Silk Fibroin-Reinforced PLA to Make 3D Printed Interlocking Nail for Fracture Healing

A diaphyseal fracture is a common break that occurs along the shaft of a long bone, like the femur, and can be treated with interlocking nails, which are inserted in the bone and transfixed by screws at the ends. But these eventually need to be removed because of complications that can occur when the nails have been implanted for a long time, such as materials like stainless steel not providing a good biological environment for cells.

Researchers S. PitjamitK. ThunsiriW. Nakkiew, and P. Pothacharoen from the Chiang Mai University in Thailand published a paper, titled “Preparation and characterization of silk fibroin from four different species of Thai-local silk cocoon for Bone implanted applications,” about their work using PLA, reinforced with locally sourced silk fibroin material, to 3D print a biocomposite interlocking nail.

Silk may look and feel soft, but the protein fiber is made of 75% biocompatible fibroin, a strong, insoluble material that has multiple applications in the medical field, including sutures, wound healing, and tissue engineering.

“Previous studies have proved that fibroin has good biological and mechanical properties such as biocompatibility, biodegradability, water permeability, non-cytotoxicity and the strength and resiliency of silk fibers,” the researchers wrote. “Silk fibers has an ultimate tensile strength 740 MPa while collagen and polylactic acid has an ultimate tensile strength only 0.9 to 7.4 and 28 to 50 MPa, respectively.”

The team chose four species of local Thai Bombyx mori silk cocoons from which to extract silk fibroin: Nangnoi Srisaket-I (NN), Nanglai (NL), Luang Saraburi (LS), and J108. They cut the cocoons into small pieces, which were then degummed, rinsed, and dried for 24 hours, before being dissolved in a solvent.

The resulting solution was soaked in DI water for three days, with the water changed daily, and then the dialyzed silk solution was filtered and frozen. Finally, in order to create sponges, the frozen solution was lyophilized (freeze-dried).

“After the extraction, fibroins of each silk cocoon species were characterized and compared the physical property by using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDS) and Fourier Transform Infrared Spectroscopy (FT-IR),” the researchers wrote. “Then, the biological test was performed on cell viability and cytotoxicity with human fetal osteoblast cell line.”

The researchers investigated the “conformations of fibroin protein in regenerated each silk scaffolds” using FTIR spectroscopy, and each species showed typical random coil structures and Beta-sheet structures. SEM and EDS tests showed that each of the silk fibroin species had interconnected pores, at an average size of 10-60 microns.

“As shown in Figure 4, silk fibroin weight percentage consist of Carbon (C), Nitrogen (N) and Oxygen (O) element only which symbolize the proteinaceous compounds originating from Silk Bombyx mori,” the team wrote.

Finally, an Alamar blue assay was performed on the four species of silk fibroin solutions, in order to observe cell viability and confirm that they weren’t toxic.

“The comparison of each silk species with control presented that cell viability percentage all scaffolds were not significantly the control (p-value> 0.05) as shown in Figure 5,” the researchers stated.

The results of this test showed that they all had non-cytotoxicity, which means they can be safely used in animal and human bodies.

“The best silk species from biological performance will be used to reinforce PLA interlocking nails using 3DP process in the future study,” the team concluded. “From the result, all of local silk cocoons species present non-cytotoxicity ability which can be used in human or animal body without endangerment. For future work, bio-composite filament for 3DP from silk fibroin reinforcing PLA will be tested and observed the other abilities such as cell proliferation ability, mechanical properties and printing morphology.”

Discuss this research and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

The post Silk Fibroin-Reinforced PLA to Make 3D Printed Interlocking Nail for Fracture Healing appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Characterizations & Comparisons of Virgin and Recycled Metallic 3D Printing Powders

Authors N.E. Gorji, R. O’Connor, and D. Brabazon are studying metal powders in the recently published ‘XPS, XRD, and SEM characterization of the virgin and recycled metallic powders for 3D printing applications.’ Recycling continues to be an ongoing topic in the 3D printing realm as so much material is being consumed and then often discarded due to defects or other structural problems. And while obviously there is a push to re-use as much material as possible—reducing the footprint of manufacturing processes around the world—quality, performance, and functionality are key too.

SEM images are taken from both virgin (left) and recycled (right) powders.

SEM images from the recycled powder (in 20 m and 10 m zoom) indicating the elongated particles, satellites on the surface, spatter, bonded particles and particles with irregular shapes.

For this study, the authors used virgin feedstock and recycled stainless steel 316L for selective laser melting processes. Characterizing surface and microstructure of both powders, the researchers used X-ray photoemission spectroscopy (XPS), scanning electron microscopy (SEM), X-ray diffraction (XRD) and rheology analysis. Along with examining and comparing both types of powder, the researchers also considered using virgin powder as an additive if recycled powders required further mechanical strength.

Characterization studies were offered for both to make certain they were reproducible, with SEM results showing a slight difference in powder after the SLM process, recycled powder showing more satellite on the surface, with more contamination. Bonded particles were also found in the recycled powder, with some deformed particles.

“Several features are observed in the recycled powders such as elongated particles, satellites on surface, spatter, bonded particles and particles with irregular shapes,” said the researchers. “Overall, the morphology of the recycled powder shows insignificant changes. However, XPS characterization can better reveal the presence of various elements on the surface of the powders especially on the recycled powder.”

The XPS measurements on both virgin (top) and recycled (bottom) powders.

XRD analysis of virgin and recycled powders.

Oxygen levels increased, per XPS measurements from 27.04% to 34.19%, with uptake dependent on powder production. Carbon was reduced from 56% to 45.55%, possibly due to domination of metallic oxides on the surface. The researchers point out that some metal powder, possessing more electronegativity to oxygen, could spread to the outer surface of the powder—thus absorbing oxygen during SLM.

“The presence of heavy metals on the surface such as Ge (5.22%) and Sb (2.86%) is also surprising and is under further examinations,” stated the researchers, going on to recommend mixing virgin powder with the reused powder after five cycles.

“The SEM images show more satellites on recycled powders and XPS measurements show that the metal oxides are slightly increasing on its surface as well. Oxygen is showing the most increment on surface increasing from 27.04% to 34.19%,” concluded the researchers. “The XRD result show no change on the phase of the recycled austenitic stainless steel compared to virgin powder. There are no additional ferritic BCC peaks on recycled powder indicating a low contamination and phase change after SLM process. “

As the study of materials continues to progress in 3D printing, researchers have put enormous focus on metal—from copper to titanium to metal-polymers. What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source / Images: ‘XPS, XRD, and SEM characterization of the virgin and recycled metallic powders for 3D printing applications’]

 

 

 

The post Characterizations & Comparisons of Virgin and Recycled Metallic 3D Printing Powders appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.