ORNL develops Peregrine AI software for real-time monitoring of metal 3D printing

Oak Ridge National Laboratory (ORNL) researchers have developed Artificial Intelligence (AI) software capable of monitoring the metal 3D printing process in real-time.  Nicknamed Peregrine, the algorithm assesses the quality of parts during production in a cost-effective alternative to characterization equipment. The program is part of ORNL’s broader “digital thread,” which closely tracks and analyzes data […]

EOS, Daimler and Premium AEROTEC complete NextGenAM project

The Next Generation Additive Manufacturing (NextGenAM) project from industry partners EOS, Daimler and Premium AEROTEC is complete. Launched Spring 2017, NextGenAM sought to develop a digital, fully automated production line for serial additive manufacturing. Now the pilot plant in Varel, North West Germany, is completed, and will act as an example to other enterprises seeking to […]

Top 10 3D Printing Aerospace Stories from 2018

3D printing has played an important role in many industries over the past year, such as medical, education, and aerospace. It would take a very long time to list all of the amazing news in aerospace 3D printing in 2018, which is why we’ve chosen our top 10 stories for you about 3D printing in the aerospace industry and put them all in a single article.

Sintavia Received Approval to 3D Print Production Parts for Honeywell Aerospace

Tier One metal 3D printer manufacturer Sintavia LLC, headquartered in Florida, announced in January that it is the first company to receive internal approval to 3D print flightworthy production parts, using a powder bed fusion process, for OEM Honeywell Aerospace. Sintavia’s exciting approval covers all of Honeywell’s programs.

Boeing and Oerlikon Developing Standard Processes

Boeing, the world’s largest aerospace company, signed a five-year collaboration agreement with Swiss technology and engineering group Oerlikon to develop standard processes and materials for metal 3D printing. Together, the two companies will use the data resulting from their agreement to support the creation of standard titanium 3D printing processes, in addition to the qualification of AM suppliers that will produce metallic components through a variety of different materials and machines. Their research will focus first on industrializing titanium powder bed fusion, as well as making sure that any parts made with the process will meet the necessary flight requirements of both the FAA and the Department of Defense.

FITNIK Launched Operations in Russia

In 2017, FIT AG, a German provider of rapid prototyping and additive design and manufacturing (ADM) services, began working with Russian research and engineering company NIK Ltd. to open up the country’s market for aerospace additive manufacturing. FIT and NIK started a new joint venture company, dubbed FITNIK, which combines the best of what both companies offer. In the winter of 2018, FITNIK finally launched its operations in the strategic location of Zhukovsky, which is an important aircraft R&D center.

New Polymer 3D Printing Standards for Aerospace Industry

The National Institute for Aviation Research (NIAR) at Wichita State University (WSU), which is the country’s largest university aviation R&D institution, announced that it would be helping to create new technical standard documents for polymer 3D printing in the aerospace industry, together with the Polymer Additive Manufacturing (AMS AM-P) Subcommittee of global engineering organization SAE International. These new technical standard documents are supporting the industry’s interest in qualifying 3D printed polymer parts, as well as providing quality assurance provisions and technical requirements for the material feedstock characterization and FDM process that will be used to 3D print high-quality aerospace parts with Stratasys ULTEM 9085 and ULTEM 1010.

Premium AEROTEC Acquired APWORKS

Metal 3D printing expert and Airbus subsidiary APWORKS announced in April that it had been acquired as a subsidiary by aerostructures supplier Premium AEROTEC. Premium AEROTEC will be the sole shareholder, with APWORKS maintaining its own market presence as an independent company. Combining the two companies gave clients access to 11 production units and a wide variety of materials.

Gefertec’s Wire-Feed 3D Printing Developed for Aerospace

Gefertec, which uses wire as the feedstock for its patented 3DMP technology, worked with the Bremer Institut für Angewandte Strahltechnik GmbH (BIAS) to qualify its wire-feed 3D printing method to produce large structural aerospace components. The research took place as part of collaborative project REGIS, which includes several different partners from the aerospace industry, other research institutions, and machine manufacturers. Germany’s Federal Ministry for Economic Affairs and Energy funded the project, which investigated the influence of shielding gas content and heat input on the mechanical properties of titanium and aluminium components.

Research Into Embedded QR Codes for Aerospace 3D Printing

It’s been predicted that by 2021, 75% of new commercial and military aircraft will contain 3D printed parts, so it’s vitally important to find a way to ensure that 3D printed components are genuine, and not counterfeit. A group of researchers from the NYU Tandon School of Engineering came up with a way to protect part integrity by converting QR codes, bar codes, and other passive tags into 3D features that are hidden inside 3D printed objects. The researchers explained in a paper how they were able to embed the codes in a way that they would neither compromise the integrity of the 3D printed object or be obvious to any counterfeiters attempting to reverse engineer the part.

Lockheed Martin Received Contract for Developing Aerospace 3D Printing

Aerospace company Lockheed Martin, the world’s largest defense contractor, was granted a $5.8 million contract with the Office of Naval Research to help further develop 3D printing for the aerospace industry. Together, the two will investigate the use of artificial intelligence in training robots to independently oversee the 3D printing of complex aerospace components.

BeAM And PFW Aerospace Qualified 3D Printed Aerospace Component

BeAM, well-known for its Directed Energy Deposition (DED) technology, announced a new partnership with German company PFW Aerospace, which supplies systems and components for all civilian Airbus models and the Boeing 737 Dreamliner. Together, the two worked to qualify a 3D printed aerospace component, made out of the Ti6Al4V alloy, for a large civil passenger aircraft, in addition to industrializing BeAM’s DED process to manufacture series components and testing the applicability of the method to machined titanium components and complex welding designs.

Researchers Qualified 3D Printed Aerospace Brackets

Speaking of parts qualification, a team of researchers completed a feasibility study of the Thermoelastic Stress Analysis (TSA) on a titanium alloy space bracket made with Electron Beam Melting (EBM) 3D printing, in order to ensure that its mechanical behavior and other qualities were acceptable. The researchers developed a methodology, which was implemented on a titanium based-alloy satellite bracket.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

Kasto supports NextGenAM project with post-processing solutions

Kasto, a German sawing machine manufacturer, has joined the NextGenAM project, to support the acceleration of industrial 3D printing. The initial project partners, Premium Aerotec, Daimler, and EOS, intend to use Kasto’s post-processing system, KASTOwin, to optimize the latter of metal 3D printing. The KASTOwin system Founded in 1844, KASTO has pioneered technology in sawing and storing […]

NextGenAM project establishes first pilot plant smart factory at Premium AEROTEC

With the aim of creating a complete production cell for additively manufacturing aluminum components used within the automotive and aerospace industries, the NextGenAM project has established its first pilot plant in Varel, northern Germany. The pilot plant will operate from the facility of project partner Premium AEROTEC, a subsidiary of multinational aerospace organization Airbus Group. […]

NextGenAM Project Launches First Pilot Facility

Last year, a project was announced: the NextGenAM collaborative project, dedicated to developing and implementing next generation industrial additive manufacturing technology. The partners involved include Premium AEROTEC, EOS, and Daimler. A goal of the project was to develop the basis of a future system for series production using 3D printing technologies. The project team has been working on assessing the additive manufacturing process to see what kind of potential it holds for automation, and now the first pilot plant has been launched at Premium AEROTEC’s technology center in Varel.

Aluminum is the material in focus here; the project aims to create a production cell that is capable of manufacturing aluminum parts for the automotive and aerospace industries in particular. Titanium has been the main material used for additive manufacturing in aerospace thus far, but one of the project’s goals is to also qualify aluminum for use in the industry. The facility contains several machines for additive manufacturing, post-processing, and quality assurance. All steps are fully automated and integrated, eliminating manual work altogether.

“The integration of the AM process in an automated production line is an important milestone for the broad application of our technology in series production scenarios,” said Dr. Tobias Abeln, CEO of Premium AEROTEC.

Central to the plant’s operations is the EOS M 400-4 four-laser system, which is being used in combination with the EOS Shared-Modules concept. This means that the M 400-4 is equipped with a powder station and is connected to a standalone setup and unpacking station. Therefore, filling and emptying the system of metal powder, setting it up to prepare for a new build job, and unpacking the finished components can be carried out independently of and parallel to the 3D printing process, greatly increasing productivity.

Downstream post-processing has also been automated. A robot takes the build platform with the parts for the setup system and places it in a furnace for subsequent heat treatment. It then removes the platform again and takes it to a three-dimensional optical measurement system for quality assurance. The build platform is then conveyed to a saw, which separates the parts from the platform.

“In this project we have already succeeded in significantly reducing the production cost per part, thus creating an economic perspective for large-scale digital 3D printing factories,” said Dr. Thomas Ehm, CEO of Premium AEROTEC.

Over the next several months, the pilot process chain will be further tested and parts of the facility will be audited. Production data will be collected and analyzed with the goal of collating precise data on process times, profitability, and cost optimization.

“3D printing is well on the way to establishing itself in the automotive sector as an additional manufacturing method with great versatility,” said Jasmin Eichler, Head of Research Future Technologies at Daimler. “With this collaborative pre-development project, we are taking a significant step towards achieving cost-effectiveness in metal 3D printing throughout the process chain. The project lays the cornerstone for the future realization of larger quantities in the automotive series production process – with the same reliability, functionality, longevity, and economy as for components from conventional production.”

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

 

APWORKS and Heraeus join SAP Distributed Manufacturing platform with AMXpert

APWORKS has announced a new software tool for industrializing metal 3D printing – AMXpert. The Taufkirchen, Germany based APWORKS has recently announced a restructuring plan that made them a subsidiary of Premium AEROTEC. Premium AEROTEC is a tier one supplier of metal components for Airbus aircraft. Heraeus Additive Manufacturing will also support the AMXpert software […]