Recycled Cardboard Molding #Holiday #Recycle #3DPrinting

Featured preview IMG 3216

Have you found yourself buried in boxes after the holiday whirlwind?

You can recyle some of that material yourself and make some cool projects!

Shared bye XYZAidan on Thingiverse and YouTube:

Paper is an incredible material, but why does it always have to be flat? I’ve developed a process to turn paper into a three-dimensional object, using as little as a 3D printer, a blender, a vice, and pinch of rice.

To mold paper or cardboard into a 3D molded-pulp object, the paper needs to be blended into a wet pulp with a water-soluble binder, then compacted into a 3D printed press mold.

Learn more!

Recycled Content of Filamentive’s 3D Printing Filaments in Accordance with ISO 14021 Standard

According to UK-based 3D printing material startup Filamentive, 90% of all the plastic used in the world comes from non-renewable sources, which means there’s definitely a major environmental need for recycled 3D printing filament. That’s why Ravi Toor, the startup’s founder and director, decided to launch Filamentive back in 2015, with support from the University of Leeds.

Toor realized that the 3D printing materials market needed to change, and put his environment-based degree, and experience running a 3D printing business, to the test. He founded the startup in order to offer more sustainable filament that can address both environmental impact and the need for high quality materials at the same time.

“As 3D printing becomes more popular, plastic production and consumption will increase, causing many environmental impacts,” the startup notes on its website. “Filamentive was set-up to address the environmental concerns in 3D printing – committed to using recycled materials where possible, without compromising quality.

Filamentive is an ethical brand, committed to both social and environmental sustainability, which is why it is so proud to announce the news that the recycled content of all of its 3D printing filament products are now in accordance with the ISO 14021 standard.

Toor said, “It is becoming evident that all consumers – from hobbyists to large businesses – are becoming increasingly environmentally-aware and so we will continue to set high targets for recycled content and the recyclability of our packaging.”

The Filamentive 3D printing material products listed below have all been evaluated by the International Organization of Standards (ISO) according to BS EN ISO 14021:2016 – Environmental labels and declarations — Self-declared environmental claims (Type II environmental labelling).

Filamentive has responded to the ever-growing issue of harmful waste plastic, and the rise of plastic usage due to the 3D printing industry, by remaining steadfast in its commitment to use a higher percentage of recycled materials in all of the products it manufactures and sells. In addition, the West Yorkshire startup is committed to creating recyclable spools and packaging, thanks in large part to the empty spool return initiative it launched in 2017.

“Due to FDM/FFF 3D printers using plastic materials as feedstock, unfortunately as 3D printing becomes more popular, plastic production and consumption will increase, causing the industry to exacerbate the global problem of plastic. Filamentive specialise in sustainable 3D printing filament materials. The company was founded to address to the environmental need to use more recycled plastics in 3D printing, and also alleviate market concerns over quality and long term sustainability,” Toor stated.

While 3D printing is actually far less wasteful than more traditional methods of subtractive manufacturing, such as CNC machining, using plastic as a feedstock could actually, according to the startup, “exacerbate the global plastic epidemic.”

Thankfully, there are many initiatives around the world that are set on using 3D printing to lower the amount of plastic that we waste, by making things like prosthetic limbs, furniture, shoes, and filament out of the used material. Filamentive is obviously focusing on the latter, and was also founded in order to challenge the common thought that products made from recycled materials are somehow of lesser quality.

The startup knows that high quality prints can only come from high quality filament, which is why it has committed itself to “strict waste selection and manufacturing procedures” so the 3D printing performance of its users isn’t impacted. The news that its 3D printing filaments are now in accordance with the ISO 14021 standard will only serve to help Filamentive continue its mission.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

[Source/Images: Filamentive]

Colorado-Based AMIDE Alliance Focused on Workforce Development and Creating Sustainable 3D Printing Thermoplastics

It seems these days that Colorado is the place to be in the 3D printing industry. Home to the ADAPT Consortium and 3D Systems’ Littleton Healthcare Technology Center, along with Aleph Objects and its LulzBot 3D printers, the state has had its fair share of innovations in the medical and educational fields. We’ve got more news coming out of the Centennial State this week, as Vartega, which produces recycled carbon fiber from scrap material generated in aerospace, automotive, sporting goods, and wind energy manufacturing, and the Colorado Cleantech Industries Association (CCIA) have teamed up with several academic and industry partners to form an alliance centered around additive manufacturing and sustainable thermoplastics.

The Advanced Materials and Additive Manufacturing Infrastructure Development and Education (AMIDE) Alliance is the direct result of a $500,000 Advanced Industries Accelerator (AIA) Collaborative Infrastructure Grant from the Colorado Office of Economic Development and International Trade (OEDIT). The funding from this grant will support the development of at least three separate innovation centers in the state, which will focus on creating and applying 3D printing materials, like fiber-reinforced thermoplastics.

[Image: Vartega]

Katie Woslager, Senior Manager, Advanced Industries, Colorado OEDIT, said, “This was an extremely competitive grant cycle, but the review committee and the Economic Development Commission recognized the value that Vartega, CCIA, and the other project partners could bring to the state through this investment in an advanced materials and additive manufacturing ecosystem.”

Members of the AMIDE Alliance will be represented by a seven-person governance board that’s made up of academic and industry partners; CCIA will oversee the board’s establishment. Founding partners include Vartega, CCIA, Colorado State University (CSU) EWI, and The 3D Printing Store. Additional support for both the alliance and the grant proposal came from the following:

Colorado manufacturers AMP Industrial, the Crestridge Group, Oribi Manufacturing, and Steelhead Composites, which all currently have new products in development with advanced materials and manufacturing methods like 3D printed carbon fiber thermoplastics, also provided support.

“There was so much great work happening in Colorado around the adoption and acceleration of 3D printing, but we kept running into the same problems sourcing and developing new materials and identifying local expertise for these applications. As we recognized this gap in the supply chain and workforce, we were able to work with our customers and partners to put together a vision of what a vertically integrated supply chain would look like,” said Vartega CEO Andrew Maxey. “We’re excited to be part of the newly formed AMIDE Alliance to close this gap and increase innovation in this growing and important area of manufacturing.”

Vartega makes custom 3D printing and injection molding materials by combining its recycled carbon fiber with thermoplastics. By participating in the alliance, the company will be making capital equipment investments that will help to grow the state’s production of custom thermoplastic formulations.


The overall goal of the AMIDE Alliance, which will close a major gap in Colorado’s materials supply chain by providing critical development resources for AM thermoplastics, is to develop a materials development and testing ecosystem by investing in resources and equipment. The ecosystem will make it possible to increase advanced 3D printing materials development, as well as training the next generation of skilled manufacturing workers. The alliance will accomplish its goals by opening innovation centers in collaboration with CSU, the Colorado School of Mines, and Vartega.

“Advanced materials and additive manufacturing are impacting just about every industry right now,” said Shelly Curtiss, CCIA Executive Director. “We see a huge opportunity to leverage these new developments throughout the cleantech sector for the benefit of our members who are focused on renewables, energy efficiency, clean water, oil and gas, mining and transportation.”

The CCIA will administer the grand funds for the innovation centers, which will be home to programs for educating and training new students, technicians, and professionals. The centers will also have the necessary equipment to help mature new additive manufacturing technologies and materials. Additionally, EWI will support materials development by offering advanced nondestructive evaluation, modeling and inspection services to support the ongoing new materials development.

CSU’s innovation center will be at the university’s Composite Materials, Manufacture and Structures (CMMS) Laboratory, and will include the installation of a six-axis robotic system for the direct manufacture of continuous fiber-reinforced thermoplastic composites.

The center at the Colorado School of Mines, which will be home to an HP Jet Fusion 580 3D printer that will evaluate and characterize fiber-reinforced polymer powders being developed by project partners, will be located in the school’s Interdisciplinary Advanced Manufacturing Teaching Lab. The final innovation center, which will house extrusion equipment meant for developing fiber-reinforced thermoplastics for 3D printing applications, will be located at an unknown industry partner’s facility.

Another objective of the new AMIDE Alliance is workforce development, and Front Range Community College, Colorado School of Mines, IACMI, and ACMA will support these efforts by creating a curriculum centring around closing the skills gap for composites and 3D printing.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

[Source: CompositesWorld]