Aerosint and InfraTrac Extending Chemical Tagging in Parts 3D Printed with Powder Bed Fusion

I can’t think of a single person who likes getting the automated reminder that it’s time to change their password, which includes the many instructions on what does and doesn’t make a good one – capital letters, numbers, spaces vs. no spaces, no repeats, etc. etc. But it’s a necessary evil if we want to keep our data safe, which is why many companies, and even apps, have made these reminders standard procedure. So why aren’t we doing the same when it comes to our 3D printed products?

There are plenty of options to make our prints secure and easy to authenticate, such as QR codes, watermarks, serial numbers, RFID tags, and even holograms. But while marking parts is standard for some, it’s not mainstream yet, and as 3D printing continues to scale, security will become more important, not less.

That’s why Belgian company Aerosint, which developed a selective powder deposition system to replace the single-material recoater in laser powder bed fusion (LPBF) processes, has teamed up with Maryland-based InfraTrac to extend chemical security into multi-powder deposition 3D printing through covert part tagging.

According to an Aerosint press release, “…the ability for anyone to create end-use parts enables bad actors as well as helpful new outsourcing players. Some of the people 3D-printing aircraft and auto parts are not going to be licensed, careful, high-quality suppliers, and new approaches to protection will be required.

“In this new model, a digital file conveys the ability to create a product. Software protections and digital rights management are necessary to protect the intellectual property in that file. However, none of those digital protections are going to keep us safe from 3D-printed counterfeit parts and products: once the print is complete, its digital safeguards lose their power. Anti-counterfeiting for additive manufacturing needs to be integral to the final printed product.”

Parts can be tested for the presence of site-specific chemical taggants using a small, handheld spectrometer like those in the Spectral Engines NIROne series (left). In the right panel, an ULTEM sample (lit orange) containing an InfraTrac taggant is assayed. Penny for scale. [Image: Aerosint]

InfraTrac has an award-winning method for anti-counterfeiting in 3D printed parts – it adds a taggant (compatible chemical marker) during printing in a small, covert, subsurface spot. With instant field detection, the company’s tagging model provides chemical security to 3D printed parts. But until now, this was only limited to one material, making it unavailable for powder bed 3D printing, which is an important process for scalable industrial applications. But by teaming up with Aerosint, InfraTrac can now extend its model even further.

“Complexity is the enemy of security: difficult procedures invite work-arounds,” the Aerosint press release states. “That’s what makes us reuse passwords even when we know we shouldn’t. Security procedures that align with existing processes are most likely to be adopted, and less likely to be circumvented. Applying taggant or codes should be part of the standard print or manufacturing workflow, not an add-on. Detection should take seconds, with inexpensive, portable, off-the-shelf equipment.”

LPBF 3D printing, like SLM and SLS, use selective fusion of powdered material spread in layers across a build surface, but neither of these two popular methods can place multiple powders within a layer at specific locations. With control at the voxel level, it’s possible to precisely put two or more powdered materials in one layer…and this is exactly the kind of selective powder deposition system that Aerosint is working on.

In its new collaboration with InfraTrac, Aerosint is 3D printing simple demonstrator parts from both polymer and metal, which include fingerprinting sites that are based on InfraTrac’s powder formulation. These components, printed on either an SLM or SLS system that is equipped with the special recoater, have embedded materials at specific sites that can be traced by InfraTrac; then, the parts will be tested and verified. Because InfraTrac can make its taggant materials appear identical to the bulk material of the 3D printed part, it’s just about impossible to counterfeit them.

[Image: InfraTrac]

Thanks to the partnership between Aerosint and InfraTrac, users in industries that require the strictest quality control can confidently ensure simple, scalable sourcing authenticity of their parts.

What do you think? Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

3D Printing News Briefs: June 29, 2018

In today’s 3D Printing News Briefs (the last one this month, how is the summer going by so quickly?!), a few companies are announcing special honors and recognitions, and then we’re sharing stories stories about some interesting new 3D printing projects, and finally wrapping things up before the weekend with some business news. Renishaw’s Director of R&D has been honored by the Royal Academy of Engineering, while MakerBot earned an important designation for its 3D printing certification program for educators and Renovis Surgical Technologies received FDA approval for its new 3D printed implant. Festo is introducing three new bionic robots, one of which is partially 3D printed, and CINTEC is using 3D printing for its restoration of a famous government house. GE wants to use blockchains for 3D printing protection, and ExOne announced a global cost realignment.

Royal Academy of Engineering Honors Renishaw’s Chris Sutcliffe

Earlier this week, the Royal Academy of Engineering (RAE) awarded a Silver Medal to Professor Chris Sutcliffe, the Director of Research and Development of the Additive Manufacturing Products Division (AMPD) for global metrology company Renishaw. This award is given to recognize outstanding personal contributions to British engineering, and is given to no more than four people a year. The Silver Medal Sutcliffe received was in recognition of his part in driving the development of metal 3D printed implants in both human and veterinary surgery, and also celebrates his successful commercialization of 3D printed products with several companies, including Renishaw, and the University of Liverpool.

“Throughout my career I’ve worked hard to commercialise additive manufacturing technology. As well as AM’s benefit to the aerospace and automotive sectors, commercialisation of AM and associated technologies has been lifechanging for those with musculoskeletal diseases,” said Sutcliffe. “The award celebrates the successes of the engineers I have worked with to achieve this and I am grateful to receive the award to recognise our work.”

MakerBot’s Certification Program for Educators Gets Important Designation

One of the leaders in 3D printing for education is definitely MakerBot, which has sent its 3D printers to classrooms all over the world. Just a few months ago, the company launched a comprehensive, first of its kind 3D printing certification program, which trains educators to become 3D printing experts and create custom curriculum for STEAM classrooms. An independent review of the program showed that it meets the International Society for Technology in Education (ISTE) standards, and it has earned the prestigious ISTE Seal of Alignment from the accreditation body. In addition, a survey conducted over the last three years of over 2,000 MakerBot educators shows that the percentage of teachers reporting that MakerBot’s 3D printers met their classroom needs has doubled in just two years.

“This data shows that MakerBot isn’t just growing its user base in schools. We’re measurably improving teachers’ experiences using 3D printing,” said MakerBot CEO Nadav Goshen. “Much of this impressive teacher satisfaction is thanks to the effort we’ve put into solving real classroom problems—like the availability of 3D printing curriculum with Thingiverse Education, clear best practices with the MakerBot Educators Guidebook, and now training with the new MakerBot Certification program.”

Earlier this week, MakerBot exhibited its educator solutions at the ISTE Conference in Chicago.

FDA Grants Clearance for 3D Printed Interbody Spinal Fusion System 

California-headquartered Renovis Surgical Technologies, Inc. announced that it has received 510(k) clearance from the FDA for its Tesera SA Hyperlordotic ALIF Interbody Spinal Fusion System. All Tesera implants are 3D printed, and use a proprietary, patent-pending design to create a porous, roughened surface structure, which maximizes biologic fixation, strength, and stability to allow for bone attachment and in-growth to the implant.

The SA implant, made with Renovis’s trabecular technology and featuring a four-screw design and locking cover plate, is a titanium stand-alone anterior lumbar interbody fusion system. They are available in 7˚, 12˚, 17˚, 22˚ and 28˚ lordotic angles, with various heights and footprints for proper lordosis and intervertebral height restoration, and come with advanced instrumentation that’s designed to decrease operative steps during surgery.

Festo Introduces Partially 3D Printed Bionic Robot

German company Festo, the robotics research of which we’ve covered before, has introduced its Bionic Learning Network’s latest project – three bionic robots inspired by a flic-flac spider, a flying fox, and a cuttlefish. The latter of these biomimetic robots, the BionicFinWave, is a partially 3D printed robotic fish that can autonomously maneuver its way through acrylic water-filled tubing. The project has applications in soft robotics, and could one day be developed for tasks like underwater data acquisition, inspection, and measurement.

The 15 oz robot propels itself forward and backward through the tubing using undulation forces from its longitudinal fins, while also communicating with and transmitting data to the outside world with a radio. The BionicFinWave’s lateral fins, molded from silicone, can move independently of each other and generate different wave patterns, and water-resistant pressure and ultrasound sensors help the robot register its depth and distance to the tube walls. Due to its ability to realize complex geometry, 3D printing was used to create the robot’s piston rod, joints, and crankshafts out of plastic, along with its other body elements.

Cintec Using 3D Printing on Restoration Work of the Red House

Cintec North America, a leader in the field of structural masonry retrofit strengthening, preservation, and repair, completes structural analysis and design services for projects all around the world, including the Egyptian Pyramids, Buckingham Palace, Canada’s Library of Parliament, and the White House. Now, the company is using 3D printing in its $1 million restoration project on the historic Red House, which is also known as the seat of Parliament for the Republic of Trinidad and Tobago and was built between 1844 and 1892.

After sustaining damage from a fire, the Red House, featuring signature red paint and Beaux-Arts style architecture, was refurbished in 1904. In 2007, Cintec North America was asked to advise on the required repairs to the Red House, and was given permission to install its Reinforcing Anchor System. This landmark restoration project – the first where Cintec used 3D printing for sacrificial parts – denotes an historic moment in structural engineering, because one of the reinforcement anchors inserted into the structure, measuring 120 ft, is thought to be the longest in the world.

GE Files Patent to Use Blockchains For 3D Printing Protection

According to a patent filing recently released by the US Patent and Trademark Office (USPTO), industry giant GE wants to use a blockchain to verify the 3D printed parts in its supply chain and protect itself from fakes. If a replacement part for an industrial asset is 3D printed, anyone can reproduce it, so end users can’t verify its authenticity, and if it was made with the right manufacturing media, device, and build file. In its filing, GE, which joined the Blockchain in Transport Alliance (BiTA) consortium in March, outlined a method for setting up a database that can validate, verify, and track the manufacturing process, by integrating blockchains into 3D printing.

“It would therefore be desirable to provide systems and methods for implementing a historical data record of an additive manufacturing process with verification and validation capabilities that may be integrated into additive manufacturing devices,” GE stated in the patent filing.

ExOne to Undergo Global Cost Realignment

3D printer and printed products provider ExOne has announced a global cost realignment program, in order to achieve positive earnings and cash flow in 2019. In addition to maximizing efficiency through aligning its capital resources, ExOne’s new program will be immediately reducing the company’s consulting projects and headcount – any initial employee reductions will take place principally in consulting and select personnel. The program, which has already begun, will focus first on global operations, with an emphasis on working capital initiatives, production overhead, and general and administrative spending. This program will continue over the next several quarters.

“With the essential goal of significantly improving our cash flows in 2019, we have conducted a review of our cost structure and working capital practices. We are evaluating each position and expense within our organization, with the desire to improve productivity. As a result, we made the difficult decision to eliminate certain positions within ExOne, reduce our spending on outside consultants and further rely on some of our recently instituted and more efficient processes,” explained S. Kent Rockwell, ExOne’s Chairman and CEO. “Additional cost analyses and changes to business practices to improve working capital utilization will be ongoing over the next several quarters and are expected to result in additional cost reductions and improved cash positions. All the while, we remain focused on our research and development goals and long-term revenue growth goals, which will not be impacted by these changes, as we continue to lead the market adoption of our binder jetting technology.”

Discuss these stories, and other 3D printing topics, at 3DPrintBoard.com or share your thoughts in the Facebook comments below.