AnelleO: 3D Printing to Create Devices for HIV Prevention, Birth Control and Infertility

Women and girls are disproportionately affected by the HIV/AIDS epidemic, comprising more than half of the estimated 37.9 million people living with the disease. Moreover, according to United Nations AIDS, some regions of the world, like sub-Saharan Africa, have an even higher burden, with women and girls constituting over 57% of the affected population, compared to 52% worldwide. With an unwavering increase of the disease along with antiretroviral treatments that can only help control the virus, not kill it, preventing HIV infection is essential. Researchers have been investigating for many years the use of intravaginal rings (IVRs) as devices for the delivery of agents to protect against the sexual transmission of HIV and other diseases, as well as to prevent unwanted pregnancies. At the University of North Carolina (UNC) at Chapel Hill’s Eshelman School of Pharmacy, professor Rahima Benhabbour has been passionately developing innovative technologies to improve health conditions for women. Using 3D printing technology and her startup company AnelleO, she is quickly creating a breakthrough IVR that will be more efficient in drug delivery and can be customized to women’s needs.

Benhabbour recently said that watching the CEO and founder of Carbon, Joseph DeSimone, demonstrating how his 3D printer worked during a TED talk, made her wonder how she could apply the technology to IVRs. Soon after, she established her own company to print intricate features on customizable devices that could help women worldwide.

“I’m from North Africa. I’m a woman. The thought of helping women–some that don’t have a way of protecting themselves or controlling their lives–that’s my ultimate passion. It’s a dream for me to give back,” said Benhabbour, also an assistant professor at the UNC/NC State Joint Department of Biomedical Engineering.

Benhabbour has been featured on Innovate Carolina (a team working closely with a network of university partners to turn novel ideas into economic and social value), for her use of 3D printing technology to prevent HIV infections and other health conditions in women. Since launching her AnelleO in 2016, Behnhabbour has been working on the first product, AnelleO PRO, a once-a-month progesterone-releasing ring for infertility and assisted reproductive technology. The ultimate goal of AnelleO is to create a more efficient drug delivery that can be customized to women and their individual needs since current technology for intervaginal rings is a one-size-fits-all product.

AnelleO PRO, the first intravaginal ring for infertility, aims to develop and test biocompatible 3D printed IVRs for the mechanical and release properties of a model drug called β-estradiol, then translate these methods to the target drug, progesterone. Benhabbour is using a novel 3D printing platform, driven by the proprietary Continuous liquid interface production or CLIP process, pioneered by Carbon. She also applies CAD software for specifying shapes and geometry, which is recreated via a photopolymerization process. AnelleO PRO IVRs are fabricated with CLIP using a biocompatible resin and takes just 15 minutes to print each ring.

According to Innovate Carolina, current products approved for progesterone supplementation are limited to messy and unpleasant vaginal gels or inserts and painful intramuscular injections that have to be administered daily. While AnelleO PRO could safely and steadily release progesterone over an extended duration, with the potential to replace current therapies and impact millions of women.

“Unlike traditional technology, 3D printing gives us the ability and engineering to play around with the design and properties of a product. We can engineer parts that would not have been possible before,” she suggested back in September. “The main goal of developing this 3D technology is to have the ability to change the ways in which women’s products are manufactured and designed. And the applications for the technology are endless – including prevention of HIV, sexually transmitted infections and unintended pregnancies.”

On a similar note, the National Institutes of Health (NIH) reported last July that another research open-label study of women in southern and eastern Africa, using a vaginal ring that is inserted once a month and slowly releases an antiviral drug, was estimated to reduce the risk of HIV by 39%. IVRs are quickly gaining prominence. However, Benhabbour’s idea to use 3D printing to develop them could be even more innovative than all the others, especially considering that the technology helps to cut down costs, print on-site, and would just require technical expertise to run the machines. This means that in regions where it would take longer to receive the IVRs–due to logistics or high costs–specialists could actually print them within minutes for patients. In the end, it all translates to saving lives, reducing risks, and improving existing health conditions for women and girls.

Rahima Benhabbour at the lab

Originally, the Chapel Hill UNC spin-off company received the KickStart Venture Services Commercialization Award, which is part of Innovate Carolina’s campus-wide effort to translate discoveries made in Carolina’s academic laboratories into products and services that can benefit people both in the local vicinity and around the world.

Benhabbour suggested that “KickStart Venture Services gave us a ‘kickstart.’ You may have an idea, but no funding and KickStart helps make connections and gets things moving, while serving as an ongoing resource. The main hurdle has been to find business leads. KickStart helps faculty launch and carry their startups, because we’re too busy in our academic lives to be the lead of a company. We need that support with the business know-how. That support has been tremendous.”

A critical source of funding came from the Eshelman Institute for Innovation (EII) at the Eshelman School of Pharmacy. In this case, EII provided a $200,000 grant titled “Fabrication of Geometrically Complex Intravaginal Rings by Continuous Liquid Interface Production (CLIP) 3D Printing Technology” that helped Benhabbour initially create the technology. Such financial backing, along with the additional entrepreneurial support from EII, in partnership with KickStart and the broader Innovate Carolina team, bolstered Benhabbour’s early efforts to bring her concept to life.

The bioscience company, headquartered in North Carolina’s UNC at Chapel Hill, is quickly developing drug delivery technologies with uses in potential end markets including devices, reproductive systems, cancers, and other neoplasms. AnelleO also got a lot of help from the UNC Office of Technology Commercialization team (another part of the Innovate Carolina initiative) in helping with guidance on patents and licensing, not a minor issue when it comes to innovation. Her lab is packed with more than seven scientists, most of them women, something she is particularly proud of.

According to the expert, its not always easy for faculty members to pursue their big idea, yet she offers encouraging advice: “It’s hard for an academic, you always have questions. What I’ve learned is that if you have an idea, put it out there and talk to multiple people. Get it out there, and see what the potential is for your idea as opposed to looking at the hurdles. Instead of looking at how something won’t work, just think of what it can be.”

As a big part of her mission for innovation in science, Benhabbour has also been working on a seven-year research along with colleagues at Chapel Hill, to develop the first-ever injectable implant for HIV. The long-lasting treatment and prevention technology has been tested in animals and would make an enhanced injectable drug implant that is ultra-long-acting and can merge various drugs, while also dealing with a number of hurdles encountered with present HIV prevention and treatment techniques.

Benhabbour’s novel approach along with her ongoing interest and concern to help people with life sciences has led to innovative solutions that could stop life-threatening diseases and overall improve women’s lives. She moves away from traditional forms of drug administration, leading the way with her vision to incorporate the latest technologies to her up and coming lab efforts and new company. We expect to hear more about Benhabbour and her one-of-a-kind 3D printed IVRs.

Rahima Benhabbour and her team

[Images: Innovate Carolina, UNC at Chapel Hill]

The post AnelleO: 3D Printing to Create Devices for HIV Prevention, Birth Control and Infertility appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing News Briefs: August 10, 2018

We’ve got some business news to start things off with in today’s 3D Printing News Briefs, followed by a little research and a really cool 3D printed costume. The Department of Defense has awarded a contract to Contour Crafting, and Sutrue is celebrating its tenth anniversary. Facebook has made the decision to ban blueprints for 3D printed guns, and a Siggraph paper takes an in-depth look into near-eye displays. Finally, several companies helped the non-profit organization Magic Wheelchair make a really cool 3D printed wheelchair costume for a big Star Wars fan.

Contour Crafting Receives Department of Defense Contract

One of the first methods of large-scale 3D printing, Contour Crafting, uses large but lightweight robotic 3D printers, which can quickly put down layers of building material to rapidly create entire buildings onsite in just days. The California-based corporation itself is on a mission to commercialize disruptive construction technologies, and we recently learned that the US Department of Defense (DoD) has awarded Contour Crafting a $3 million research and development contract to build a concrete 3D printer for the purposes of building construction for disaster relief.

According to the company’s website , “Effective 25 JUL 2018, the Department of Defense has awarded Contour Crafting Corporation with a Rapid Innovation Fund contract in the domain of large and construction scale 3D printing. The outcome of this funded R&D program is expected to be a technology which, among other applications, will effectively respond to disaster relief situations with expedient, safe and sustainable structures and buildings.”

This information confirms that the DoD is not putting all of its eggs into one basket, so to speak, and is seeking outside help for its construction 3D printing goals.

Sutrue Celebrates Ten Years

Medical device startup Sutrue first started working on a 3D printed suture stitching device to help prevent needle stick injuries back in 2014, and became the first company to successfully 3D print a suture device. But Sutrue’s story actually began back in August of 2008, when its founder Alex Berry was stuck at home with a broken ankle and watched a documentary that provided some insight into robotic suturing. In an effort to keep busy during his recovery, Berry, who had some basic CAD knowledge, got to work.

After moving to the UK, Berry officially started Sutrue in 2012, meeting some influential people along the way who helped him get closer to achieving his goal of creating a 3D printed suture device. The startup completed a £30,000 crowdfunding campaign in 2014, submitted another patent, developed a few mutually beneficial relationships with other companies, and secured further funding for continued device development. Now, Sutrue is celebrating the 10th anniversary of Berry’s initial idea.

The startup wrote in a post, “It’s been ten years of ups and downs, filled with much uncertainty particularly in the first five years in which Berry didn’t even know for sure that the device would work. He has maintained the progression of the device through having a healthy dose of insanity, extreme resourcefulness, and an inquiring and problem-solving mind. He’s gone against many societal norms to have created two working prototypes of his automated suturing device – the robotic and the handheld, but as the route to market becomes closer and closer, he’s glad to have fought against the odds to see the project through to completion.”

Facebook Bans 3D Printed Gun Blueprints

Gun with 3D printed parts. [Image: CNET]

There’s been an increased amount of conversation on the topic of 3D printed guns recently, after news broke of a settlement between the US State Department and Texas open source 3D printed gun designer Defense Distributed, run by Cody Wilson. The settlement states that Wilson and his non-profit organization can publish files, plans, and 3D drawings of guns in any form, and are also exempted from export restrictions; additionally, the government will be paying nearly $40,000 of Wilson’s legal fees. This means that people who weren’t legally able to purchase firearms before, such as felons and domestic abusers, can 3D print their own guns without serial numbers. As you can imagine, many are not happy with this decision. This week, Facebook, the world’s largest social network, said that it will ban any websites that host and share blueprints of 3D printed guns, though the designs have already been available online for years.

According to BuzzFeed News, a Facebook spokesperson said, “Sharing instructions on how to print firearms using 3D printers is not allowed under our Community Standards. In line with our policies, we are removing this content from Facebook.”

MSN reports that Facebook did not “immediately respond to a request for comment regarding the Ghost Gunner” 3D printed gun.

Siggraph Paper on Optical Design for Augmented Reality Near Eye Displays

This year’s annual conference on computer graphics, SIGGRAPH 2018, starts this Sunday, August 12th, in Vancouver. One of the papers published for the conference, titled “Steerable application-adaptive near eye displays,” discusses see-through near eye displays (NED), which are currently being used in the Hololens, among other things. According to the Stanford Computational Imaging Lab, most NEDs work by using a stereoscopic image pair to optically drive the visual system’s vergence state to “arbitrary distances,” but drives the focus (accommodation) state towards a fixed distance.

The technology is a bit of a long shot, due to people getting motion sickness or their eyes getting tired, but if we can get it to work, I bet every movie theatre in the world will employ it.

The abstract of the paper reads, “The design challenges of see-through near-eye displays can be mitigated by specializing an augmented reality device for a particular application. We present a novel optical design for augmented reality near-eye displays exploiting 3D stereolithography printing techniques to achieve similar characteristics to progressive prescription binoculars. We propose to manufacture inter-changeable optical components using 3D printing, leading to arbitrary shaped static projection screen surfaces that are adaptive to the targeted applications. We identify a computational optical design methodology to generate various optical components accordingly, leading to small compute and power demands. To this end, we introduce our augmented reality prototype with a moderate form-factor, large field of view. We have also presented that our prototype is promising high resolutions for a foveation technique using a moving lens in front of a projection system. We believe our display technique provides a gate-way to application-adaptive, easily replicable, customizable, and cost-effective near-eye display designs.”

Co-authors of the paper are NVIDIA Corporation‘s Kishore Rathinavel, Praneeth Chakravarthula, Kaan Akşit, Josef Spjut, Ben Boudaoud, Turner Whitted, David Luebke, and Henry Fuchs from UNC Chapel Hill.

3D Printed Star Wars Wheelchair Costume

Here’s something fun and heartwarming to kick off your weekend – non-profit organization Magic Wheelchair, which makes free, bespoke wheelchair costumes for kids, created a 3D printed Poe Dameron X-Wing Fighter wheelchair costume for a 13-year-old, wheelchair-bound Star Wars fan named Vedant Singhania to wear at last month’s Comic-Con International. Project partners included Pixologic, which used its ZBrush digital sculpting software to provide the design and modeling work, and Dangling Carrot Creative, which used the high print speeds of the Massivit 1800 3D printer to make 50 separate costume pieces in a little over two weeks. Massivit also donated 3D printing materials, and Monster City Studios assembled the large wheelchair costume.

“We connected with Magic Wheelchair because we knew our technology and modelling expertise could assist them with the fantastic work they are doing for children in wheelchairs,” said Pixologic’s 3D Product Development Manager Paul Gaboury. “After we designed the costume, Dangling Carrot Creative was the final piece to the puzzle. The company allowed us to 3D print life-size to help remove the need for molds or casting which saves substantial time and money.”

Discuss these stories, and other 3D printing topics, at 3DPrintBoard.com or share your thoughts in the Facebook comments below.