The World’s Best Sleep Fan Is A Fan Of 3D Printing: Rapid Prototyping With SNOOZ

SNOOZ is known as the world’s best-sounding white noise machine. The device, which houses a real fan, creates white noise to encourage sleep — without either the annoyance of a looping soundtrack or unwanted cold air in cooler months. The best-selling system is seeing success in travel and home use as the sleep fan continues to gain fans around the world.

Working with Shapeways to 3D print dozens (and dozens and dozens) of designs to reach the ideal sound system, the SNOOZ team cut substantial time and costs in their production process by rapidly prototyping. The savings over traditional machining was major enough that this Las Vegas-based startup has now been working with Shapeways for more than five years — and still has more product work with us in the pipeline for the next devices.

We interviewed SNOOZ CTO and Co-Founder Eli Lazar to dig into how SNOOZ utilized Shapeways’ 3D printing technology and services to make a new product possible.

SNOOZ Co-Founders Eli Lazar (left) and Matthew Snyder. Photo source: SNOOZ

Having parts machined was always an option too, but from our experience, that is 10-25x higher cost [than 3D printing], and perhaps 10x slower, which was just not an option for us.

Eli begins by laying out the big picture:

“The Shapeways printing service has really been instrumental to the success of our product and company. Our product is a specialized fan for sleeping, and in the quiet of a bedroom you can literally hear every frequency, so any unwanted tones people will pick up right away. We used Shapeways to print probably 100+ variations of our product to perfect the acoustics and create our signature sound.

As a result, by the end of this year we will have sold nearly 100k units, and we have a 4.7 star rating on Amazon (without manipulation) with nearly 1,500 reviews. SNOOZ is also used in nearly 2,000 hotel rooms across the country as well. 

To be very direct, without having access to the Shapeways printing service our product would not have been nearly as good as it is today, or perhaps, not a success at all. Shapeways gave just two average guys with very limited finances access to world class rapid prototyping at an affordable price. That has really made the difference in our product and the reviews we have received. In fact, we found the precision from Shapeways prints to be so good that when we machined our actual plastic molds for production, we didn’t have to do any changes and were able to go to production much faster and at a lower cost. We also have two new products coming out this year, both of which have been prototyped on Shapeways, and we have started on developing a new product which will be using Shapeways again for.”

After prototyping 100+ variations, SNOOZ created a market-ready product. Photo source: SNOOZ

At the beginning, how did you come to the decision to use 3D printing instead of other manufacturing methods?

“Without 3D printing, I am not sure we could have ever developed a viable product, or at least one that people actually liked. Our fan blade is entirely custom, and small details make a huge difference. A 1-degree extra twist in the blades or 1mm extra length or width of the blades, and it generates a whole different set of tones. You can use software to simulate the acoustics for a fan blade design, and we did do quite a bit of this. However, these simulations can take up to a few weeks to run, and they are really not accurate enough to predict the subtleties that we were interested in. The best way I can explain this is that a stringed piano is always acoustically superior to a digital keyboard, because the timbre (perceived sound quality) of real sound is just better than any digital replica. With that said, we had to make actual parts. Having parts machined was always an option too, but from our experience, that is 10-25x higher cost, and perhaps 10x slower, which was just not an option for us.”

Did you already have technical knowledge in 3D printing? If not, was there a learning curve to getting into this technology?

“We didn’t have any prior experience with 3D printing before SNOOZ. It was actually for this reason that I was drawn to the Shapeways website. A lot of other 3D printing services seemed to put the burden of getting the print right more on the user. When we first started using Shapeways in 2015, I think you were the only online platform where you could instantly get your 3D CAD analyzed for printing with a quoted price. Even still, I think Shapeways has the most user friendly website for 3D printing. The only learning curve was figuring out what tolerances to use so parts could snap together well. However, since I found Shapeways prints to be repeatable and accurate to the CAD, every time, it became pretty easy. I actually use the same tolerances we figured out worked in 2015 to this day, and that is nearly a five year span.”

Components of SNOOZ, a portable white noise sound machine. Photo source: SNOOZ

What material(s) do you print in and why?

“We have printed in SLA, Versatile Plastic (Nylon), and PLA (which you guys offered shortly). However, Versatile Plastic is our preferred choice for prototyping. The main reason is the strength of the parts. We actually produce some parts out of Nylon and the strength and flexibility of a 3D printed part is definitely on par with a Nylon molded part that comes out of an industrial factory.”

Are you able to share any quantifiable metrics on the time and/or cost you’ve saved by prototyping with Shapeways?

“I found an early quote to machine a single part for $381 that we eventually ended up just 3D printing with Shapeways for about $30. Since then, we have printed over 100 parts, so the savings has literally made the difference in us being able to afford to start SNOOZ. Also, in terms of timing, it is absolutely incredible to be able to design a part on Monday and have it in your hand within a week or so. If the legendary inventors of the past had access to this technology, the world would be a vastly different place today.”

SNOOZ has sold tens of thousands of units since 2015. Photo source: SNOOZ

By rapid prototyping with 3D printing, the
SNOOZ team was able to test out more than 100 designs to find their perfect
acoustic fit — and then translate the final prototype directly into scale
production. The ease with which SNOOZ put the pieces together, at a literal
fraction of the cost of traditional machining, highlights the effectiveness of
3D printing throughout the product development cycle. And today? We’re SNOOZ’s
biggest fans!

Find out how Shapeways can help with your rapid prototyping needs today.

The post The World’s Best Sleep Fan Is A Fan Of 3D Printing: Rapid Prototyping With SNOOZ appeared first on Shapeways Blog.

TaylorMade Uses Formlabs to Prototype Better Golf Clubs with 3D Printing

Golf company TaylorMade extensively used Formlabs machines to prototype a better golf club. The company’s work illustrates a few key emerging trends: that desktop machines could partially displace services, that desktop machines could be used instead of more expensive in-house systems, and that vat polymerization can be used for more functional prototypes than in the past.

The TaylorMade team wanted to look at the weight distribution in the club head of its new Sim Fairway club. They wanted to “lower the center of gravity, improve turf interaction, and create a more forgiving face.” I’m entirely unsure what the last two terms mean but I love them already. They do just go to show you that, for different markets and products, wholly specific engineering terms and goals can come to center stage. For the team prototyping, 3D printing allows them to see and feel the weight distribution. They used Formlabs Draft Resin for initial parts and then turned to Grey Resin for later prototypes. One benefit that TaylorMade enjoyed was the fast turn around times, the other comparatively low cost, and the ability to combine separate components into assemblies.

By printing parts separately and mating them, the team was able to make full assemblies of all of the various shapes of weighted sole plates. TaylorMade’s Chris Rollins said that “the way the Grey Resin parts would mate together, the resolution of the parts, was something we could not find in many other printers, We had better results by printing parts separately and then combining them together.”

Whereas most service bureaus still consider desktop 3D printers mere toys, we cannot ignore that they are improving. Desktop machines are usually significantly lower cost than service bureau parts. Service bureaus, of course, give you a much broader selection of materials and technologies to work with. A desktop 3D printer will never satisfy all of a large company’s prototyping needs. You’d need several machines with a wide variety of materials and people with expertise to make many different types of parts. Even then, the sheer amount of labor involved in 3D printing and finishing parts means that there will have to be in-house resources available to sand and remove supports from parts. Post-processing costs of 3D printed parts are significant and often not fully taken into account.

Most companies will, therefore, use in house desktop systems for initial prints at the engineer’s desk and turn to services for later functional testing or visual prototypes for photography. Desk-side prototypes are always handy and useful to get the discussion going, but, if you require 100 prototypes that need to fit and be available to test a door handle, it usually won’t work with desktop machines or a quick cost calculation may tell you that the in-house parts could indeed be very expensive for you, with all of the prep and post-processing time.

If it would take you ten minutes per part to do file prep, wash, flash, remove supports, and sand, then that would be 16 hours for 100 parts that would set you back 560 Euro in labor (if you assume its a skilled office worker whose total cost would be 35 per hour). Formlabs actually has a super nifty ROI calculator that lets you play with these numbers. On the whole, desktop machines don’t always make sense, but when they do, they convey significant cost advantages and speed up engineering teams. Many machines worldwide sit idle for want of a CAD designer or new nozzle. To me, the only logical response that services could have is to offer to maintain, service, and support fleets of desktop 3D printers at company locations.

At the same time, talk of mating parts may have some other players in the market worried about their prospects. Higher-end vat polymerization machines and those based on other 3D printing processes could also be displaced by these kinds of systems. In-house systems like PolyJet ruled the high-definition, in-house prototyping world. Now capable of color, these systems are still very formidable, especially for visual prototypes. They’re also more reliable and generally a bit easier to use.

I don’t think that someone is really going to make a decision between a J55 or a J750 and a Formlabs machine just yet. But for many edge cases, it could be an interesting choice. In many instances, you can get five or 50 Form 3’s for the cost of your larger industrial system. If you need large parts, then you must pick the larger machine, but, if you don’t, then a cheaper up-front cost is tempting.

The resin costs of Formlabs systems are significantly less than those of larger industrial systems. And here is where the choice goes from tempting to logical, if you need a lot of small parts, the savings will be significant in the long run. If consumables costs on industrial and prototyping systems remain too high, then lower-cost systems will keep making inroads into the office. In particular, companies new to 3D printing may want to start off with a much cheaper system to get their feet wet. If the Formlabs machines suffice, these firms may never again consider a higher-end machine.

Resins and photopolymers are problematic, from a safety, environment, and cost perspective when compared to many thermoplastics. They also lacked strength, UV resistance, and HDT. A few years ago, only very few firms considered vat polymerization for the prototyping of functional products or form and fit. Improvements in photopolymer chemistry have, however, meant that heat deflection and strength are improving. With high resolution, this may mean that vat polymerization machines could occupy a larger share of the prototyping market.

Still less durable and tough and with higher part costs, due to material cost and support removal, FDM still will be a better choice for most (even with the uglier parts). On the whole, we can see competition between technologies and between machines at very different price points. Services will feel desktop machine growth. Overall, we’re seeing blended usage patterns emerge where companies use many technologies from different vendors to get their 3D printing done.

The post TaylorMade Uses Formlabs to Prototype Better Golf Clubs with 3D Printing appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

The Business Case For 3D Printing Prototypes

If practice makes perfect, then prototyping should lead to the perfect final product. But how does your business select the best-fit technology to prototype?

Dozens of options are available to choose
among when making a prototype. We’re going to explore why businesses are
choosing 3D printing for their prototypes.

Prototyping
From Concept To Creation

Prototyping typically involves a number of
stages, each requiring a physical product made to meet the needs of a
go-to-market step of a new design and subject to an array of testing
procedures.

These, broadly, include:

  • Concept
  • Assembly / Fit
  • Functional
  • Life Test
  • Regulatory

From a rough conceptual creation that prioritizes speed and appearance, a prototype is necessary to bring a design from idea to the physical. The earliest stages of prototyping often require the fastest turnaround in fabrication, as getting an actual object in hand is the only way to gauge viability for product development.

As each stage of prototyping progresses,
though, needs change. The prototypes must become less rough around the edges as
those edges will be subject to testing for fit, functionality, mechanical
properties, and other physical needs.

A final prototype may often be visually if not
tactilely indistinguishable from an end-use product, which can help in showing
potential investors or creating marketing materials for a new product even
before mass production ramps up.

Speeding
Time-To-Market With Rapid Prototyping

3D printing is a young technology suite, and
one with many names. While it is increasingly referred to as additive
manufacturing today, with end-use part production possible, most notably for
low-volume or spare parts manufacture, the technology’s first nomenclature in
the 1980s was synonymous with its initial primary use: rapid prototyping.

When you speak to someone who’s been in this
industry since its early days, they may still naturally refer to “rapid
prototyping” or “RP” more often than “3D printing” or “additive manufacturing”
through many years of ingrained habit.

Decades later, rapid prototyping remains the
primary application for 3D printing technologies across the world.

What is it about 3D printing that adds the
“rapid” to “prototyping”? Digitization.

Taking a 3D model directly to a 3D printer for
fabrication speeds the process of prototyping. Digital models can be made quite
quickly using a variety of 3D printing technologies, removing the needs for
many steps in other, more traditional fabrication technologies. No tooling is
needed, for example, nor is there a waiting period while molds are made and
filled. It’s also much faster and more precise than hand-fabricating.

Additive manufacturing adds material, rather
than removing it from blocks as is done in subtractive methods like CNC, saving
on costs of materials that even for prototypes can run up total project costs.

3D
Printing Process & Materials For Prototyping

The selection of 3D printing process and
material can be adjusted for specific needs at every stage of product design.

During initial prototyping stages, a low-cost
material can be used with low infill and thicker layers, lowering material
costs and speeding print time to create a rough-and-ready first look at a new
design.

Whether plastic or metal, 3D printing can
quickly fabricate a product that will come to look and feel just like the
desired end result.

By starting with a low-cost plastic material
and moving after a few iterations to metal, for example, a product that will
eventually be conventionally fabricated using metal can come to market much
more quickly than would be the case by machining each iteration — a
traditional pathway that ultimately costs much more in terms of time, money,
and labor.

Following early proof-of-concept stages,
subsequent versions can be made similarly quickly to get to just the right look
and fit before moving into more finessed prototypes. Tweaking a digital file to
adjust for better look, fit, appropriate scale, or other needs can be done
quickly, with a next iteration 3D printed potentially same-day.

Some 3D printing options, like HP and Carbon, also enable the capability of prototyping and producing on the same system or family, as different materials and parameters can move ever closer to a market-ready product. By iterating on the same system that will be used for the final product, quality control can be kept in-hand every step of the way, meaning there are no surprises when the first end-use production begins.

3D
Printing For Prototyping

When working with a service bureau like
Shapeways, additional expertise and access to different technology suites comes
into play for a high-quality experience every step of the way.

Shapeways’ rapid prototyping services offer:

Fast Turnaround

Our quick print turnaround times ensure that you’ll get your prototypes back faster than you would with traditional manufacturing processes.

Variety of Materials

Our wide selection of materials allows you to test your products in everything from plastic to metals.

Reliable Quality

Our high quality enables you to assess factors such as ergonomics, usability, manufacturability, and material testing.

When it’s time to move to the next phases of prototyping, a different 3D printing process and/or material may be in order to start getting into the right look and feel for a final product. Working with an experienced service partner offers helpful guidance in making these selections and moving on rapidly to the next iteration, ensuring the right choice is made at every step and keeping your project on track, on time, and looking just as you designed it.

learn more

The post The Business Case For 3D Printing Prototypes appeared first on Shapeways Blog.

Quantum Systems’ Drones Take Flight with the Help of 3D Printing

Quantum Systems is a Munich-based company specializing in advanced eVTOL (electric vertical take off and landing) drones. Most recently Quantum Systems tested using their Trinity F90+ to deliver medical samples, opening up new possibilities for applying drone technology to facilitate medical needs.

Founded in 2015, the company has grown quickly by utilizing 3D printing from the beginning of their journey. From rapidly prototyping to printing laser-sintered serial production parts, 3D printing allows for the production of complex but lightweight parts that are free from design constraints, cutting time and mistakes while keeping costs at a minimum.

Quantum Systems has used Shapeways’ printing services to create the ultimate eVTOL aircrafts. We interviewed their CEO, Florian Seibel, to gain more insights on how 3D printing contributes to their drone-making process.

What is your name and role at Quantum Systems?

Florian Seibel, CEO of Quantum Systems

I am Florian Seibel, and since the founding of Quantum-Systems GmbH in 2015, I’ve held the position of CEO.

The core team of the founders got to know each other as part of their scientific work at the Institute of Flight Systems of the German Armed Forces in Munich. My expertise is the development and the operation of small unmanned aerial vehicles with the focus on design, construction and production methods. With my vision of a licensed, VTOL fixed-wing UAV, I was the initiator of the patent to secure the innovative aspects of the UAV and the driving force behind the founding of the company Quantum-Systems GmbH.

Tell us more about Quantum-Systems

Quantum-Systems GmbH was founded in 2015 in Munich and specializes in the development and production of automatic, electric vertical take-off and landing (eVTOL) fixed-wing drones for a wide variety of use cases. The 50+ employees are working intensively on combining range and electric efficiency with the ability to vertically take off and land without additional equipment.

Our passion is the continuous development of industry-leading VTOL aircrafts. With our ready-to-operate systems we serve a wide range of customers. We help to increase yields in agriculture, fly 3-D reconstruction missions, do tactical mapping for security forces or provide mission-critical video footage in real time to military users. Made in Germany, non ITAR and no back doors in soft or hardware as all of our flight planning and autopilot software is designed in-house.

quantum systems drone with 3d printed parts
Quantum-System’s Trinity F90+ drone – Main Body. Image source: Quantum Systems

Why did you choose additive manufacturing and not alternative manufacturing processes?

The complex geometry of 3D-printed parts saves weight by using synergy effects. With synergy effects we mean that with 3D-printed parts we are able to reduce the total number of parts by designing multiple-use parts with integral functionality.

What are the benefits of using additive manufacturing with Shapeways vs using traditional manufacturing?

We used 3D-printing right away, so there is no comparison. Quantum-Systems is a young company. Only because of the fact that we have integrated this manufacturing method into our manufacturing and development process, have we been able to significantly reduce development time. For injection moulded parts we save around 10 weeks by using 3D-printed samples to release the CAD data. The probability that these parts need a second loop of corrections is quite low in this way. For cnc-manufactured parts it is the same, we just often skip the first round of samples with 3D-printed parts which saves us 3-4 weeks. In general I would say 3D-printing saves us 20-50% of time, depending on which parts we design.

What do you value most in additive manufacturing services? 

We can have fast iterations in development
and save time to mature our prototypes.

Why did you choose Shapeways?

Simple customer interface and good print
quality! And on top of that, you are quick!

Trinity F90+ Payload Bay with a dual camera mount for RGB and multispectral images. Image source: Quantum Systems

What types of 3D printing do you use Shapeways for? 

We have many prototype parts and even some
serial production parts laser sintered.

Which materials do you print in and why? 

In general, we order Versatile Plastic and HP (Multi Jet Fusion PA12), sometimes colorized. The material properties are perfect for building light and strong drone parts. We prefer HP at the moment, but for some parts, especially big ones, we order Versatile Plastic due to the price.

Any future projects on the horizon?

A lot! And fortunately, all projects
require the use of 3D printing. The drones sector still offers a lot of room to
pack more features into smaller and more flexible products.

3D printing prototypes and parts has given Quantum Systems the ability to cut substantial time, effort and potential mistakes by streamlining their production process. See how Shapeways can help you prototype and take your designs to the next level.

learn more

The post Quantum Systems’ Drones Take Flight with the Help of 3D Printing appeared first on Shapeways Blog.

How My Track Technology Uses 3D Printing for Their Remote All-Terrain Vehicle

My Track Technology (MTT) is an eco-friendly, electric remote-controlled track vehicle built to operate in extreme terrains. Its low center of gravity, resistance to the elements and autonomy make it a crucial new tool for a wide range of civilian and military applications including emergency and disaster rescues and agricultural functions.

Partnered with Shapeways, the makers of MTT were able to use 3D printing to cut substantial time and costs in their production process by rapidly prototyping designs and printing strong, end-use ready parts that can resist the elements.

We interviewed Michael Martel from MTT to find out how MTT has utilized Shapeways’ 3D printing technology to ramp up production with speed and efficiency.

What is your name and your role at My Track Technology?

My name is Michael
Martel and I’m in charge of the MTT product development.

How did My Track Technology start?

10 years ago my
father and I were discussing a product that can enhance human power but as
small as possible to be able to go where a person can walk. The main goal was
to be able to get someone that is injured out of deep forest and at the same
time bring reduced mobility
persons to extreme places.

From a sketch in 2010 (left) to a fully functional machine in 2020 (right).

What kinds of customers can MTT benefit?

Our customers are very broad. First, there is the military for rescue and material carrying. Mining for carrying material underground without any fumes and CO2 that has to be ventilated out of the mine. Wildfire suppression help, carrying water pumps and equipment. Also fat bike trails grooming, for agriculture use on wet fields or carrying a freezer in the field for fruits and vegetable harvesting. Replacing a generator on construction sites with MTT-154 onboard 2000W inverter, and much much more. 

My Track Technology rescue and rapid intervention
My Track Technology’s machine used in rescue and rapid intervention.
Photo source: My Track Technology

How did you find Shapeways?

Four years
ago one of my electronic employees bought a cheap FDM printer that he assembled himself. At that time I was very skeptical of 3D printing,
I was thinking it was only for toys and figurines. Nevertheless I let him try
some joystick parts. I was at the time building it with a laser cut aluminum
sheet, bent and welded to make an enclosed case. His part with FDM (PLA) was so successful that we
used it for our vehicle for about a year, very amazing. The problem with this
part was the surface finish, time to print and resistance to wet environments.
I was so impressed by this test that I decided
to learn more on 3D printing methods, suppliers and more. This is when I came
to Shapeways’ website and was very impressed
by the technical information and production
capabilities.

I then decided to
manufacture a couple of parts at Shapeways and I have
never been disappointed since. Shapeways is not the
least expensive but I tested many suppliers over the years and I did a lot of
cold temperature testing. Shapeways always has the strongest and nicer finished parts. 

Unless you have $100,000 or more to invest in an SLS or HP printer you will never have the quality, robustness, precision and surface finish of a Shapeways part.

What are the benefits of using Shapeways over an in-office printer?

When buying a printer you have an amazing amount of choice offered to you. The problem is to have a printer for all of the applications. The size of the parts, the surface finish, the resistance and the productivity of this printer are all to be considered. Unless you have $100,000 or more to invest in an SLS or HP printer you will never have the quality, robustness, precision and surface finish of a Shapeways part. Shapeways is a one-stop shop for 3D printing projects. They have multiple machines to accommodate all the requirements of all special projects. So for us Shapeways has been a great partner to reach all of our goals, present and future.

What are the benefits of 3D printing with Shapeways over other manufacturing methods?

Speed, cost and simplicity. When our 3D drawing is finished we don’t have to produce fabrication drawings. We just upload the 3D file on Shapeways’ website. Very simple. We also do not have to build a mold for 1 up to 50 parts. It’s very great cost saving. Later when the design is perfect we can build a mold and be confident that the mold will meet our requirements. We are also not limited to a particular shape with 3D printing, practically every shape is possible. Finally, the precision, repeatability and tolerances are better than most of the others manufacturing methods.

“The precision, repeatability and tolerances [of 3D printing technology] are better than most of the others manufacturing methods

What aspect of My Track Technology production do you use 3D printing and Shapeways for?

We are right now
moving to production and most of the parts that had previously been tested with
3D printing are now thermo or injection molded. 3D printing saves us an amazing amount of money by testing
different designs quickly. When the design is
confirmed the mold can be built with the peace of mind that this part works perfectly well.

The other 10 parts
that are needed for an
MTT-154 2020 will continue to be built with 3D
printing technologies. Up to about 100 MTT-154 units per year it totally makes
sense to print parts in Nylon. We save the initial cost of the mold and we can design parts
that are impossible to manufacture with a traditional mold.

What materials do you use?

Right now we mostly use SLS, with Nylon PA12 (Versatile Plastic), dyed black. We also use rubber like TPU to create custom grommets.

How does working with Shapeways affect the speed of your manufacturing?

In our MTT machine there are about 20 plastic parts. Last year we were in a very big rush to do a test with the US military and we had no time to build 20 molds for every single part. We saved at least 6 months (concept, drawing for molding, mold building and parts production) by 3D printing with Shapeways.

How about any cost savings?

For 20 plastic parts the average cost of a mold is $3500 * 20 = 70,000 USD. This money would have been a very big gamble knowing that we were unsure if these parts would meet the functionality, design and resistance we needed. $70K is a lot of money for a startup. It’s manageable, but $70K without any guarantee that this mold will be useful in the future is unacceptable.

Video source: My Track Technology

What is the most important aspect of working with Shapeways for you?

First, when we want
a strong part I know that Shapeways will not disappoint us. Also the website is
very easy to use, and I like the freedom to choose the shipping you want
depending on the requirement of a particular project. The quality control is
also excellent because I never return a part. Finally, the service when I need
information is excellent.

Can you share any current or future goals for My Track Technology?

The goal right now
is really to move to production and send machines to the customers that have
reserved these vehicles in the past. The product we sell right now is our
MTT-154 2020, with the possibilities to have only one unit with a trailer/sled
or with the flip of a switch multiple units coupled together for special military and industrial
applications.

Finally, we have orders for some small MTT-like robots. The frame will be built entirely in SLS printing at Shapeways very soon.

The next stage in 2021-2022 will be remote control with satellite or 4G and autonomous capabilities.

Efficient Manufacturing with 3D Printing

My Track Technology’s vast range of potential applications will see it become an essential tool for assisting humans in navigating challenging terrains and environments. Using 3D printing has made MTT’s production process much more efficient and affordable and shows how 3D printing can contribute to smarter manufacturing.

Find out how Shapeways can help with your rapid prototyping and robotics manufacturing needs.

The post How My Track Technology Uses 3D Printing for Their Remote All-Terrain Vehicle appeared first on Shapeways Blog.

Porsche Creating Partially 3D Printed Seats that Offer Different Levels of Comfort

3D printing is used often in the automotive sector, and many recognizable names, from Volkswagen and BMW to Ford and Toyota, are adopting the technology. German automobile manufacturer Porsche, which specializes in high-performance sports cars, SUVs, and sedans, has turned to 3D printing multiple times in the past to make components for e-drive powertrains and turbo inlet ducts. Now, the company has revealed its latest innovation – 3D printed bodyform bucket seats.

Michael Steiner, a member of the executive board for research and development at Porsche, said, “With the ‘3D-printed bodyform full-bucket seat’, we’re once again giving series-production customers the opportunity to experience technology carried over from motor sports.”

The manufacturer, based in Stuttgart, currently considers the seat a concept study, and not yet a production part. The seat’s central section is partially 3D printed, because the technology will allow Porsche to offer customers an exceptional level of customization – people who order the seat in the future will be able to choose between soft, medium, and hard firmness levels. The central section of the seat will then be custom 3D printed to provide whichever level of comfort they choose.

“The seat is the interface between the human and the vehicle, and is thus important for precise, sporty handling. That’s why personalised seat shells customised for the driver have been standard in race cars for a long time now,” Steiner said.

In the future, the manufacturer plans to bring the 3D printed seats to customers as production parts through Porsche Tequipment. But for now, only 40 of these seats, for the driver only, will be made and installed in the 911s and 718s Porsche racing models; in fact, the new 3D printed bucket seat is based on the company’s current sports seat. These 40 seats will be considered as prototypes, and will only be used on European racetracks this summer with a six-point harness.

Once Porsche receives feedback from the customers, the 3D printed seat will then be included as a regular offering in its Porsche Manufaktur catalogue starting in mid-2021 – if the feedback is good, of course. At that point, Porsche will also offer the seat in a variety of different colors as well.

The base support for the bucket seat is made out of expanded polypropylene (EPP), which is then bonded to the 3D printable, breathable custom comfort layer, featuring an aesthetically pleasing lattice structure. The seat’s final layer is made from a material that Porsche calls Racetex, which has a distinguishing perforation pattern that helps with climate control.

Porsche hopes that in the long run, it will be able to use 3D printing to offer its customers even more customization, such as seats that are designed and molded for a person’s specific body contour and shape, similar to how vehicle seats in motorsports are made for the race car driver.

There isn’t yet a price listed for these customizable 3D printed Porsche seats, but you can bet your bottom dollar that they won’t be cheap; customization rarely is, of course.

What do you think? Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the comments below.

(Sources: Autoblog and MSN / Images: Porsche)

The post Porsche Creating Partially 3D Printed Seats that Offer Different Levels of Comfort appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Veterans Affairs Researchers Developing 3D Printed Artificial Lung to Help Treat COPD

We often see 3D printing used to make a difference in the lives of our veterans, whether it’s creating customized prosthetic attachments and covers, helping them get back to work, or simply providing a good pair of shoes. Now, scientists at the VA Ann Arbor Health Care System in Michigan are developing a 3D printed artificial lung that could help treat veterans affected by lung disease.

Chronic obstructive pulmonary disease (COPD) is one of the most prevalent, and expensive, illnesses currently affecting US veterans, with 16% of the veteran population suffering – some of the most common factors leading to lung issues for active-duty military include exposure to burn pits, chemicals, diesel exhaust, and sand. According to the VA’s Office of Research & Development, most people with COPD have emphysema (enlarged and damaged lung air sacs) and chronic bronchitis, and about 20% of patients with severe traumatic brain injuries also suffer from acute lung injuries.

Biomedical engineer Dr. Joseph Potkay, with the VA Ann Arbor Health Care System, displays a 2D prototype of an artificial lung. A 3D version is in production.

Biomedical engineer Dr. Joseph Potkay is leading the research, which is funded by the VA and focused on patients who have a buildup of CO2 in their blood, which often applies to veterans with end-stage COPD; this can lead to sudden cardiac death, so any excess CO2 needs to be removed from the lungs so it doesn’t get to this point.

Dr. Potkay has long been researching the advantages of using microfabrication to build artificial lungs with efficient gas exchange and blood paths similar to those in human lungs. He introduced a 2D printed artificial lung prototype back in 2011, made using traditional microfabrication methods with help from Case Western Reserve University and the Advanced Platform Technology Center at the Louis Stokes Cleveland VA Medical Center. The unique prototype was efficient enough to use air, instead of pure oxygen, as a ventilating gas, which opens up new possibilities for potential implantation. Dr. Potkay says that the 3D printed version currently in the works will “provide the same basic advantages.”

Dr. Potkay said, “But with the freedom afforded by being able to design the device in three dimensions instead of two, 3D printing should result in artificial lungs with a smaller overall footprint and with increased efficiency. Thus, portability and performance will potentially improve using 3D printing.”

Potkay’s artificial lung model relies on microfabrication to achieve highly efficient gas exchange and blood paths similar to those in a human lung.

Dr. Potkay and his team are working with high-resolution 3D printing company Old World Labs to create a prototype of the 3D printed artificial lung, which will be about a half-inch cube in size, hopefully able to fit in a backpack and be used for a week; however, after further development, the hope is to get the lung to work for longer amounts of time.

Lung disease patients have long used heart-lung machines that contain artificial lungs for rehabilitation, but the devices are bulky and, according to Dr. Potkay, “not truly portable.” Additionally, they also have to maintain appropriate blood pressure, minimize clotting and immune response and reduce blood cell injuries.

The goal behind the VA research is to create the first truly wearable artificial lung that’s compatible with living tissue and can provide both short- and long-term respiratory support, and microfluidic artificial lungs also use far less blood than current commercial devices do. According to Dr. Potkay, this is the first time that high-resolution polymer 3D printing has been used to fabricate microfluidic lungs with 3D blood flow networks.

“With a 2D design, you stack many single 2D layers together. That has limited the ease of creating devices that are large enough for human use. You have less freedom in how you design the blood channels,” Dr. Potkay explained. “3D printing these devices may be a solution to these problems. We can be much more precise and efficient with how the blood flow path is laid out in three dimensions.

“We hope that these microfluidic flow paths and biocompatible coatings will be more compatible with living tissue, thereby reducing the body’s immune response and increasing the lifetime of the device. The flexibility in design afforded by 3D printing gives us more freedom and thus the ease to build artificial lungs with a small size and pressure drops that are compatible for operation with the body’s natural pressures.”

Potkay works with a test print of artificial capillaries that will be part of a 3D artificial lung now in production.

Dr. Potkay is not sure yet how far away we are from implanting 3D printed lungs, and explained that the device was currently only being tested in rabbits, with sheep testing planned for the future.

“We’ll see how well it does in terms of lifetime. To be implantable, it needs to be able to operate for months without being swapped out,” Dr. Potkay explained.

“Although the 3D artificial lung is more promising, it is earlier in development and still not guaranteed to work. We’re further along in developing the 2D device, and we have plans to work around the challenges with that device.”

Tests with traditional microfabrication techniques and animal blood showed that the 2D small-scale artificial lungs had the “highest gas efficiency exchange of any artificial lung to date,” and Dr. Potkay believes that this will also translate to the 3D printed version; additionally, the expected lifetime of the 2D lung has “significantly improved” due to its biocompatible surface coatings.

Dr. Potkay said, “We believe the 3D-printed device should be better than the 2D version, but we don’t have proof yet.”

The 3D printed lung could also be used as a temporary solution for people with other lung diseases, like acute respiratory distress syndrome.

“It will depend largely on the needs of the patient. The removal of CO2 in the blood is the first Veteran application we’re aiming for because it’s the simplest in terms of patient use, the required components, and the size of the device. CO2 removal is a critical need for many Veterans with COPD,” Dr. Potkay said.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

[Images: Brian Hayes]