3D Printing News Briefs: March 10, 2020

The big story in today’s 3D Printing News Briefs is the postponing of the Materialise World Summit. Then we’ll finish with a little business news, as 3D PRINT UK is moving to expanded premises. Finally, starting this week, you can get QUANT-U’s 3D printed silicone midsoles at ECCO’s flagship Zürich store for a limited time.

Materialise World Summit Postponed

Every two years, Materialise holds its Materialise World Summit (MWS) in Brussels, Belgium, gathering together the industry’s thought leaders and decision makers so they can share ideas about the additive manufacturing industry. This event typically takes place in the spring, which was the original plan for this year’s MWS…but not anymore. MWS 2020, originally scheduled for May 14-15, has been postponed, due to, as the company’s Kristof Sehmke tells us, “the coronavirus and its impact on international traffic.”

MWS 2020 will now take place November 5-6, which makes it a busy month considering that will just one week before formnext in Germany. This isn’t the only major industry event that’s had to change its plans due to the COVID-19 outbreak – JEC World, originally scheduled for last  week, has been pushed back to May, and after several big companies originally planning to attend the upcoming SXSW dropped out, including Apple, Facebook, Amazon Studios, TikTok, Intel, and Warner Music, the Texas-based conference was called off. With California Governor Gavin Newsome declaring a state of emergency in California over the coronavirus, should we all cancel our plans for RAPID + TCT next month? Time will only tell.

3D PRINT UK Moves to Bigger Facility

Moving on to some better news, 3DPRINTUK has just finished the move to its new purpose-designed facility in North London’s Leyton Industrial Village. The service provider of polymer SLS 3D printing solutions for manufacturing applications was seeing increased demand for low volume production, and determined that a move was needed to accommodate the company’s current, and future, plans for expansion. 3DPRINTUK’s new home is larger, with nearly 10,000 square feet of space, and was custom-designed to hold the company’s EOS polymer SLS 3D printers, as well as offer a space for post-processing operations and a break down room that’s sealed to avoid powder contamination.

“At 3DPRINTUK we are able to work with our customers — and potential new customers — to illustrate when and why the SLS process will work for them. But we are not afraid to tell them when it won’t, either. This is really important to us, and something the industry at large is not very good at confronting,” stated Nick Allen, 3DPRINTUK’s Founder and Managing Director. “I think this approach has contributed to our growth, which has been organic year on year, and the new premises are testament to that. We are still settling in, but the printers have been working non-stop since we got here and we are looking to further expand our capacity in the near future.”

QUANT-U’s In-store Experience at ECCO

In 2018, the Innovation Lab at Danish heritage footwear brand and manufacturer ECCO introduced an experimental footwear customization project called QUANT-U, which uses real-time analysis, data-driven design, and in-store 3D printing to create custom, personalized midsoles out of a heat cured two-component silicone in just two hours. The QUANT-U experience is now coming to ECCO’s flagship Zürich store as an exclusive pop-up event from now until April 15, with a “unique limited collection” available to both men and women, along with the full customization service.

The process is simple – 3D scanners determine your orthotic fit in 30 seconds, so your midsoles have the correct shoe size and arch height. Then, during a walking analysis, wearable sensors will create an accurate representation of how you move around. The anatomical scan and the sensor data will help QUANT-U build a unique digital footprint just for you, which leads to customized, 3D printed midsoles within two hours. You can use the cloud-based service to print your own midsoles from any location and have them shipped to you, but at the upcoming ECCO pop-up event, you can just pick them up in the store. Book your fitting now!

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

The post 3D Printing News Briefs: March 10, 2020 appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Interview with Patrizio Carlucci of Innovation Lab ECCO on 3D Printing Shoes

Patrizio Carlucci

Patrizio Carlucci is the Head of Innovation Lab ECCO a subsidiary of Danish shoemaker ECCO. The Innovation Lab is ECCO’s independent cross-disciplinary design studio. They explore, create, and deliver projects embracing alternative production methods, various materials, new technologies and experiential solutions. This lab has a big project called QUANT-U. It is a footwear customisation project by Innovation Lab ECCO. Built on half a century of industry experience and footwear research in dynamics and fit: QUANT-U combines future technologies to create 3D printed customised comfort, quantified by you. So for more info on innovation and 3D printing within the footwear industry pay attention to this interview!

Tell me a little bit about your background and how you are at this point of your life and your career.

I am an industrial designer by trade with a keen passion towards computer aided design and 3D printing. Fortunate enough in my career to be involved in innovative projects, not only from a designer’s perspective, I have been driven to challenge my own skills and knowledge base on a regular basis. Having been an early adopter of innovative digital tools has helped me in roles were transformation and change management was paramount for businesses, especially from a product strategy perspective.

What are some of the most important aspects of your career that have followed you through various roles?

A common thread for me has been the application of digital agile processes between concepts and products. Being agile in product design and development means more opportunities to identify at an early stage a breakthrough design direction or to refine to perfection existing ones. Furthermore, I have never understood how design and styling, in terms of creative moments, could be isolated from the physical creation of a product, particularly when ultimate product performance is paramount. Designers often delegate 3D work to a modeler, and this is often cause for delays and misinterpretation. For this, from 3D modeling passing by FEA simulation to 3D renders used for marketing purposes, I have personally experienced almost any phase of advanced product development. This helped me further down the line with a decent understanding of advantages and shortcomings of innovative technologies during innovation tasks for the entire product life cycle management.

Quant-U

What skills are the most useful to have at the intersection of 3D Printing and footwear in particular?

It might be trivial but 3D modeling and developing a shoe is a challenging feat compared to other types of products. To mention just a few reasons for this: the lack of lines’ symmetry between the medial and lateral sides of the shoe, the criticality of observing the right fit requisites for a wide range of wearers and the relatively low-tech manufacturing processes that causes inconsistencies between the 3D models and the final shape of the shoe. This is mainly due to components that can’t be molded, cemented or stitched in their final shape if not developed in a flattened form. Additionally, a shoe is a soft and hard good at the same time, requiring distinct processes for uppers and soles. 3D printing an outsole creates a decent representation of the final product but 3D printing a soft upper that feels like the final product is close to impossible.

The team at Ecco has had some interesting projects coming recently. Can you go into more depth about what Ecco is doing in particular when it comes to 3D Printing and footwear? 

Dassault Systemes

We are focusing heavily on the wearable data capturing process, both in terms of next generation hardware development and for the advanced interpretation of motion data related to FEA processes with our project partners Dassault Systemes. With DOW Chemical, another project partner, we continuously explore further properties of 3D printed silicone we use for our Quant-U project. There is a lot of hyped and misunderstood activity around 3D printed footwear without a solid solution for true mass production and customization. AM offers the chance to create bespoke parts in series, but this is rarely translated in a consumer product; most likely due to the complexity of the 3D models and a lack of measuring data to begin with. To solve this, we invested heavily on the digital capture and interpretation of motion and orthotic data and the related AI and automated processes for the creation of 3D models without human intervention. With our Quant-U project we are showcasing these abilities on the market already and we look forward to extending its reach to more customers soon.

Which countries around the world are the most innovative in terms of integrating fashion and technology? Where should we be paying attention to in terms of 3D Printing and fashion?

Well, if you consider how thin the separation line between fashion and sportswear is today, and if you consider that technology in wearable goods is usually seen in sportswear, I would put the USA and Germany on the top list. France is seeing a lot of activity related to technology in the luxury brands arena, although still at an experimental level. In Italy, the motherland of luxury goods manufacturing, there is some use of AM processes in the product development phase that might find their way in final products. In the Netherlands, a country often ahead of the curve, there is a vibrant movement dedicated to 3D printed shoes that has been inspiring for a lot of young designers, although not commercially exploited yet. For us at ECCO, a Danish company, we believe to express digital maturity in fashion with our latest project and we hope to engage more and more with consumers from this point of view.

I believe that the next technological innovations in fashion will be represented by new bio/growth materials with a strong focus on sustainability and smart materials that have augmented functionality. The commercial application of 3D printing processes for fashion in general is, and will still be, for few players that have the necessary resources to sustain processes that are still slow in terms of output and expensive in terms of investments. Until a 3D printed product is either fully circular and sustainable or performs substantially better than a standard one, I doubt it will ever surpass the scope of a hyped experiment.

For this, at ECCO with Quant-U, we invested into an approach were a fundamental component of a shoe could be customized and 3D printed using a material and a process that truly augments the product’s performance while keeping the manufacturing aspect intact.

ECCO Steps Forward with 3D Printed Custom Silicone Midsoles

German company ViscoTec, which manufactures systems required for conveying, dosing, applying, filling, and emptying medium to high-viscosity fluids for multiple industries, including automotive, medical, and aerospace, is well-known in the 3D printing world for its two-component print head for viscous materials like silicone. The Bavaria-based company, which began working with 3D printing four years ago, employs about 200 people worldwide, and is now putting its print head to the test through a collaboration with Danish heritage footwear brand and manufacturer ECCO.

ECCO, a family-owned business founded in 1963 with factories and subsidiaries in China, Indonesia, Portugal, Slovakia, Thailand, and Vietnam, has a vision of becoming the top premium brand for leather goods and shoes. The latest innovation to be introduced by the Innovation Lab of ECCO is called QUANT-U, an experimental footwear customization project.

QUANT-U relies on three core technologies: real-time analysis, data-driven design, and in-store 3D printing. The project combines these technologies to create custom, personalized midsoles, in just two hours, out of a heat cured two-component silicone.

Most everyone likes personalized products such as shoes, but due to the necessary cost, production time, and expertise involved in making custom footwear, they’re typically not available to everyone. But thanks to ECCO’s partnership with ViscoTec, this is going to change.

3D printing of silicone midsoles with ViscoTec printhead.

In order to specifically coordinate the material properties and the process, ECCO had to rethink its approach to customization, and now plans to utilize ViscoTec’s print head technology and two-component silicone to 3D print customer-specific midsoles for its customers, so each person can enjoy their own tailored fit and comfort.

According to the Innovation Lab ECCO website for QUANT-U, “A midsole is the functional heart of the shoe. It plays a key role in the performance and comfort of your footwear. Two years of research has proven that replacing the standard PU midsoles with 3D printed silicone can tune its inherent properties; viscoelasticity, durability and temperature stability.”

The QUANT-U process has three steps, starting with using scanners and wearable sensors to measure the customer’s feet and build a unique digital footprint. This biomechanical data is then evaluated and interpreted using a sophisticated algorithm, and a unique configuration is generated through structural simulations and machine learning.

This augmented pattern is optimized for each person’s respective feet and activity level by making adjustments to its densities, patterns, and structures, and the final 3D printed midsoles are personalized according to the customer’s own orthopedic parameters for a far more comfortable fit than you’d get with typical store-bought midsoles. Within just a few hours, you’re able to take home your custom 3D printed midsoles, along with your chosen pair of ECCO shoes.

Thermal cross-linking of the individual silicone layers.

By 3D printing the two-component silicone, ECCO is able to optimally counteract the high mechanical stresses we often deal with in everyday life; this is thanks to the midsole’s algorithmic designs combining with the silicone’s unique properties. By utilizing 3D printing, ECCO will be able to fabricate large quantities of personalized midsoles.

Using ViscoTec’s print heads gives ECCO several unique advantages, such as the usage of heat cured two-component silicone and precise 3D printing results, in addition to making sure that the silicone is uniformly mixed in the static mixing tube.

The footwear industry, which often utilizes 3D printing, has been growing fast over the last few years, with its global market expected to reach $371.8 billion by 2020. We often see 3D printed insoles and midsoles available for purchase now, and ECCO’s collaboration with ViscoTec and its unique 3D print head will certainly help keep it in the game.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

[Images provided by ViscoTec]