A General Review of Methods and Materials for 3D Food Printing

Researchers from the University of Birmingham published a paper that reviews various methods and materials related to the scope of food 3D printing, which they write is “an area of great promise to provide an indulgence or entertaining experience, personalized food product, or specific nutritional needs.”

“One of the more challenging and complex areas of AM are in the emerging field of gastronomy, or in other words, “3D Food printing” [4]. The ability to selectively deposit material within a 3D volume and, hence, gradate the composition offers the possibility of controlled production of complex structures for altering texture, taste, and morphology in food products,” they write. “Manipulation of microstructures by regulating the mixing and selective deposition of materials can allow regulation of fracture, breakdown, or dissolution mechanics during product use, which gives the possibility of a range of functional and novel foods.”

AM has many advantages, including increased efficiency, design freedom, reduced waste, and faster turnaround. The technology enables customization and personalization, and has seen promising use in several application areas, including healthcare, aerospace, construction, fashion, and gastronomy.

Haddock, 3D printed by Matís using the Foodini.

There have been several reviews in recent years on various aspects of 3D food printing, including 3D printable food formulations, methods applied to designing food materials, environmental implications and possible legal challenges, and advantages and disadvantages of various food 3D printers. But the field is growing, and “there is a need to collate and categorise published reports and to consolidate these developments.”

“As such, we can have a better understanding of the accomplishments to date, and potential areas for future studies,” the researchers state.

ASTM F2792-12a has categorized seven specific AM headings, though different acronyms are often used to describe the same process:

  1. Vat Polymerization
  2. Material Extrusion
  3. Directed Energy Deposition (DED)
  4. Powder Bed Fusion (PBF)
  5. Binder Jetting
  6. Material Jetting
  7. Sheet Lamination

Five of these so far – vat polymerization, extrusion, PBF, binder jetting, and inkjet printing – have been used to print food.

“The same process principles, for AM in general, also apply to 3D Food printing,” they write. “However, different degrees of pre-processing, such as fine-tuning of food recipes, and post-processing, such as cooking and oven drying, might be necessary for 3D food printing [4].”

(Image: Natural Machines)

There are some unique challenges involved with 3D food printing. For instance, some 3D printed food samples show a high microbial concentration when stored in air, which could mean that further consideration is needed for hygienic equipment design. Also, many consumers often negatively view foods that “appear to have undergone a lot of processing.” But the potential seems to far outweigh any issues.

First, reducing food waste and “increasing the usage of existing food materials” can help streamline the supply chain and resolve food shortages. One example is Upprinting Food, a company that uses food waste as the “ink” for food 3D printers by combining ingredients like fruits, bread, and vegetables to make a puree that can be 3D printed. The prints are then seasoned, baked, and dehydrated “so that the resulting product is nicely crunchy and long durable.”

(Image: Upprinting Foods)

Many food manufacturing processes, like baking and shaping, are eliminated through the use of 3D printing, which saves time, and the technology also makes food transport easier. 3D printed food can also be used to customize food in order to treat malnutrition, or help people with special dietary needs, like those with Celiac disease or dysphagia. It can promote low-carbon food products, such as insects, and 3D printing meatless meat reduces environmental impact.

Vegan 3D printed steak (Image: Novameat)

You can see a chronological summary of reported 3D printing methods and food materials, such as milk chocolate, wheat dough, Vegemite, powdered broccoli and carrots, and heat-induced egg yolk paste, that have been used in Table 1.

“For 3D food printing to become practical, precise calibration of printing parameters should be carried out, dictated by the mechanical properties of the material. Furthermore, the study of the relationship between the rheological characteristics and their connection with printing parameters is key for improving the overall quality of 3D printed food [2],” the researchers noted.

“In general, 3D printable materials must exhibit a controllable viscoelastic response, must form stable structures capable of withstanding compressive stresses from capillary forces, and must not shrink too much when undergoing drying, to avoid deformation and/or fissure formation [58]. These materials must be able to hold their shape once deposited. They need to be printable into defined shapes without slumping, spreading, or bridging.”

It’s important to classify the materials into examples that are “natively printable,” like hydrogels and dairy, and “non-natively printable,” such as meat and plants. But this will be difficult, as multiple factors affect printability, there isn’t a consensus on how to predict or assess shape fidelity, and just because one material is 3D printable with one AM method doesn’t mean that it’s the case for another.

3D printed sweets. (Image: 3D Systems)

The most suitable 3D food printing materials are carbohydrates, fats, fiber, functional components, and proteins, along with hydrogels like alginate and gelatin, and extrusion is the most widely adopted AM technique for 3D food printing. A material needs to display shear thinning behavior for this, which means that it can be extruded from a nozzle.

Regarding the information from Table 1, the researchers listed what they believe are the most important milestones, starting with research into developing feedstock for food 3D printing in 2009. The next year, after “promising results of tailor-fitted food textures,” researchers investigated the effect of additives on shape fidelity of 3D printed structures before and after cooking and deep frying.

“3D food printing has been employed to design appropriate insect products as a new source of proteins to overcome the disgust of consumers by consuming whole insects. An example of 3D printing technology applied to edible insects is represented by Soares and Forkes [82] in 2014, who printed the flour made out of edible dried insects in combination with fondant to produce icing for top cakes’ decoration,” the team wrote.

“Further work was carried out by Severini et al. [83] to obtain snacks from insect-enriched wheat flour dough as a new source of proteins.”

Researchers used inkjet printing in 2015 for microencapsulation processes – they developed a printhead with 500 nozzles that can fabricate monodisperse droplets that, once dry, turn into highly monodisperse powders. This allowed them to print alginate drops through a calcium chloride solution to make calcium alginate gel particles.

“In 2018, Vancauwenberghe et al. [86] designed a co-axial extrusion printhead to deposit a pectin-based ink and Ca2+ cross-linking solution in the inner and outer flows, respectively. This design facilitates an accurate control over the textural properties and gelation of the printing object as well as eliminates the pre-treatment or post-treatment step,” the researchers wrote.

That same year, another team compared the mechanical properties and textures of melted, untreated, 3D printed cheese samples, and determined that fat globules disrupt during printing, but partially coalesce as the print solidifies. Also in 2018, researchers compared the effects of freeze-drying and oven-drying on shape fidelity of 3D printed samples made from combined material sets of “cold swelling starch, milk powder, rye bran, oat, and faba bean protein concentrates and cellulose nanofiber.”

“Structural properties of the 3D object by varying infill structure has been investigated mostly in polymer and bio-printing,” they explained in reference to research about mashed potatoes.

“The textural and structural quality of mashed potatoes was investigated [96] by changing infill percentages (10%, 40%, 70%, and 100%) with different infill patterns (rectilinear, honeycomb, and Hilbert curve) and variation in shell perimeters (3, 5, and 7 shells).”

(Image: Fast Company)

Lest we forget about dessert, researchers in 2019 presented “semi-trained panelists” with three samples of chocolate that had been 3D printed in a honeycomb pattern with 25%, 50%, and 100% infill percentages, to see if printed objects with 100% infill have a lower breaking resistance than those fabricated with casting technology.

“From the works collected, it is clear that, even though studies have been steadily carried out over the last ten years, there have been few sequential linked developments of complexity and understanding of the chosen formulations. From this, an important factor in future uptake and advancement would be to focus on further developing these materials for more bespoke products and more detailed understanding,” the researchers note.

Finishing up with the future of 3D printing in the food industry, the team notes that while consumer acceptance is still a challenge, global food companies are using the technology, creating food 3D printers, and investing in the research.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

The post A General Review of Methods and Materials for 3D Food Printing appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing News Sliced: Dr. Hans Langer, Cuttlefish, RIZE, Senvol, Henkel, Open Bionics

The 3D Printing Industry news digest offers a summary of the latest partnerships, award presentations, software updates, material releases and applications from across the sector. In this update, we have snippets featuring Dr. Hans Langer, Mimaki, Velo3D, Dassault Systèmes, bionics hands, 3D printed lampshades, automotive repair and more. Dr. Hans Langer achieves esteemed AMUG recognition  3D […]

FRESH News: SLAM Used to Fabricate Complex Hydrogel Structures With Gradients

There has been plenty of research on creating 3D printed hydrogels and using them to fabricate functional tissues. Biopolymer hydrogels, with properties that can be tailored and controlled, can be crosslinked to replicate tissue structures, and extrusion-based 3D printing is often used. But, the use of biopolymer hydrogels as 3D printing bioinks is tough, due to issues like low viscosity and trouble controlling microstructure variations. Some researchers have turned to embedded 3D printing methods, but this comes with its own laundry list of problems, such as having difficulty extracting the final product.

UK researchers Jessica J. Senior, Megan E. Cooke, Liam M. Grover, and Alan M. Smith from the University of Huddersfield and University of Birmingham created a method called suspended layer additive manufacturing, or SLAM, that can extrude low viscosity biopolymers into a self‐healing fluid‐gel matrix. The team recently published a paper on their work, titled “Fabrication of Complex Hydrogel Structures Using Suspended Layer Additive Manufacturing (SLAM).” It is worthwhile to note here that FRESH (Freeform Reversible Embedding of Suspended Hydrogels) is a super remarkably similar if not identical technology. So far we’re not getting involved with calling out which term should win here but we are leaning towards using FRESH because it will make it simpler for everyone going forward.

A schematic showing the production of a 3D bioprinted scaffold by use of SLAM.

The abstract states, “There have been a number of recently reported approaches for the manufacture of complex 3D printed cell‐containing hydrogels. Given the fragility of the parts during manufacturing, the most successful approaches use a supportive particulate gel bed and have enabled the production of complex gel structures previously unattainable using other 3D printing methods. The supporting gel bed provides protection to the fragile printed part during the printing process, preventing the structure from collapsing under its own weight prior to crosslinking. Despite the apparent similarity of the particulate beds, the way the particles are manufactured strongly influences how they interact with one another and the part during fabrication, with implications to the quality of the final product. Recently, the process of suspended layer additive manufacture (SLAM) is demonstrated to create a structure that recapitulated the osteochondral region by printing into an agarose particulate gel. The manufacturing process for this gel (the application of shear during gelation) produced a self‐healing gel with rapid recovery of its elastic properties following disruption.”

SLAM works like this: shear cooling a hot agarose solution throughout the sol–gel transition creates the fluid-gel print bed, as fluid gels behave like liquids once stress is applied. Then, the solution is put into a container in order to support the scaffold. Hydrogel and cells are mixed to produce a bioink, which is added to a bioprinter cartridge and extruded into the self-healing, fluid-gel matrix. The bioink is then suspended in its liquid state, and solidification is induced through crosslinking and cell media, which also provides the cell scaffold with metabolites. The construct is released from the supporting gel through low shear washing with deionized water.

The method prevents the initiation of gelation during 3D printing, which allows for great layer integration and “the production of constructs from two or more different materials that have dissimilar physicochemical and mechanical properties,” which creates a part with anisotropic behavior.

“To demonstrate clinical application, we recently created a structure that recapitulated the osteochondral region (the microstructure of which changes across a hard/soft tissue interface) as directed by microcomputed tomography (micro‐CT) imaging to provide accurate dimensions and was tailored to support specific cell phenotypes by controlling the microenvironment,” the researchers explained. “These complex scaffolds feature mechanical gradients that were similar to those found within the ECM and play a crucial role in preventing mechanical failure between interconnecting tissues as well as maintaining cell phenotype.”

The researchers needed to consider the mechanical properties of the fluid-gel print bed during SLAM 3D printing, as “they can impact on construct resolution and complexity.”

“Another embedded printing technique, freeform reversible embedding of suspended hydrogels (FRESH), developed by Hinton et al., uses a gelatin slurry support bath, however the rheological behavior of such material as a suspending agent for 3D bioprinting has not been investigated in depth,” the researchers wrote.

Additionally, they prepared fluid gels at different concentrations of agarose in order to find the best formulation for 3D printing uniform particle sizes, and investigated using needles with differing inner diameters, and a low viscosity dye solution, to find the optimal print resolution.

Optimizing print parameters within agarose fluid gel. A–G) Resolution of bioink printed within fluid bed support using multiple needle diameters and H–J) diffusion of dye through the gel at given time points.

“As the needle inner diameter was increased, the potential resolution decreased. Further, with larger needles, the printable filament thickness was more variable. This is likely due to both more material being extruded and also greater deformation of the fluid‐gel print bed. In very low viscosity solutions of low Mw (molecular weight), diffusion is also a limiting factor for resolution,” the researchers explained.

A) Intricate lattice prior to (left) and following extraction (right) from the bed. B) T7 intervertebral disc as CAD file (left) and lateral (middle) and apical (right) views. C) Intricate bulk structure in the form of a gellan spider. D) Carotid artery as CAD file (left) and during printing (right). D) Tubular structure (left) demonstrating material durability (middle) and perfusibility.

Alginate, collagen, gellan gum, and i‐carrageenan bioinks were used to demonstrate how many complex structures could be made. An intricate lattice structure showed off the scale and complexity that SLAM can achieve, while a T7 intervertebral disc was manufactured to show how the system can print large bulk structures and a spider was an example of 3D printing smaller, more intricate parts.

Several hollow and bifurcating structures, like a carotid artery model and a thick-walled tubular structure, were printed to show how the system can create geometries which are impossible without a 2D collector.

“These structures highlight the capability of this technique for freeform fabrication as large overhanging structures can be printed without the need for additional support structures,” the researchers explained.

The SLAM method can also deposit multiple layers laterally, horizontally, and within “a previously deposited extrude,” which allows constructs to be fabricated with the same biochemical and mechanical gradients that can be found in native tissues. The technique also uses microextrusion to continuously dispense bioinks, which caused better dispensing precision than the use of inkjet printing, and allows for more freedom with cell densities inside the bioink.

“Previous studies have indicated that the use of inkjet printers enables a reduction in print‐induced shear stresses applied to suspended cell populations compared with microextrusion methods, however, there are key features of the supporting bed utilized for SLAM that enable shear minimization utilizing microextrusion,” the researchers wrote.

Due to SLAM’s supporting fluid‐gel bed, low viscosity bioinks can be used – material viscosity can cause shear induction in bioinks, so it’s optimal for fabricating hydrogels.

“Using our system, it has therefore been demonstrated that the issues associated with cell shearing during microextrusion can be easily reduced, achieving admirably low shear stresses on cells that rival those seen during other forms of biofabrication including drop‐on‐demand techniques such as inkjet printing,” the team wrote.

A,B) Bilayer scaffolds using combinations of collagen‐alginate and collagen‐gellan. C) Large collagen‐core gellan‐shell scaffold and D) small collagen‐core alginate‐shell scaffold. E) Schematic of diagram showing control of cell behavior with attachment motif bearing complexes in the upper collagen gel and no attachment motifs for cell suspension within an alginate gel. F) Micro‐CT showing gradient porosity within a lyophilized collagen‐alginate scaffold. G) Confocal micrographs of Hoechst/actin cell staining of HDFs attached in the collagen layer and suspended in the alginate regions of a dual layer scaffold. H) Stress versus showing variations in gel strength and elasticity across a collagen‐alginate scaffold.

The SLAM method can also incorporate multiple biopolymer hydrogels into a single structure, which is important to “satisfy the mechanical, chemical, and biological variations that occur throughout native tissue.” The researchers demonstrated this capability by 3D printing an osteochondral construct, with ex vivo chondrocytes deposited into a gellan gum layer and osteoblasts into one of gellan‐hydroxyapatite. But they went even further, and used SLAM to 3D print integrated structures with different chemistries and gelatin mechanisms.

“Ionotropically gelled (alginate, gellan, and ι‐carrageenan) and thermally gelled (collagen) biopolymers were successfully integrated to form interfacing, dual‐phase scaffolds,” the researchers wrote.

The materials blended enough that mechanical failure did not occur – an environment that closely mimics the native tissue environment.

“Furthermore, this technique of printing integrated layered structures is not only compliant to printing different materials layer upon layer, but also deposition of a second material into the center of another. For example, in addition to producing layered constructs, it was possible to create 3D printed core–shell structures comprising a cylindrical core of collagen encapsulated within a gellan or alginate cylinder with various dimensions,” they continued.

“Another advantage of being able to deposit scaffold material precisely is that cell behavior can be spatially manipulated. Polymers such as collagens that are saturated with integrin binding domains allow cell attachment to the scaffold, whereas alginate and gellan do not naturally possess cell attachment motifs and instead, encapsulate cells with minimum attachment to the surrounding material.”

To learn more about the team’s use of SLAM to 3D print multilayer gradient scaffolds, I suggest you read the paper – they can explain it far better.

“In summary, we have demonstrated that the SLAM technique can be used to overcome the problems associated with using low viscosity bioinks in extrusion‐based bioprinting,” the researchers concluded. “The method enabled the successful fabrication of bulk, intricate, dual phase, and phase‐encapsulated hydrogels from a variety of biopolymer materials that are currently widely investigated in regenerative medicine. Furthermore, it was shown that controlled spatial gradients in mechanical and chemical properties can be produced throughout a single part with interface integrity between different materials. This allows for physicochemical properties of the structure to be designed accordingly with the ability to control porosity, mechanical gradients, cell distribution, and morphology.”

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

The post FRESH News: SLAM Used to Fabricate Complex Hydrogel Structures With Gradients appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

€9.4M 4DHybrid project to bring hybrid additive manufacturing to MRO

4DHybrid, funded by the EU Horizon 2020 program and coordinated by Turin-based construction machine developer Prima Industrie, aims to develop a new concept of hybrid additive manufacturing for the Maintenance Repair and Overhaul (MRO) value chain.  The project, consisting of 20 partners from 10 different countries, seeks to achieve this goal by creating compact and […]

Processing Parameters in SLM 3D Printing: UK Researchers Test Ti6Al4V Cellular Structures

In ‘The influence of processing parameters on strut diameter and internal porosity in Ti6Al4V cellular structure,’ UK researchers from the University of Birmingham look further into strut size and porosity issues during bioprinting, and discuss the overall challenges of selective laser melting (SLM) in additive manufacturing. In this research, SLM 3D printing was used to create Ti6Al4V cellular structures, but with a wide range of different parameters.

While porous structures are attractive in many applications today for industries like automotive and aerospace, when created with titanium alloys they ensure strength, corrosion resistance, and the proper amount of density required. Even more importantly, however, lattice structures like Ti6Al4V offer high biocompatibility. Made up of a network of struts that form cells to make lattices, these complex structures are often manufactured with conventional techniques like casting; however, with AM technology, complex geometries can be produced faster and more affordably.

As the researchers point out however, problems can occur in SLM printing when conditions are not properly optimized—resulting in defects due to a ‘mismatch’ between the 3D design and the 3D print. The team set up an experiment for testing parameters and pinpointing a way to improve SLM methods.

Lattice structure fabricated
using SLM

They created a set of structures ranging from 100W to 300W and scan speed ranging 8000 mm/s to 4000 mm/s. Lattices were assessed regarding the effects of input energy on strut diameters, and porosity levels. As they suspected due to compiled data from previous research studies, increased input energy resulted in increased strut diameters:

“This relation is attributed to the fact that inclined struts were built partially on loose powder, which resulted in adhesion of free powder (partially melted powder particles) to the surfaces of the struts. At high input energy condition, the energy transferred to attach powder particles was high enough to result in full melting of the attached powders and hence became part of the fabricated strut.”

Different zones were created based on changes in input energy:

  • Zone 1 – low input energy was directed here, leading to ‘discontinuity’ in the strut. The researchers noted this was due to lack of diffusion between melt pools, along with a balling effect that typically causes defects in SLM.
  • Zone 2 – as the zones ascend in energy, this one is a result of intermediate laser power and scan speed. The researchers noted the formation of irregular defects, again, without diffusion between melt pools. They also noted erratic formation in the struts, resulting in ‘waviness.’
  • Zone 3 – this zone formed with the pairing of higher laser power but low scanning speed, ‘mitigating the previously formed lack of diffusion defects.’

A diagram showing the variation of Strut diameter as a function of increasing linear input energy diameter.

“SLM processing parameters investigated in the current research shows that the input energy density has a significant influence on the strut diameter and porosity morphology within the fabricated struts. Different zones were developed based on changing the input energy,” concluded the researchers.  “Additionally, it was observed that strut diameter size for Ti6Al4V lattice structure increased with increasing the input energy density.”

While much about 3D printing can be deceptively simple, additive manufacturing processes are often more complicated in hardware, software, materials required, and technique. Selective laser melting, although it may offer some challenges, continues to be at the forefront of research projects and studies today, from new procedures created for heat accumulation detection to fabricating steel nuclear components or working with metallic glass. Find out more about strut diameter and porosity issues with this method too here. What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

SEM images for struts at different fabrication conditions (a) 100W &4000mm/s (b) 200W & 2400mm/s
(c) 300W & 800mm/s

[Source / Images: The influence of processing parameters on strut diameter and internal porosity in Ti6Al4V cellular structure]

Applying integrated computational materials engineering to additive manufacturing

Integrated computational materials engineering (ICME) is an emerging digital field seeking to improve the way things are designed and manufactured. Under PRISM2 (The Partnership for Research in Simulation of Manufacturing and Materials) the University of Birmingham is applying ICME to additive manufacturing and other processes. In a recent discussion, the PRISM2 group reveals the benefits of […]

Micro 3D printing mined for future 5G mobile connections

5G, the future of mobile communications, ultra-fast video streaming and autonomous car radar, is seeking precision 3D printing methods for its circuitry. In a University of Birmingham project set for completion at the end of 2018, two contenders from across the industry have been singled out as potential industrial partners for circuit production. Now, with a […]

University of Birmingham chooses Renishaw 3D printers for healthcare

The University of Birmingham (UoB) has installed two of Renishaw’s RenAM 500M metal additive manufacturing systems to service its Centre for Custom Medical Devices (CMD). The systems were installed by the UoB’s School of Materials and Metallurgy to accelerate the development of customized 3D printed medical devices. Dr. Sophie Cox, Lecturer at the University’s Healthcare Technologies […]