to be launching M2 Pathfinder with Rocket Lab who have been so very flexible in accommodating our spacecraft specific needs, let alone the ambitious nine-month project timeframe. The success of this spacecraft will unlock so much more, for our customers and for Australia, by feeding into the complex spacecraft projects and missions our team is currently working on.”

While NASA Launch Services Program (LSP) ELaNa Mission Lead, Scott Higginbotham, considered that through the CubeSat Launch Initiative, NASA engages the next generation of space explorers, providing university teams, like ANDESITE, with real-life, hands-on experience in conducting an actual space research mission in conjunction with NASA.

Named in recognition of Rocket Lab board member and avid rock band Queen fan Scott Smith, who recently passed away, the mission will have a 14-day launch window that opens on March 27, at New Zealand’s Māhia Peninsula. The best way audiences can view the launch is via Rocket Lab’s live video webcast: a live stream will be made available approximately 15 to 20 minutes prior to the launch attempt. If you are a serial space observer and follow all news relating to 3D printed rockets, launches, commercialization of low Earth orbit, and more, stay up to date with our articles at 3DPrint.com.

The post The Countdown to the “Don’t Stop Me Now” Mission Has Begun for Rocket Labs appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Improvements to the BioFabrication Facility on the ISS Thanks to Lithoz

Scientific discoveries and research missions beyond Earth’s surface are quickly moving forward. Advancements in the fields of research, space medicine, life, and physical sciences, are taking advantage of the effects of microgravity to find solutions to some big problems here on Earth. Researchers in 3D printing and bioprinting have taken advantage of space facilities that are dedicated to conducting multiple experiments in orbit, such as investigating microgravity’s effects on the growth of three-dimensional, human-like tissues, creating high-quality protein crystals that will help scientists develop more effective drugs, and even growing meat with 3D printing technology.

The BioFabrication Facility (BFF) by Techshot and nScrypt (Credit: Techshot)

On November 2, 2019, a Northrop Grumman Antares rocket successfully launched a Cygnus cargo spacecraft on a mission to the International Space Station (ISS). The payload aboard the Cygnus included supplies for the 3D BioFabrication Facility (BFF), like human cells, bioinks, as well as new 3D printed ceramic fluid manifolds that replaced the previously used that were printed out of polymers. According to Lithoz – the company behind the 3D printed ceramic fluid manifolds – they are enabling advancements in bioprinting at the ISS.

The additive manufactured ceramics have been in service since November 2019 and Lithoz claims they have proven to provide better biocompatibility than printed polymers, resulting in larger viable structures.

Lithoz, a company specializing in the development and production of materials and AM systems for 3D printing of bone replacements and high-performance ceramics, printed the ceramic manifolds using lithography-based ceramic manufacturing (LCM) on a high-resolution CeraFab printer in collaboration with Techshot, one of the companies behind the development of the BFF. Moreover, the ceramic fluid manifolds are used inside bioreactors to provide nutrients to living materials in space by the BFF.

Testing of the ceramic 3D printed manifolds is focusing on biocompatibility, precision, durability, and overall fluid flow properties; and the latest round of microgravity bioprinting in December yielded larger biological constructs than the first BFF attempts in July.

NASA engineer Christina Koch works with the BioFabrication Facility in orbit (Credit: NASA)

Techshot and Lithoz engineers and scientists worked together to optimize the design and the manufacturing processes required to make it. Techshot Senior Scientist Carlos Chang reported that “it’s been an absolute pleasure working with Lithoz.”

While Lithoz Vice President Shawn Allan suggested that “their expertise in ceramic processing really made these parts happen. The success of ceramic additive manufacturing depends on working together with design, materials, and printing. Design for ceramic additive manufacturing principles was used along with print parameter control to achieve Techshot’s complex fluid-handling design with the confidence needed to use the components on ISS.”

Headquartered in Vienna, Austria, and founded in 2011, Lithoz offers applications and material development to its customers in cooperation with renowned research institutes all over the world, benefiting from a variety of materials ranging from alumina, zirconia, silicon nitride, silica-based for casting-core applications through medical-grade bioceramics.

This work, in particular, highlighted an ideal use case for ceramic additive manufacturing to enable the production of a special compact device that could not be produced without additive manufacturing while enabling a level of bio-compatibility and strength not achievable with printable polymers. Lithoz reported that Techshot engineers were able to interface the larger bio-structures with the Lithoz-printed ceramic manifolds and that the next steps will focus on optimized integration of these components and longer culturing of the printed biological materials. While conditioned human tissues from this mission are expected to return to Earth in early 2020 for evaluation.

Back in July 2019, Gene Boland, chief scientist at Techshot, and Ken Church, chief executive officer at nScrypt, discussed the BFF at NASA’s Kennedy Space Center in Port Canaveral, Florida, how they planned to use the BFF in orbit to print cells (extracellular matrices), grow them and have them mature enough so that when they return to Earth researchers can encounter a close to full cardiac strength. Church described how a tissue of this size has never been grown here on Earth, let alone in microgravity. The 3D BFF is the first-ever 3D printer capable of manufacturing human tissue in the microgravity condition of space. Utilizing adult human cells (such as pluripotent or stem cells), the BFF can create viable tissue in space through a technology that enables it to precisely place and build ultra-fine layers of bioink – layers that may be several times smaller than the width of a human hair – involving the smallest print nozzles in existence.

Flight engineer Andrew Morgan works with the BioFabrication Facility (Credit: NASA)

Experts suggest that bioprinting without gravity eliminates the risk of collapse, enabling organs to grow without the need for scaffolds, offering a great alternative to some of the biggest medical challenges, like supplying bioprinted organs, providing a solution to the shortage of organs.

With NASA becoming more committed to stimulating the economy in low-Earth orbit (LEO), as well as opening up the ISS research lab to scientific investigations and experiments, we can expect to learn more about some of the most interesting discoveries that could take place 220 miles above Earth. There are already quite a few bioprinting experiments taking place on the ISS, including Allevi and Made In Space’s existing Additive Manufacturing Facility on the ISS, the ZeroG bio-extruder which allow scientists on the Allevi platform to simultaneously run experiments both on the ground and in space to observe biological differences that occur with and without gravity, and CELLINK‘s collaboration with Made In Space to identify 3D bioprinting development opportunities for the ISS as well as for future off-world platforms. All of these approaches are expected to have an impact on the future of medicine on Earth.

The post Improvements to the BioFabrication Facility on the ISS Thanks to Lithoz appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.