3D Printing News Briefs, July 18, 2020: DOMO & RPD, AMPM2021, Alloyed

In today’s 3D Printing News Briefs, DOMO Chemicals and RPD have announced a partnership related to a Sinterline initiative. The 2021 AMPM event is calling for technical papers related to metal additive manufacturing. Finally, Alloyed has won a prestigious award.

DOMO Chemicals and RPD Partnering

DOMO’s Sinterline PA6 powders combined with RPD’s SLS printer, modified and upgraded by LSS, enable OEMs to step up their 3D printed parts performance. (Photo courtesy of RPD)

Polyamide solutions provider DOMO Chemicals and Rapid Product Development GmbH (RPD), a specialist in prototyping and serial production of complex parts and assemblies, have formed a strategic partnership for the purposes of speeding up the growth of plastic materials for selective laser sintering (SLS) 3D printing. The collaboration will merge the continuing development of DOMO’s Sinterline Technyl PA6 SLS powder materials with a package of support services for SLS technology, benefiting from RPD’s expertise in application development and the SLS process. Sinterline PA6 powders are an oft-used nylon in the industry, especially by demanding markets like automotive.

“Sinterline® has pioneered the use of high-performance PA6 in 3D printing, and allows us to leverage the same polymer base that has proven so successful in many existing injection molding applications. Backed by the joint application development services of our companies, even highly stressed automotive components can now be successfully 3D printed in PA6 to near-series and fully functional quality standards,” stated Wolfgang Kraschitzer, General Manager and Plastics Processing Leader at RPD.

AMPM Conference Seeking Papers and Posters

The Additive Manufacturing with Powder Metallurgy Conference (AMPM2021) will be held in Orlando, Florida from June 20-23, 2021. While this may seem far in the future, the event’s program committee is looking ahead, and has issued a call for technical papers and posters that are focused on new developments in the metal additive manufacturing market. Stuart Jackson, Renishaw, Inc., and Sunder Atre, University of Louisville, the technical program co-chairman, are asking for abstracts that cover any aspect of metal AM, such as sintering, materials, applications, particulate production, post-build operations, and more.

“As the only annual additive manufacturing/3D printing conference focused on metal, the AMPM conferences provide the latest R&D in this thriving technology. The continued growth of the metal AM industry relies on technology transfer of the latest research and development, a pivotal function of AMPM2021,” said James P. Adams, Executive Director and CEO of the Metal Powder Industries Federation.

The submission deadline for abstracts is November 13, 2020, and must be submitted to the co-located PowderMet2021: International Conference on Powder Metallurgy & Particulate Materials.

Alloyed Wins IOP Business Award

Alloys By Design (ABD)

UK company Alloyed, formerly OxMet Technologies, has won a prestigious award from the Institute of Physics (IOP), the learned society and professional body for physics. The IOP is committed to working with business based in physics, and its Business Awards recognize the contributions made by physicists in industry. Alloyed has won the IOP Business Start-up Award, which OxMet submitted for consideration before merging with Betatype to form Alloyed, and recognizes the team’s hard work in developing its digital platform Alloys By Design (ABD). This platform is helping to set new metal material development standards, including the commercialization of Alloyed’s ABD-850AM and ABD-900AM alloys for additive manufacturing.

“Everything we do in every bit of our business rests on the foundations provided by physics, and we’re delighted that the judges believe we have made a contribution to the field,” Alloyed CEO Michael Holmes said about winning the IOP Business award.

The post 3D Printing News Briefs, July 18, 2020: DOMO & RPD, AMPM2021, Alloyed appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Testing Fracture Resistance in FDM and MJF 3D Printing of Polymers

Researchers from Australia and Germany are exploring more about improving 3D printed parts in the recently published ‘Fracture Resistance Analysis of 3D Printed Polymers.’ Because failure—sometimes ‘catastrophic’—often occurs due to instability and cracking, the authors experimented with samples fabricated via both fused deposition modeling (FDM) and multi-jet fusion (MJF) to understand more about load-carrying capacity.

Overall, FDM 3D printing shows great potential for improving mechanical properties in 3D printing. This is an ongoing topic of study in many research labs today too, spanning many different techniques and use of materials, from studying the effects of color with PLA, to using additives, to examining mechanical properties and biocompatibility. In some cases with FDM 3D printing, however, users may experience issues with composites that have pre-existing cracks—caused during manufacturing, surface defects, or notches that may be growing slowly.

In this study, the research team analyzed fracture of U-notched, 3D printed thermoplastic components:

“As the J-integral failure criterion is one of the most common brittle failure models used in the study of notched specimens, we investigated whether EMC could be combined with the J-integral failure principle to predict the fracture of U-notched 3D-printed specimens subjected to tensile loading,” explained the researchers.

Failure was studied in both FDM and MJF dogbone samples under mode I and mixed mode I/II loading regimes within the framework of combined EMC and J-integral criterions. Materials of choice to be used in the experiment were Nylon 12 filament and PA12 nylon powder.

The samples were 3D printed as follows:

  • 13 mm width
  • 5 mm thickness
  • 50 mm gauge length
  • 100% infill rectangular plates

A schematic of centrally located bean-shaped notch with two U-shaped ends (dimensions in mm).

Twelve nylon samples were created on a Fortus 450mc FDM 3D printer, while the same number of samples were created via MJF on an HP 3D printer.

A dog-bone shaped MJF nylon 3D-printed nylon specimen; before (a), and after (b) tensile test.

A typical tensile stress vs strain curve for the 3D-printed nylon specimens.

The researchers performed tensile tests, evaluating strength and modulus.

Mechanical properties of the 3D-printed nylon specimens.

“The results of tensile tests showed that the average value of the modulus of elasticity of MJF 3D-printed nylon was 780 MPa, whereas the FDM sample had a lower value of 493 MPa. The average value of the percent breaking strain of the FDM and MJF samples were 16 and 13 and the average tensile strength of FDM and MJF samples were 44.8 and 34.9 MPa, respectively,” stated the research team. “Although FDM samples had lower elastic modulus, they exhibited higher tensile strength and percentage elongation compared to MJF, as well as higher modulus of toughness.”

An MJF nylon 3D-printed specimen under tensile test conditions; (a) before (b) after fracture.

During testing, the researchers axially stressed samples with an Instron 300LX machine until they failed via crack growth.

“Irrespective of the notch orientations, all MJF samples exhibited brittle behavior with flat fracture surfaces. Considering the tensile tests, the failure load of MJF 3D-printed nylon was observed to be greater than the FDM samples for β60°.

‘>60°. In addition to the effect of crack angles, it was observed that increase in crack radius was associated with reduced critical load in both types of 3D-printed samples,” stated the researchers.

“Finally, the equivalent material concept (EMC) was combined with the J-integral failure principle to predict the fracture failure of U-notched 3D-printed specimens subjected to tensile loading under mode I and mixed mode I/II loading regimes. The agreement between the experimental and simulation results proved the EMC-J approach to be capable of successfully predicting fracture in the 3D-printed notched ductile material components.”

Close-up photographs FDM and MJF printed nylon specimens after fracture from left to right, respectively, with (a) 60°, (b) 30°, and (c) 0° notch orientations.

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

Illustration of strain energy density around the notch border for MJF nylon with a notch tip radius of 2 mm at different notch orientations.

[Source / Images: ‘Fracture Resistance Analysis of 3D Printed Polymers’]

The post Testing Fracture Resistance in FDM and MJF 3D Printing of Polymers appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.