New Study Shows that SLM 3D Printing Has High Potential for Fabricating Metallic Glass Components

Metallic glass, also known as amorphous metal, was first introduced in the early 1960s, and since then, it seems that everyone wants in on the action. The material is valued for its many exceptional properties, such as low stiffness, near-theoretical strength, high corrosion resistance, and large elastic strain limits. Bulk metallic glasses (BMG), which have characteristic specimen sizes in excess of 1 mm, have been explored successfully for for glass formers.

It’s not easy to produce metallic glasses with complex geometry, because the molten alloys must be cooled rapidly to move past the nucleation and growth of crystals, and most commonly used methods, such as melt spinning, casting, and powder metallurgy, are limited in both complex geometry and dimension. That’s why it’s so important to continue exploring and developing more novel processing routes for producing amorphous components.

A schematic illustration of SLM-YZ250 3D printer: (a) operating mode of the device; (b) processing scanning pattern.

A team of researchers from the University of Science and Technology Beijing have been investigating the use of selective laser melting (SLM, also called DMLS, Direct Metal Laser Sintering, Powder Bed Fusion, Laser Powder Bed Fusion) 3D printing to fabricate Fe-based metallic glass powder with unrestricted, complex geometry. This specific technology offers very high cooling rates, which is important for glass formation of most BMGs, and can apply various processing parameters involving laser energy density to melt the metal powder.

The researchers recently published a paper, titled “Fabrication and characterization of Fe-based metallic glasses by Selective Laser Melting,” in the Optics and Laser Technology journal. The paper details SLM’s high potential for 3D printing metallic glass components with complex geometries.

The abstract reads, “Fe-based metallic glasses (MGs) can be potential structural materials owing to an exceptional combination of strength, corrosion and wear resistance properties. However, many traditional methods are difficult to fabricate Fe-based MGs with complex geometry. In this study, a new metallurgical processing technology, selective laser melting (SLM), was employed to fabricate Fe-Cr-Mo-W-Mn-C-Si-B metallic glasses. The microstructure, thermal stability and mechanical properties of the as-fabricate samples processing with different laser energy density have been investigated by X-Ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and nano-hardness. Thanks to the high cooling rates of SLM, the crystalline phases in the gas-atomized powder almost completely disappeared and nearly fully amorphous structure parts were obtained after SLM processing. By choosing appropriate parameters, the size and quantity of the pores were reduced effectively and the relative density of the samples can reach values of over 96%. Although additional work is required to remove the residual porosity and avoid the formation of cracks during processing, the present results contribute to the development of Fe-based bulk metallic glasses parts with complex geometry via the SLM.”

(a) SEM secondary electron image of the gas-atomized powder; (b) SEM back-scattered image of the cross-section of the powder.

Fe-based BMGs are important for their unique combination of high physical, chemical, and mechanical properties, low affinity towards oxygen, and the fact that the raw material is less expensive than other commercial BMGs. So the researchers used a Fe-based metallic system Fe-Cr-Mn-Mo-W-B-C-Si with large glass forming ability (GFA) for the study, and used X-Ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), and differential scanning calorimetry (DSC) to investigate structural variations between the original powder and the SLM 3D printer parts.

Samples prepared with different laser energy density.

According to the powder’s morphology, the surfaces are very smooth, which results in good flowability. But, the team also observed that micro-pores were formed by trapped glass, and that crystallization did occur in a small amount of the powder, due to the fact that, as the researchers explained, “the cooling rate during gas atomization is not high enough to suppress crystallization.”

However, the crystalline phases in the gas-atomized powder disappeared after SLM 3D printing.

Samples were 3D printed with different laser energy densities, in order to investigate the metallic glasses’ mechanical properties and microstructural evolution. By choosing the appropriate parameters, the researchers were able to successfully 3D print high quality Fe-based metallic glasses.

“At present it is great challenge to produce large-scale glassy alloys in sophisticated geometries with the existing technologies. SLM technology, including heating the powder to melting in very short time and then the melting pool rapidly solidifying procedures, provides new opportunities for the creation of large, geometry freedom of metallic glass components,” the researchers explained. “From the results above, we noticed that although the as-received powder had partially crystallized, the powder experienced a quickly laser processing procedure with high cooling rates, leading to nearly fully amorphous structure. This phenomenon proves that under optimized SLM processing conditions, the nucleation and crystallization are inhibited, and amorphous structure can be acquired.”

They also noted that to improve the quality of the SLM 3D printed parts by decreasing micro-cracks and pores, further fine-tuning of the processing parameters is necessary.

A selection of the as-built parts.

The researchers concluded, “In addition, the preparation process of the powder system still needs to be optimized, and ensuring a fully amorphous structure powders can be obtained which eliminates crystallization in the SLM parts. The present results confirm that additive manufacturing by SLM represents an alternative processing method for the preparation of bulk metallic glass components without limitations in size and intricacy. The processing method and conditions are in principle available for a large variety of metallic glasses production.”

Co-authors of the paper include X.D. Nong, X.L. Zhou, and Y.X. Ren with the university’s State Key Laboratory for Advanced Metals and Materials.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

Using Two-Stage T6 Heat Treatment to Tailor the Mechanical Properties of 3D Printed Aluminum AlSi10Mg Alloys

Backscattered electrons images to observe oxidation regions of (a) T6 heat-treated, and not in (b) as-built, selective laser melting samples, (c) magnification of (a).

While many aluminum alloy components are still fabricated using traditional casting technologies, there’s been plenty of research and development into 3D printed aluminum alloys as well. For metallic 3D printing, the selective laser melting (SLM) method is typically used to produce Al alloys; however, AlSi10Mg alloys made with SLM technology must set up different post-printing treatments. This is due to a rapid cooling rate during the solidification process, which causes the microstructure and mechanical properties of the part to be vastly different from conventional cast or forged metal alloys.

Additionally, high heat transfer, high reflectivity to the laser beam, and easy oxidation to a tenacious oxide film make SLM-produced AI alloys more difficult than those of steel or titanium.

A pair of researchers recently published a paper, titled “T6 heat-treated AISi10Mg alloys additive-manufactured by selective laser melting,” in the Procedia Manufacturing journal about tailoring the mechanical properties of SLM-fabricated AlSi10Mg alloys with a two-stage T6 heat treatment.

The abstract reads, “A two-stage T6 heat treatment has been proposed to tailor mechanical properties of the selective laser melting fabricated AlSi10Mg alloy. The process included solid solution at 535 ºC and artificial aging at 158 ºC for 10 h. The densification, hardness and oxidation behavior have been investigated after T6 heat treatment. The results demonstrate that the hardness of the T6 heat-treated samples are lower than untreated ones. This is because a fine-grained recrystallization microstructure develops during solid solution. Oxides aggregation and dimple distribution occurred due to sufficient diffusion at the artificial aging of the second stage.”

Optical microscopy images of (a) as-built selective laser melting, and (b) magnification; (c) T6 heat-treated, and (d) magnification, samples perpendicular to building direction of selective laser melting.

The T6 heat treatment is most often used to increase the strength of Al-Si components with Cu and/or Mg in conventional manufacturing, which uses a high-temperature solution treatment to both dissolve larger intermetallic particles and homogenize the alloying elements. Then, lower temperature artificial aging is used to form fine precipitates.

New studies show that T6 heat treatment can actually cause cast alloys to soften, instead of harden, when they’re annealed at either 300 ºC or 530 ºC, which contrasts earlier research. In addition, SLM-fabricated AlSi12 post-solution had a 25% increase of ductility.

“However, most research so far focuses on how to increase the tensile strength during selective laser melting processing, only a few can refer to balancing plasticity and the resistance to facture by post heat treatment. Furthermore, only limited comprehensive work has currently been done to study heat treatment processes specific for selective laser melting-fabricated AlSi10Mg alloys, particularly on their influence on the mechanical properties,” the researchers wrote. “Thus, this raises the need to verify conventional T6 heat treatments when it comes to selective laser melting materials, and what would be the influence of these heat treatments on the specific mechanical properties of selective laser melting-produced AlSi10Mg alloys.”

Hardness measurement of as-built selective laser melting and T6 heat-treated samples.

The paper’s proposed thermal treatment uses a solid solution at 535 ºC and artificial aging at 158 ºC for 10 hours on  gas-atomized AlSi10Mg powder provided by Renishaw. Then, the researchers investigated the impact of their two-stage T6 heat treatment on both the mechanical and microstructural properties developed in SLM 3D printed samples.

The samples’ mechanical properties depend on the densification mechanism of the parts, and their microstructure during SLM processing.

“In AlSi10Mg alloys, the theoretical bulk density usually is 2.68 g/cm3. After the selective laser melting processing, the densification of the as-built samples was 96%. By contrast, after T6 heat treatment, the mean value of the densification of the samples is 96.52% and the maximum densification is 98.13%,” the researchers wrote.

These similar values are an indication that the two-stage T6 heat treatment had very little effect on the SLM 3D printed parts’ densification. Additionally, post-T6 heat treatment, the hardness of the as-fabricated sample in a building direction significantly decreased as well. Evidence also shows that the T6 heat treatment can spheroidize oxidation regions to even further enhance the mechanical properties of SLM 3D printed samples.

The researchers concluded, “This heat treatment aims to tune the mechanical behavior of selective laser melting-produced AlSi10Mg alloys. The effects of the T6-like heat treatment on the densification, hardness, and oxidation behavior have been investigated. Similar densification of 96% in the as-built samples and of 96.52% in the heattreated samples indicates that the T6 heat treatment has no importance to the densification. Decrease by about 20% in the hardness of heat-treated samples compared with the selective laser melting as-built samples. The T6 heat treatment can spheroidize oxidation regions and thereby form dimple structure. This finding can offer an intriguing insight into explore oxidation behavior and mechanical properties of selective laser melting-fabricated AlSi10Mg alloy using a two-stage heat treatment.”

Co-authors of the paper are Xianglong Yu with the CAS Key Laboratory of Mechanical Behavior and Design of Materials (LMBD) at the University of Science and Technology of China and Lianfeng Wang with Shanghai Aerospace Equipment Manufacturer.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.