Launcher’s Adventure Building Commercial Rockets Using 3D Printed Engines

Spending on space exploration is booming. We have seen many ambitious private endeavors come onto the scene in the last few years, from building and launching satellites into Low Earth Orbit (LEO) for telecommunications, to prepping crews and cargo to go to the International Space Station (ISS) and even developing programs allowing fee-paying tourists to go beyond Earth’s atmosphere, it is all happening now. The truth is that reduced costs and growing competition are letting private firms become involved in this new space race, which unlike the previous one, that started 62 years ago with Sputnik, is driven by more than just a need to dominate space. For companies offering satellite launch capabilities to private clients and national governments, the time has never been better, over 70 countries now have space programs and only a dozen of them have any sort of launch capability, the same goes for companies. This is where rocket startups like Launcher come to play.

Launcher testing site in Long Island

The Brooklyn-based firm has been developing what it says is the world’s largest 3D printed liquid rocket engine combustion chamber in a single piece. The E-2 engine, which was made in Germany by AMCM using its specialized M4K printer, has been tested many times at the company’s test facility on Long Island’s Naval Weapons Industrial Reserve Plant (where the US jetfighter F-14 Tomcat used to be assembled), in New York. There, the Launcher team works out of a deserted airplane runway where they are ingeniously using shipping containers to test their engines. But this is just the beginning of Launcher’s decade long plan to build a 65-foot-tall rocket that will send small satellites to orbit.

Launcher’s rocket design for 2023

Based out of the Brooklyn Navy Yard in New York, the company was formed in March 2017 by Max Haot, an internet entrepreneur who created the video streaming company Livestream. After selling it to Vimeo in 2017, he chose to focus on getting Launcher rockets to orbit.

“I always had a personal desire to stretch my career to the aerospace industry and contribute to space exploration,” Haot told 3DPrint.com. “I was just coming out of my last entrepreneurial adventure with Livestream and that’s when I thought about it: why not move to space? After some research, it was clear that there were a lot of opportunities in the launch industry and that’s how I got the startup going. Everyone in the team has a general interest in space exploration and by providing the rockets, propulsion and 3D printed engines we are offering a platform for satellites to make life on Earth better. I think it’s a great start.”

The goal is very ambitious and very rare. Beyond space agencies, only a few companies have already successfully sent rockets to space with payloads, including Elon Musk’s SpaceX and Rocket Lab, but they are not the only ones trying to tap the smaller private satellite launch market, small rockets are a crucial part of the growing space industry.

The Launcher team at the company’s headquarters in Brooklyn, New York

“Small satellite makers were basically catching a ride on the bigger rockets, accounting for one percent or less of the payload (and revenue), so they couldn’t choose when the rocket launched or even where it was going because the main customer was taking up a five million dollar satellite and calling all the shots. But now, these smaller rockets, that cost less than 10 million dollars, can allow companies to send their satellites to space quicker. They can either buy the full rocket which would accommodate between 10 to 40 small satellites, or they can rideshare with other companies, but still have a 10 to 20 percent of the revenue (meaning they get to have a say in the launch),” he went on.

Max Haot, founder of Launcher

Since Sputnik, around 8,378 satellites have been sent to space according to the Index of Objects Launched into Outer Space maintained by the United Nations Office for Outer Space Affairs (UNOOSA). These days there are 4,857 satellites currently orbiting the planet, but the majority are not even active, with only 1,957 actually operational (and they also will have a limited lifetime). Now there are over 20,000 proposals for new satellites in the next five years, that means we are looking at a market that will change dramatically reflecting a growing trend for startups and customers to become more involved in space technology.

In order to start testing flights by 2023, Haot began developing the E-2 engine, which will eventually be part of a four-engine 65-feet high rocket that can deliver small CubeSats (satellites that can weigh as little as 10 pounds) to orbit. 

Haot claims Launcher’s E-2 engine will be the highest performance engine in the small satellite launcher industry, with the largest thrust, lowest propellant consumption and lowest cost per-pound of thrust. Consuming the least amount of propellant for the maximum amount of thrust, he expects to be able to take twice more payload than the competition for the same rocket size. To do this, the company has focused exclusively on engine development and they don’t want to start building the rocket until E-2 tests prove to work perfectly. 

One of the ways Haot expects E-2 to reach its high-performance target is by using 3D printing in a copper alloy which reduces cost, complexity, and manufacturing lead time for most parts, including the combustion chamber, injector, and turbopump.

Launcher E-2 made on AMCM M4K, in Starnberg, Germany

“We decided we wanted a 10-ton force (22,000 pounds) of thrust engine instead of a smaller one, but we didn’t want to end up welding together different sections of the combustion chamber (the main part of the engine). So the problem in the 3D printing industry was that we couldn’t find a big enough 3D printer for the job, so as part of our roadmap we decided to wait until we found a 3D printer big enough to do it in one print. We worked with EOS, AMCM, and copper, which is the best alloy for a combustion chamber, leveraging a custom printer and finally successfully producing a large single-part 3D printed copper combustion chamber.”

The E-2 liquid rocket engine chamber was created on the M4K 3D printer, a customized EOS M400 series machine that can fabricate parts up to 45x45x100cm. The Launcher team explained that 3D printing both the rocket chamber and nozzle together as one part allows for the highest performance in cooling, along with reducing part count and complexity in production. Functioning as part of the EOS group, AMCM produces customized AM machines, and Launcher is the first customer of the AMCM M4K.

In 2018 the company tested their 1/40th size development engine E-1 (Propellants: LOX/RP-1, Regen cooling, printed on the EOS M290 in Inconel 718, in three parts, 500-pound thrust, augmented spark ignition). The E-1 helps them validate the design of the 3D printed combustion chamber and internal cooling channels before applying in it to the 40 times larger E-2. 3D printed rocket engines and components. Last February AMCM unveiled a prototype from a Launcher design in Aluminum, which they believe is the largest single part combustion chamber ever 3D printed, and this month AMCM is developing the final part for testing in copper. That means next September, the AMCM machine and engineers will deliver a full-size engine in copper ready to begin the test-firing by the end of the year.

“We have done a lot of subscale testing (over 100 times) to prove that we are able to reach the combustion performance that we want for our full scale engine,” Haot said.

Before scaling to the full-size E-2 engine, Launcher is proving its design and 3D printed materials on the subscale version Engine-1 or E-1. The company claims that thanks to the design, the use of 3D printed copper alloy, and the unique liquid oxygen cooling system, their E-1 subscale engine is so efficient (over 98%) that it produces a blue exhaust plume—unprecedented for kerosene engines. It was proven for over 15 minutes of test time at the highest performance combustion mixture ratio between liquid oxygen and kerosene.

“We expect the first test flights in 2023, but will only become fully commercial and profitable after a few tests, in 2026. Right now there is not enough supply of small launching capacity, so there is a backlog. With tens of thousands of proposals for new small and nano-sized satellites to be launched in the next 5 years, the demand is certainly not the issue. The questions we need to answer are: whether we can be competitive, come to market and reach orbit. We expect to have a higher performance rocket that could eventually carry more payload than our competitors and with the same rocket size. In 2026, if we do four flights per year we could break even, however we are targeting 12 flights,” he went on.

For now, the company is looking to capitalize on the demand for small satellites by building a rocket that will focus on sending the smaller payloads to orbit. However, they claim to be building what they hope “will be a long-lasting aerospace company”. Suggesting that “the small satellite launcher is our first product”, and that they would like to “contribute to space exploration in general”. 

Preparing for testing

Launcher’s rocket is priced to that smaller market, with plans to sell missions for about $10 million per launch, and customers that hope to operate within LEO and Medium Earth Orbit (MEO), because the higher they go, the lighter the payload they can take. One of the big customers for a small satellite launch is the US government, especially NASA, the Air Force and the Department of Defense since they have stated their desire to miniaturize all of their satellites. But Haot knows that the first step is to develop the capability and reach orbit, after that, who knows, perhaps they can send payloads to the moon or even further. But we’ll have to wait a bit, at least until their test run in 2023. 

The Launcher team testing the E-1 engine out of their ‘container’ office

A Note On Sustainability in Space

For those of you who are wondering how whether an industry in LEO will have a long-term negative effect on our life on this planet, Haot suggests otherwise, saying that today rocket companies are being responsible.

“There are inactive satellites, rocket parts and even the debris of satellite collision in space. Some of these little objects reenter, in the LEO orbit they might start to reenter after five years but farther away in geostationary orbit the lifetime for natural deorbit might be a thousand years. That means there is a graveyard orbit, and the satellite manufacturer has the responsibility to remove it, so it doesn’t occupy some of the useful geostationary orbit space,” explained Haot. 

Guidelines issued by the inter-agency space debris coordination committee (IADC) demand LEO satellites to deorbit within 25 years after the end of operations. But Haot proposes that if someone launches a satellite they will include a deorbiting capability designed to help mitigate the growing space-junk problem.

“If we look at all the nanosats that are being proposed, they are in low enough orbit that they mostly don’t have propulsion, but its part of the design that they will reenter five years at most, by the location of LEO its less of a problem due to automatic deorbiting, but for further orbit it would be great to have more regulation, so that when satellites are not being used they have to deorbit. Launcher wants to be participants in this industry and ensure the second stage deorbit, which means you can carry a little bit less payload so you have propellant to deorbit, but we know it is the right thing to do,” he concluded. 

Launcher’s design for their rocket with four 3D printed engines

[Images: Launcher, AMCM and Tobias Hase]

The post Launcher’s Adventure Building Commercial Rockets Using 3D Printed Engines appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printed Rocket Company Relativity Signs Agreement with Satellite Rideshare Provider Spaceflight

Venture-backed Relativity has been busily disrupting the aerospace industry for the last four years with its 3D printed rockets. Based in Los Angeles, the autonomous rocket factory and launch services leader for satellite constellations is working to create the first aerospace platform that will integrate software, robotics, and machine learning with metal 3D printing to rapidly manufacture and launch rockets in just days, with little human intervention.

Last month, Relativity announced a multi-launch contract with global satellite operator Telesat to support its Low Earth Orbit (LEO) constellation, and then a launch contract with Thai space technology company mu Space to launch its 3D printed Terran 1 rocket. Now, it has signed a new Launch Services Agreement (LSA) with Spaceflight, a top satellite rideshare and mission management provider.

“With Spaceflight’s leadership in rideshare launch solutions, state-of-the-art integration infrastructure, and experience, we are excited to work together to offer industry-defining lead time, flexibility, and cost for smallsats and cubesats and meaningfully expand the total launch capacity available through Spaceflight’s offering. We look forward to building the space economy together and supporting disruptive commercial and government payload missions,” said Tim Ellis, the CEO and Co-Founder of Relativity.

This new LSA will help set Relativity up as a good launch option for much of the small satellite, microsat, and cubesat launch market. Its 3D printed Terran 1 launcher will also be serving small Medium Earth Orbit (MEO) and Geostationary Transfer Orbit (GTO) missions for small satellites. In less than 60 days, the rocket was built all the way from raw material to a launch-ready state, and can support a payload of up to 1250 kg. It has a simpler supply chain and 100 less parts than traditional rockets, thanks in large part to Relativity’s Stargate 3D printing robot.

“We consistently look for innovative new technologies that provide flexible, reliable, and low-cost access to space for our customers. Relativity’s autonomous platform and 3D-printed Terran 1 rocket delivers key advantages in launching rideshare payloads,” said Curt Blake, the CEO and President of Spaceflight.

[Image: Relativity]

Based in Washington, Spaceflight has so far used ten different launch vehicles to provide rideshare and integration services for almost 240 satellites from organizations in over 30 countries. Under the new LSA, Spaceflight will be manifesting missions to LEO on the Terran 1 rocket – the agreement includes the first launch, scheduled to occur in Q3 2021, along with options for future rideshare launches.

Relativity has been working to expand its infrastructure and team this year, in addition to its portfolio of major government partnerships – it just became the first venture-backed company to secure a launch site Right of Entry at Cape Canaveral Launch Complex-16 from the US Air Force. The company is also securing a site for polar and Sun Synchronous Orbit (SSO) launches.

By partnering with Spaceflight and combining a patented 3D printing technology platform with rapid-response rideshare launch capabilities, Relativity will be able to increase the growth of its customer manifests, and together they can offer more launch schedule flexibility and reliability. Relativity will be conducting its first orbital test launch at the end of 2020; if this goes will, it plans to enter commercial service in 2021.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

3D Printing News Briefs: April 10, 2019

We’ve got some business news for you in today’s 3D Printing News Briefs, before moving on to an upcoming industry event and new materials. 3DVinci Creations and the American University in Dubai will establish a facility for concrete 3D printing, while Telset signed a contract with Relativity. Lincoln Electric has acquired Baker Industries for its 3D printing technology, and Jabil is sharing the results of its survey report on 3D printing. Next month is the NAMIC Summit, with its flagship DfAM event, and Nile Polymers has announced two new PVDF filaments.

Agreement Signed to Establish Center for 3D Concrete Printing

A cooperation agreement was signed between 3DVinci Creations, the American University in Dubai (AUD), Arabtec Construction Company, and global engineering consultancy firm Robert Bird Group to establish The Center for 3D Concrete Printing and Digital Construction on AUD’s campus. The scientific research center, equipped with a 3DVinci Creations 3D printer, will serve researchers from the university’s three project partners, as well as university students and members of the Faculty of Engineering and Architecture. It will build partnerships, create a consortium of academic, government, and industry entities interested in the growing 3D concrete printing and digital construction fields, work with state officials to promote 3D printing culture in construction, and eventually develop and administer training workshops and seminars on concrete 3D printing.

“With this cooperation agreement, we aim to perform strategic analyses of the present and future capabilities of 3D Concrete Printing and of digitally-driven construction systems. The Center will work with local regulatory bodies to develop newly updated building codes that pertain to 3D printed buildings and structures,” said Edouard Baaklini, CEO of 3DVinci Creations. “We will also develop cost models of 3D Printed Concrete buildings and structures together with tools for value analysis vis-à-vis traditional construction methodologies.”

Relativity Signs Contract with Telesat

Los Angeles 3D printed rocket manufacturer Relativity just signed its first public, multi-year commercial contract with satellite services vendor Telesat. This is a big deal, as it’s the first agreement between a major satellite operator and a venture-backed “New Space” industry company. It costs about $10 million for Relativity to launch a 1,250 kg payload to low Earth orbit – a price that’s $10 to $20 million less than it would be using a European Ariane rocket or Indian PSLV rocket. The company can keep its costs down by using automation and metal 3D printing in its design and manufacturing processes, and claims its rockets can be made in just 60 days, with far less components. Relativity has completed 136 engine tests and is currently testing its avionics systems, with the first launch of its 3D printed Terran 1 rocket scheduled for the end of 2020.

“Early in our LEO program we decided that, in addition to working with outstanding leaders in satellite manufacturing and launch services who we know well, Telesat should also include New Space companies whose technologies and manufacturing methods offer lower costs and greater flexibility for deploying our constellation. Relativity is just such a company with their metal 3D printing, use of robotics and other advances,” said Dave Wendling, Telesat’s CTO. “Telesat continues to establish a world-class supplier team to construct, deploy and operate our global LEO network and we are very pleased to welcome Relativity to the Telesat LEO program.”

Lincoln Electric Acquires Baker Industries

According to a report published last year by SmarTech Industries, the global additive manufacturing market grew 18% to reach $9.3 billion in size, and Lincoln Electric (LECO) wanted a piece of that pie. The company announced that it has acquired Detroit-based Baker Industries, which developed 3D printing tech for the aerospace and automotive industries, for an undisclosed sum as part of a previously announced initiative to expand into the AM industry.

Baker was founded in 1992 to manufacture custom fixtures, parts, and tooling that are Nadcap-accredited, AS9100D-certified, and adhere to the tough aerospace quality management standards. While you can learn more about its services in the video below, Baker primarily offers CNC machining, design, fabrication, prototyping, quality assurance, tooling, and 3D printing services to its customers. With its acquisition of Baker, Lincoln will be able to position itself in the ever growing AM, automation, and tooling sector.

Jabil Shares Results of Survey Report

According to the 2019 Additive Materials and 3D Printing study by Jabil, the practical applications in 3D printing have grown significantly over the last two years. The company surveyed over 300 professionals who are responsible for 3D printing at manufacturing companies, and found that the technology has found its way into almost every step of production, though prototyping still remains the most popular application.

Jabil shared how several key industries, such as medical, transportation, and aerospace, are using the technology today, and reported that 25% of respondents said that 3D printing can be as much as 20 times faster than traditional forms of manufacturing – obviously a major benefit. Jabil itself has adopted the technology at some of its sites because it takes 3D printing very seriously, and believes that the technology “has unlimited potential in the future.” Nearly all of the survey’s respondents said they expected their companies’ 3D printing use to increase over the next two to five years. You can read the full survey report here.

DfAM Conference at NAMIC Summit Coming Up

Next month in Singapore, the 2019 NAMIC Summit will take place from May 6-10, with its flagship event – the Design for Additive Manufacturing (DfAM) Conference & AM Industry Showcase – happening on May 7th at the Marina Bay Sands Expo & Convention Centre. You can register now for the event to take advantage of early bird rates.

You can spend the day meeting other like-minded professionals in networking sessions, or take in a presentation by one of over ten distinguished speakers who will be sharing their knowledge about simulation and modeling, industrial applications of digital design solutions, and generative design For example, John Barnes, the founder and managing director of The Barnes Group Advisors, will be speaking about “Design for Manufacturing: The Transformative Role of Design in Driving Innovation in the Future of Manufacturing” at 9:30 am, and the CEO and co-founder of Assembrix Ltd, Lior Polak, will present “Distributed Manufacturing in Action: Dynamic Machine Allocation and Real-Time Monitoring at 1:30 pm.

Nile Polymers Introduces New Additions to Fluorinar PVDF Family

Utah-based Nile Polymers, which offers an industrial-grade PVDF (polyvinylidene fluoride) filament based on Arkema’s Kynar PVDF material, just announced the addition of two new filaments to its Fluorinar PVDF family – Fluorinar-B and Fluorinar-ESD, also built on Arkema’s Kynar. Chemical-resistant Fluorinar filaments differ from other PVDF materials because they don’t have any additional diluents or polymer additives, and they are tough, flexible, high-strength, and offer flame suppression and UV protection qualities. Sample filaments are available for both

Black-colored Fluorinar-B combines the company’s Fluorosmooth adhesive, which increases the surface energy of a print at its interface with a glass build plate, with the dependability of Kynar PVDF, and carbon pigment increases the part’s tensile strength and permeation resistance as well. Graphene-enhanced electrostatic dissipation (ESD) filament Fluorinar-ESD is perfect for applications that have parts which can’t tolerate static build-up, and calibrates impact strength and melt viscosity carefully so the final part is durable and strong.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

Rocket Lab Successfully Launches First Mission for NASA

Rocket Lab’s year has been bookended nicely with successful launches. The startup, which uses 3D printing for its rockets’ primary components, including the engine, launched its second rocket and reached orbit for the first time in January. And yesterday, just a month after its first successful commercial flight, Rocket Lab launched its first mission for NASA, deploying 13 CubeSat satellites into space. That makes 24 total satellites that Rocket Lab has launched this year – and the company is looking at a future of sending up many, many more.

On Sunday December 16th at 6:33 UTC, Rocket Lab’s Electron Launch vehicle successfully lifted off from the Rocket Lab Launch Complex 1 on New Zealand’s Māhia Peninsula. After reaching an elliptical orbit, Electron’s Curie engine-powered kick stage separated from the rocket’s second stage before reaching a circular orbit about 500 km above Earth. By 56 minutes into the mission, the 13 CubeSats on board had been individually deployed to their designated orbits.

The mission has been named “Educational Launch of Nanosatellites (ELaNa)-19,” and it’s the first mission to ever carry NASA CubeSats on their own dedicated ride on a commercial launch vehicle. Normally, small satellites only make it into space on larger launch vehicles that are going up for different reasons, meaning that the owners of the small satellites don’t always get to be picky about orbit locations or timing. Rocket Lab’s goal is to give small satellite customers more options and more control, with the ability to choose when they launch and where they go.

“The ELaNa-19 mission was a significant one for NASA, the Rocket Lab team and the small satellite industry overall. To launch two missions just five weeks apart, and in the first year of orbital flights, is unprecedented. It’s exactly what the small satellite industry desperately needs, and Rocket Lab is proud to be delivering it. Regular and reliable launch is now a reality for small satellites. The wait is over,” said Rocket Lab CEO and founder Peter Beck. “We’re providing small satellite customers with more control than they’ve ever had, enabling them to launch on their own schedule, to precise orbits, as frequently as they need to.”

The CubeSats have been assigned various research projects; one, for example, will measure radiation levels in the Van Allen belts to help researchers better understand possible effects on spacecraft. Another has been designed to demonstrate the effectiveness of small, 3D printed robotic arms, and another will test technology for a new solar-sailing system that could allow small spacecraft to explore deep space.

“The CubeSats of ELaNa-19 represent a large variety of scientific objectives and technology demonstrations,” said NASA ELaNa-19 Mission Manager Justin Treptow. “With this the first launch of a Venture Class Launch Service on the Rocket Lab Electron, NASA now has an option to match our small satellite missions with a dedicated small launch vehicle to place these satellites in an optimal orbit to achieve big results.”

The next Electron rocket launch will take place from Launch Complex 1 in January 2019. 2019 could also see the first launches from US soil, as Rocket Lab has announced that it also plans to fly from the Mid-Atlantic Regional Spaceport in Virginia. We expect 3D printing to play a decisive role in the development of launch vehicles, space vehicles, and structures in space. In repairing space vehicles and passengers 3D printing will also play a crucial role. The future of 3D printing and the space industry are truly intertwined and Rocket Labs is an early success story.

You can watch the launch below:

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

[Images: Rocket Lab]

 

Researchers Investigate Applicability of Using 3D Printing for Mass Production of Satellites

[Image: Tomsk Polytechnic University]

As the world works to find faster, more cost-effective ways to get to space, it’s necessary to test out innovative, modern technologies, such as 3D printing, rather than stick to the more conventional but expensive methods. Most current 3D printed thermoplastic satellites are developed as part of academic projects that have a low budget, such as the small Tomsk-TPU-120, and it’s very important to achieve fast, flexible, and automated serial production of reliable satellites for less money.

This is the subject of a paper, titled “Material Characterization of Additively Manufactured PA12 and Design of Multifunctional Satellite Structures,” that was written by a collaborative group of researchers from the the German Aerospace Center (DLR), the Fraunhofer Institute for Manufacturing Engineering and Automation (IPA), and the University of Stuttgart Institute of Space Systems (IRS).

Exploded view of the technology demonstrator with GPS receiver unit.

The abstract reads, “Increasing cost pressure on satellite builders and their suppliers push the motivation to open up for new designs and processes. This paper investigates the applicability of thermoplastic additive manufacturing for mass production of satellites. First, the potential of the cost-effective 3D-printing material Polyamide 12 for space structures is examined. Tests include mechanical and thermal-vacuum properties. In the second step, a multifunctional technology demonstrator is designed and a first qualification test is performed. This demonstrator integrates electronic and thermal management components and shows considerable volume savings. Additionally, the automatable processes used for manufacturing enable further cost reductions in series production.”

The researchers worked to demonstrate the potential of their multifunctional, inexpensive, 3D printed satellite, first by testing how usable PA 12 – an easily processed thermoplastic material – is for mass-produced aerospace applications like satellites, and then by designing and testing a multifunctional demonstrator, which is basically a “sandwich with a 3D-printed honeycomb core.”

“On the one hand, this makes so far unusable design space available,” the researchers said about their demonstrator’s structure. “On the other hand, it can be manufactured by highly automatable and flexible processes, for example by a combination of FFF printing and automated fiber placement (AFP). The demonstrator structure is used to show the possible solutions for integrating functions into the structure by 3D-printing. Furthermore, it demonstrates the potential of multifunctional structures for future satellites. To demonstrate the applied integration concepts, an additional shaker specimen is designed and tested.”

In order to test out both FDM and SLS 3D printing, the team used Stratasys’ carbon fiber-reinforced polymer Nylon 12CF and PA 2200 from EOS for their research, and performed mechanical, outgassing, and thermal vacuum tests on specimens produced in three different orientations in order to measure the Young’s Modulus and tensile strength. In regards to the thermal vacuum cycling test, the mechanical properties of the 3D printed specimens were slightly improved, though elongation at break decreased.

Tensile strength of SLS processed PA 12 and short carbon fiber reinforced FFF
processed PA 12.

“The SLS processed pure PA shows mechanical properties very similar to the manufacturer specifications. It also does not show significant anisotropy with respect to the printing orientation. The carbon fiber reinforced PA, on the other hand, shows a strong anisotropy,” the researchers explained. “Regarding the in plane and sideways specimens, tensile strength is drastically increased by the reinforcement. The standing specimens, on the other hand, show reduced strength. Similar behavior can be observed regarding the Young’s Modulus. Young’s Modulus of the reinforced material, however, is always above the pure PA. Furthermore, it can be noted, that the standard deviation off all tests is less than 5 %.”

Test component for vibration testing; (a) the
printed honeycomb core with integrated electronics; (b) test component mounted on the shaker.

The team concluded that the PA materials do show good potential for inexpensive space applications, though an elaborate test program will be necessary for a true qualification process.

A technology demonstrator, which includes 3D printed cable ducts that integrate coaxial cables and cable bundles, was used to verify both the functionality and feasibility of the 3D printed satellites’ function-integration for electronic, propulsion, and thermal management components, and the researchers determined that, at least in this project, an integration of propulsion components was not feasible.

The researchers produced and submitted a test component, complete with a gyroscope sensor, connector, ultrasonic embedded wire, and other planned functions, to vibration testing. The component was made with a PETG honeycomb core, in order to “ensure that results on the functionality of the concept are available before the optimization of the printing process for the PEI honeycomb core.”

After the vibration test, the team detected no visible damage or change to natural frequency, and could verify the electronic system’s total functionality.

“The technology demonstrator points out the capability of multifunctional sandwich structures for satellites. The concept makes so far unusable design space accessible and can generate considerable volume savings. A First successful vibration test confirms the design,” the team concluded. “A weight reduction, on the other hand, is unlikely since printed honeycomb is not lighter than standard aluminum honeycombs. However, the multifunctional structure offers further cost saving by an automated production suitable for mass production and reduced assembling costs.”

The researchers determined that several additional steps, such as a comprehensive cost analysis, are required in order to present a “holistic evaluation of the presented concept”

Co-authors of the paper are Simon Hümbert, Lukas Gleixner, Emanuel Arce, Patrick Springer, Michael Lengowski, and Isil Sakraker Özmen.

Discuss this research and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

Archinaut Enables Production of More Powerful Small Satellites

A 3-meter mockup of the Archinaut-built solar array

Made In Space started building its Archinaut system a couple of years ago – essentially a 3D printer with a robotic arm capable of building in the vacuum of space. The purpose of the machine was to be able to build and repair satellites in space, creating larger and more complex systems than could be launched from Earth. But it’s small satellites that Archinaut’s technology is enabling currently – small satellites with the power of large ones.

Currently, small satellites are restricted to one kilowatt of power or less, but Made In Space is developing a power system that can provide up to five kilowatts of solar power, enabling the small satellites to provide large satellite capability.

“These systems enable power intensive payloads to be deployed to space at a fraction of the cost of larger satellites, with no sacrifice in power provisioning,” said Andrew Rush, CEO of Made In Space.

Archinaut-based solar array systems use space-manufactured structures and robotically assembled solar cell blankets to provide up to 20 square meters of solar array for small satellites that launch from ESPA rings or small launch vehicles.

“Despite advances in avionics and payload packaging, small satellites provide less capability per kilogram than their larger brethren because small satellites are power constrained. This often prevents power intensive science, remote sensing, communications, and defense payloads which otherwise fit,” Rush said. “Deploying these power intensive payloads on small satellites is game changing because these platforms costs an order of magnitude less to build and launch and can be fielded much more rapidly than 1,000+ kilogram satellites.

“The technology risk is very low. The core additive manufacturing technology currently operating in space and the extended structure manufacturing and robotic system hardware demonstrated in thermal vacuum chambers simulating the LEO environment.”

The longest 3D printed part

Made In Space’s extended additive manufacturing technology (ESAMM) is capable of manufacturing structures much longer than the machine itself, and last year the company set a Guinness World Record for the longest 3D printed part, which was 37.7 meters long. ESAMM was also successfully operated in a thermal vacuum chamber that simulated a Low Earth Orbit environment.

“We continue to develop these technologies, planning more complex thermal vacuum and laboratory tests focusing on more complex and autonomous manufacturing and assembly operations,” said Rush.

Archinaut’s power system is capable of providing up to five times the power of state of the art systems for small satellites by launching the system with raw material and tightly packed solar arrays rather than folded up booms and complex deployment mechanisms. On orbit, Archinaut manufactures the core array lattice structures and integrates solar array blankets robotically, physically and electrically, completing the solar array wing.

“Due to the volume and mass efficiencies of manufacturing the structure, a small satellite such as a 150 kg ESPA-class satellite could be deployed with 5 kW of power,” said Rush. “Today, that kind of power is only available on 1,000+ kg satellite buses launching on rockets costing tens of millions of dollars.”

Archinaut’s power system will enable many large satellite applications on small satellites. It can also operate as a standalone system integrated into larger satellite buses, making larger systems more efficient. Preliminary studies indicated that a 500-kW Archinaut power system using modern solar cell blankets requires 2,000 m² of solar array surface area and has a system mass of 1,000 kg – more than an order of magnitude less mass than systems currently on orbit. The International Space Station’s eight solar array wings, in contrast, have an area of about 2,500 m² with a system mass of 65,000 kg.

“Because the Archinaut system uses in space manufacturing and robotics, the same core technology will be useful for a range of spacecraft missions,” said Rush. “It can also be used for a range of impactful applications beyond power systems, such as creating large apertures or spacing out sensors from one another.”

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

[Images: Made In Space]