Robot Skin 3D Printer Close to First-in-Human Clinical Trials

In just two years a robotic device that prints a patient’s own skin cells directly onto a burn or wound could have its first-in-human clinical trials. The 3D bioprinting system for intraoperative skin regeneration developed by Australian biotech start-up Inventia Life Science has gained new momentum thanks to major investments from the Australian government and two powerful new partners, world-renowned burns expert Fiona Wood and leading bioprinting researcher Gordon Wallace.

Codenamed Ligō from the Latin “to bind”, the system is expected to revolutionize wound repairs by delivering multiple cell types and biomaterials rapidly and precisely, creating a new layer of skin where it has been damaged. The novel system is slated to replace current wound healing methods that simply attempt to repair the skin, and is being developed by Inventia Skin, a subsidiary of Inventia Life Science.

“When we started Inventia Life Science, our vision was to create a technology platform with the potential to bring enormous benefit to human health. We are pleased to see how fast that vision is progressing alongside our fantastic collaborators. This Federal Government support will definitely help us accelerate even faster,” said Dr. Julio Ribeiro, CEO, and co-founder of Inventia.

Seeking to support Australia’s biomedical and medical technology sector, the Australian government announced it will invest AU$1 million (US$723,085) to supercharge the Ligõ 3D bioprinting system for regenerating skin. The project is one of 21 initiatives to receive support from the Federal Government’s BioMedTech Horizons (BMTH) program, operated by MTPConnect, a non-profit organization aiming to accelerate the rate of growth of the medical technologies, biotechnologies, and pharmaceuticals sector in Australia.

Late in July 2020, Australia’s Federal Health Minister, Greg Hunt announced that the program’s funding is expected to move the device faster into first-in-human clinical trials. Separately, the team also received funding from the Medical Research Future Fund Stem Cell Therapies Mission to collaborate with stem cell expert Pritinder Kaur from Curtin University, in Perth, to use the Ligō device to deliver stem cell-based products that could improve skin regeneration.

According to Inventia, the skin is the first point of injury in accidents and some diseases and, when significantly damaged, it heals slowly, usually leaving a scar. Moreover, throughout the regeneration process, it is open to infection, a major problem in the body’s first protective barrier, and a good enough reason to find new ways to speed up the healing process.

Focusing energies on creating a robot capable of printing tiny droplets containing the patient’s skin cells and biomaterials directly on the wound gave Inventia the potential to recreate functional and aesthetically normal skin. Moreover, the researchers behind the Ligõ technology suggest this can be achieved in a single procedure in the operating theatre, reducing treatment cost and hospital stays, and minimizing the risk of infection.

The device uses Inventia’s patented technology, which was already successfully featured in its RASTRUM platform for lab-based medical research and drug discovery. By taking this core technology into the clinic through the Ligō robot, the company expects to break new ground with some of Australia’s leaders in skin regeneration.

Researchers from Inventia Life Science at the Translational Research Initiative for Cell Engineering and Printing (TRICEP) at Wollongong. (Image courtesy of TRICEP)

Researchers from the ARC Centre of Excellence for Electromaterials Science (ACES) at the University of Wollongong, in Australia, will also lend their internationally renowned expertise in bioinks to develop the new 3D bioprinting system to treat burns during surgery. Led by ACES Director Gordon Wallace, the researchers will provide critical input in the bioprinter and bioink development process. This news comes as no surprise as the ACES team already had a strong working relationship with Inventia.

“ACES is at the forefront of building new approaches to 3D printing, and this project will draw on this significant success we have had in this space in recent years,” Wallace said. “3D printing has emerged as the most exciting advance in fabrication in decades, and I’m excited to continue to build our local capabilities in this area to establish a new, innovative and sustainable industry for the Illawarra [a region in the Australian state of New South Wales]. Being part of this skin regeneration project will help to put Wollongong on the map for the commercial manufacture of bioprinting technologies.”

Leading bioprinting researcher Gordon Wallace. (Image courtesy of the ARC Center for Excellence for Electromaterials Science)

For project partner Fiona Wood, a world-leading burns specialist and surgeon, and Director of the Burns Service of Western Australia, this is not the first time that she has looked towards bioengineering to help her patients. In the early 90s, the expert pioneered the innovative “spray-on skin” technique, which greatly reduces permanent scarring in burns victims, and came to notice in 2002, when the largest proportion of survivors from the Bali bombings arrived at Royal Perth Hospital.

“The combination of these grants is an excellent example of the way the Medical Research Future Fund is being applied across the continuum of translational research to commercialization, leading to better patient outcomes,” commented Wood.

Fiona Wood at the Burns Service of Western Australia. (Image credit Fiona Woods Foundation)

Burns are the fourth most common type of trauma worldwide, with an estimated 11 million burned patients treated every year worldwide, and over 300,000 deaths resulting from serious wounds. In Australia alone Wood’s foundation reported that 200,000 people suffer burns annually, costing the Australian community over AU$150 million per year. Burn injuries are horrific and they present complex problems for both the patient and clinicians to deal with, with a road to recovery beyond easy to tackle. Inventia Skin expects bioprinting technology will be a game-changer in wound medicine. Moreover, the combined expertise of leading specialists in bioprinting and burn wounds, along with funding and support from the local government could lead to one of the most innovative 3D bioprinting systems to treat burns during surgery, and best of all, it could be available in 2022.

The post Robot Skin 3D Printer Close to First-in-Human Clinical Trials appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

UOW researchers catch waves to test 3D printed surfboard fins

Wanting to create the perfect wave-riding experience for surfers, two years ago, Marc in het Panhuis, Professor at the University of Wollongong’s (UOW) School of Chemistry, and a research team used additive manufacturing to produce customizable fins for surfboards. Now, with a range of functional 3D printed fin prototypes, UOW students, surfers, and academics from […]

3D Printed Fins Help Surfers Catch the Perfect Wave…and May Signal a Sports Industry Revolution

If you like 3D printing just as much as you enjoy riding those gnarly waves, you may remember when a research team from the University of Wollongong (UOW) in Australia started 3D printing surfboard fins specifically tailored to the needs of the individual surfer two years ago. This research has continued, and a multidisciplinary team of UOW students and academics from the university’s Australian National Fabrication Facility (ANFF), along with several surfers, recently took a trip to hang ten at the remote Mentawai Islands in Indonesia, and test out new shapes of surfboard fins, which were designed and 3D printed at UOW.

The project is part of UOW’s Global Challenges Program, with an initial goal of testing out several of these new 3D printed fin shapes and comparing them against conventional fins. But the researchers also hope to determine the possibility of developing a new niche manufacturing industry out of 3D printed surfboard fins.

“There is a lot to a simple surfboard fin, you have to consider the fin base, depth, rake (or sweep), foil, cant, toe and flex,” said Professor Marc in het Panhuis from the university’s School of Chemistry, who worked on the last 3D printed surfboard fin project. “Not to forget, the number of fins and their positioning on a surfboard.

“There is no such thing as a simple surfboard fin. The team has looked at things different materials that can make the fin stronger, lighter and its ability to flex.”

According to Professor in het Panhuis, ocean swell and a good surfboard, fitted with the proper fins, are both equally important to surfers. While these 3D printed fins may look like commercially available ones, Professor in het Panhuis said that “the proof is in the ride.”

Dr. Stephen Beirne with the university’s ANFF said that this is the perfect project to conduct trials on 3D printing and rapid prototyping.

“3D printing enables us to print virtually anything we can imagine and that includes surfboard fins. Our team started out creating CAD-generated fin designs on a computer, then we took those designs and used computational fluid dynamics to see how the fin was likely to perform in the water,” explained Dr. Beirne. “The last part of the process was to select the most appropriate materials to print the prototype.”

3D printing is often used today to fabricate equipment for real-life use in the sports and leisure industry, from protective gear – like soccer shin guards, helmets, and mouthguards – to apparel ranging from specialized footwear, eyewear, and racing gloves, and equipment such as improved snowboards, luge sleds, and even surfboards. By using this technology to create usable parts, the whole sports industry could see a 3D printed revolution in terms of customized products.

The UOW researchers took their time coming up with designs for the 3D printed fins, and after a long search to find the most consistent ocean waves in which to test the fins in real-world conditions, they chose the island chain off the western coast of Sumatra, as it provides both dependable waves and a variety of surf breaks, including the left-hand-breaking Macaronis wave the team used.

“Macaronis is a unique surfing spot because the waves always break on a reef in the same spot,” explained Professor in het Panhuis. “The waves also roll over a long distance and surfers can get a maximum of turns, which is perfect for collecting surfboard fin data.”



The surfers were tasked with catching a variety of waves, and performing as many turns as they could manage on each, with multiple different surfboard fins. Surfboard shaper Dylan Perese of DP Surfboards, who participated in the testing and data collection, also produced standardized surfboards for the project, so everyone had the same base.

Professor in het Panhuis then added embedded sensors and GPS tracking devices to the surfboards to gather performance data on the fins. He explained:

“The devices tracked everything from wave count, speed, number of turns to the amount of rail engaged during turning (to name but a few of the parameters). The surfers also filled out a fin performance rating scale immediately after they completed riding each set of fins. The information is then used to compare the different sets of fins.”

Professor Julie Steele, the Director of UOW’s Biomechanics Research Laboratory, has nearly four decades of experience running human trials, and collected the data during the trials, while also taking pains to ensure that the surfers were not biased toward any particular fin designs.

The surfers were tracked on over 450 waves, performing more than 1,700 turns, in multiple weather conditions, on three different 3D printed fin designs. The results, which should be published soon, were then compared against fins sold by two mainstream fin producers, and there was a clear winner.

“Preliminary analysis of the fin performance rating data has revealed that the surfers, on average, have rated one of the 3D printed fins as feeling the best to surf on. We were surprised that there was such a strong preference for this one fin, given the six surfers all had very different surfing styles,” said Professor Steele.

The 3D printed ‘Crinkle Cut’ fin has a series of grooves on one side, in order to increase the lift to drag ratio and propel surfers along the waves.

“The reason this fin shape works so well is because the contours improve the way the water flows past it,” Professor in het Panhuis explained. “These contours ultimately give the surfer more speed. The fins also seemed to offer plenty of drive and projection out of turns.”


So whether you’re hoping to catch the perfect wave, hit the track, or try for an Olympic medal, 3D printing could help you get to the finish line.

Discuss of this story and other 3D printing topics at 3DPrintBoard.com, or share your thoughts below.

[Images provided by UOW]