McDonald’s Deep Fat Fryer Oil Could be Used as a Biodegradable SLA Resin at a Cost of $227 a Tonne

Professor Andre Simpson at the University of Toronto is the director of the school’s Environmental NMR Center, dedicated to environmental research. This research uses an analytical tool that is called NMR (Nuclear Magnetic Resonance) spectrometer, which is similar to how an MRI (Magnetic Resonance Imaging) works for medical diagnostics.

Andre Simpson via University of Toronto

Simpson and his team uses the NMR spectrometers to look inside tiny living organisms, which helps them understand their biochemical response when there’s a change in the environment.

But a big challenge was heading towards the team when Simpson bought a 3D printer back in 2017 for the lab. His idea was to use the 3D printer to build custom parts that would help keep organisms and samples alive inside the NMR spectrometer. The problem was that the resin needed for SLA 3D printing was expensive (around $300 a liter) and the university’s financial support for the research didn’t cover the cost.

However, Simpson spotted a connection when analyzing the resin. The plastic resin’s molecules were similar to fats that can be found in cooking oil. That’s when Simpson realized the possibility of turning cooking oil into resin for 3D printing. But, yet again, a new challenge was presented for Simpson and his team: finding old cooking oil form a restaurant’s deep fryers to test in the lab. “We reached out to all of the fast-food restaurants around us. They all said no,” said Simpson.

Despite having no luck when the team contacted several major national fast food chains, the only one that responded was McDonald’s. The restaurant agreed to give Simpson and his team 10 liters of waste oil from a McDonald’s. Back in the lab, the oil was filtered as to take out any food particles. Rajshree Ghosh Biswas, a second year PhD student, joined the team to synthesize small batches of oil, as to convert it into a high-quality resin. To test the resin, butterflies were 3D printed on an Autodesk Ember.

PhD Student Rajshree Ghosh Biswas via University of Toronto

On September, 2019, the team finally printed a high-quality and detailed butterfly as tiny as 100 micrometers. “We did analysis on the butterfly. It felt rubbery to touch, with a waxy surface that repelled water,” explained Simpson. The butterfly was “structurally stable” and it didn’t break apart.

But what also excited Simpson was that the created butterfly was potentially biodegradable and compostable. He buried a sample butterfly in soil and, two weeks later, 20% of it disappeared. “If you bury it in soil, microbes will start to break it down because essentially it’s just fat. It’s something that microbes actually like to eat and they do a good job at breaking it down,” said Simpson. “This is also a great way to reuse and recycle waste cooking oil,” believes Ghosh Biswas.

Image via University of Toronto

“I was impressed by the research initiative and happy to contribute to something that could possibly be helpful to future generations,” said Terri Toms, the McDonald’s franchisee who gave the oil to Simpson and his team. Although they are no longer receiving oil from McDonald’s, they still hope their research, published on December 2019 on ACS Sustainable Chemistry & Engineering, gets noticed by the industry.

In their research, the team wrote: “Every year, it costs millions of dollars for fast food restaurants to process waste, including waste cooking oil. Most recycled waste cooking oil is currently used in the production of soap and biodiesel. It may be transformative for recycling programs if high-value commodities can be manufactured directly from it.” The team estimates that their resin would cost around $227 per tonne which would be an incredible reduction in resin cost from the $150 to $300 per liter that one would typically pay today. The resin used would need more testing, of course, to determine what the parts could be used for and how they would perform outside the realm of microfluidics and in the real world. If this could be used for one limited application such as lost wax casting for jewelry, for example, it could really make SLA much more viable for that particular application. Perhaps this wouldn’t work and furthermore parts would only have a limited life span, but then they could serve as draft parts used in some cases for example. If this product works more widely it could completely revolutionize some SLA applications making them much more viable, inexpensive and safer.

[Source: University of Toronto]

The post McDonald’s Deep Fat Fryer Oil Could be Used as a Biodegradable SLA Resin at a Cost of $227 a Tonne appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Researchers develop handheld 3D bioprinter for treating large skin burns

Researchers from the University of Toronto (UoT) and Sunnybrook Health Sciences Centre have developed a handheld device capable of 3D bioprinting sheets of skin that can heal burn wounds.  Described as a “handheld 3D printer”, the device deposits sheets of material formed by a bioink that covers the wound, helping to accelerate the skin’s healing […]

Toronto scientists develop handheld 3D bioprinter to treat burn victims

Scientists from the University of Toronto (UoT) and Sunnybrook Research Institute (SRI), have created a handheld 3D bioprinter capable of printing skin cells to treat deep-thickness wound on burn victims. According to the research recently published in the Lab on a Chip journal, “When manually positioned above a target surface, the compact instrument [weighing 0.8 […]

Researchers Build Inexpensive Open Source Bioprinter for 3D Printing Branching, Hydrogel-Based Vascular Constructs

While 3D bioprinting is not yet able to fabricate full human organs just yet, it can be used to manufacture several different kinds of human tissue, such as heart and bile duct. One of the main barriers of forming viable tissues for clinical and scientific use is the development of vasculature for engineered tissue constructs, mainly due to generating branching channels in hydrogel constructs that can later produce vessel-like structures after being seeded with endothelial cells.

But thanks to 3D bioprinting, it’s now possible to 3D print complex structures on multiple length scales within a single construct. This enables the generation of branching, interconnected vessel systems of small, vein-like microvessels and larger macrovessels, which couldn’t be done with former tissue engineering methods. However, the best sacrificial material for fabricating branching vascular conduits in constructs based in hydrogel has yet to be determined.

A team of researchers from the University of Toronto recently published a paper, titled “Generating vascular channels within hydrogel constructs using an economical open-source 3D bioprinter and thermoreversible gels,” in the Bioprinting journal. Co-authors of the paper include Ross EB FitzsimmonsMark S. Aquilino, Jasmine Quigley, Oleg ChebotarevFarhang Tarlan, and Craig A. Simmons.

The abstract reads, “The advent of 3D bioprinting offers new opportunities to create complex vascular structures within engineered tissues. However, the most suitable sacrificial material for producing branching vascular conduits within hydrogel-based constructs has not yet been resolved. Here, we assess two leading contenders, gelatin and Pluronic F-127, for a number of characteristics relevant to their use as sacrificial materials (printed filament diameter and its variability, toxicity, rheological properties, and compressive moduli). To aid in our assessment and help accelerate the adoption of 3D bioprinting by the biomedical field, we custom-built an inexpensive (< $3000 CAD) 3D bioprinter. This open-source 3D printer was designed to be fabricated in a modular manner with 3D printed/laser-cut components and off-the-shelf electronics to allow for easy assembly, iterative improvements, and customization by future adopters of the design. We found Pluronic F-127 to produce filaments with higher spatial resolution, greater uniformity, and greater elastic modulus than gelatin filaments, and with low toxicity despite being a surfactant, making it particularly suitable for engineering smaller vascular conduits. Notably, the addition of hyaluronan to gelatin increased its viscosity to achieve filament resolutions and print uniformity approaching that with Pluronic F-127. Gelatin-hyaluronan was also more resistant to plastic deformation than Pluronic F-127, and therefore may be advantageous in situations in which the sacrificial material provides structural support. We expect that this work to establish an economical 3D bioprinter and assess sacrificial materials will assist the ongoing development of vascularized tissues and will help accelerate the widespread adoption 3D bioprinting to create engineered tissues.”

3D Bioprinter Hardware.

Existing 3D bioprinters have different technical advantages and deposition methods, which influence their prices and available applications. Extrusion-based 3D printers are good for tissue engineering, but the cost is usually too high for the field to experience significant growth.

For this experiment, the researchers chose to create their own open source 3D bioprinter, which costs roughly $3,000 and can be used for lower resolution applications, such as 3D printing perfusable microvessels in tissue constructs.

Printer operational overview.

Both the chosen method and material have to meet a certain number of requirements to successfully 3D print complex branching vessel systems within hydrogel constructs. First, sacrificial materials, which need to be non-toxic and maintain a uniform filament diameter during printing, have to be deposited in the desired vascular design during printing, then flushed away once the construct is done.

In addition, the 3D printer needs to have enough resolution to print all the channels – even those that will act as the small artery vessels of ~0.5–1 mm. It also needs to be able to deposit at least two materials, though more is better when it comes to creating heterogeneous tissues with different regions of varying cell and hydrogel composition.

The team investigated formulations of gelatin and PF127 due to their potential advantages as sacrificial materials in hydrogel-based tissue constructs. Gelatin, which has been used in several biomedical applications, is a thermoreversible (the property of certain substances to be reversed when exposed to heat) biopolymer of several hydrolyzed collagen segments, and can be 3D printed at ~37 °C, which is a temperature compatible with cells.

PF127 is a surfactant, meaning that it could have potential cytotoxic effects on embedded cells. But, it has inverse thermal gelation, which means it can be 3D printed at an ambient temperature, and then removed at ~4 °C to create void vascular channels.

According to the paper, “By using our custom-built printer in order to assess the printability of these materials and assessing mechanical properties, we aimed to establish which may be the best option for creating branching vascular channels within engineered tissues.”

The team’s modular 3D bioprinter includes extruding systems, 3D printed out of ABS on a MakerBot 3D printer, which were designed specifically to hold commercially-available, sterile 10 mL syringes, instead of custom-made reservoirs that would need to be specially made and repeatedly sterilized. An open-source Duet v0.6 controller board controls the system, and the print heads are isolated from the XYZ movements executed by the lower part of the chassis.

Fabricating perfusable channels.

For testing purposes, water droplets were 3D printed in a defined pattern with each extruder system, and the average distance between the droplets’ centers in the X and Y directions were measured; then, the mean distances were compared to the pre-defined CAD model distances.

“In conclusion, we found that PF127 is generally superior to gelatin as a sacrificial material for creating vascularized tissues by merit of its filament uniformity during printing and its greater compressive modulus,” the paper concluded.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.