US Air Force 3D Prints Part for $2.2 Billion Stealth Bomber

The mission of the U.S. Air Force Life Cycle Management Center’s B-2 Program Office is to ensure the B-2 Spirit bomber jets stay relevant and in-flight through the early 2030s until replaced by its stealthier new version, the B-21s. To extend the life of the deadly aircraft and keep the existing B-2 bomber fleet ready and active for future missions, aerospace engineers at the B-2 Program Office turned to additive manufacturing. The technology was used to create a permanent protective cover that prevents the unintentional activation of the airframe mounted accessory drive (AMAD) decouple switch, which controls the connection of the engines to the hydraulic and generator power of the aircraft.

Each one of the 20 B-2 aircraft has a four-switch panel AMAD that sits on the left side of the two-person cockpit. When all switches are activated simultaneously, the crew has no choice but to eject as the aircraft will be without electrical and hydraulic power. In 2018, a B-2 jet was forced to make an emergency landing in Colorado Springs after the crew flipped one of the switches, forcing the B-2 Program Office to come up with an innovative solution to solve the critical issue.

At the time, B-2 pilot and commander of the 509th Bomb Wing at Whiteman Air Force Base in Missouri, John J. Nichols, turned to a team of students at Knob Noster High School, also in Missouri, that designed and 3D printed prototype AMAD panel covers in 72 hours at $1.25 a piece. Now, the B-2 Program Office has come up with 20 new additively manufactured covers that cost approximately $4,000 and will be delivered to the fleet in late 2020 or early 2021.

Students from the Knob Noster High School robotics team designed a protective panel that covers four switches in the cockpit of the B-2 Stealth Bomber (Image courtesy of US Air Force/ Sgt. Kayla White)

“Additive manufacturing is the way of the future,” said Roger Tyler, an aerospace engineer with the B-2 Program Office. “The B-2 is a low volume fleet. There’s only 20 of them, so anytime something needs to be done on the aircraft, cost can be an issue. But with additive manufacturing, we can design something and have it printed within a week and keep costs to a minimum.”

The development of the covers was aided by the Additive Manufacturing Design Rule Book, which was created by the Product Support Engineering Division, part of the U.S. Air Force Life Cycle Management Center (AFLCMC). According to Jason McDuffie, Chief of the Air Force Metals Technology Office (MTO), the rule book provides design guidelines and lessons learned in the additive manufacturing field, specifically the use of direct metal laser melting and fuse deposition modeling technologies, and has been applied to help create a variety of important parts for the Air Force.

3D printed protective cover for the airframe mounted accessory drive decouple switch in B-2 aircraft (Image courtesy of US Air Force Life Cycle Management Center)

“This part [AMAD cover] is unique, and there was never a commercial equivalent to it, so we had to develop it in-house,” Tyler added. “Additive manufacturing allowed us to rapidly prototype designs, and through multiple iterations, the optimum design for the pilots and maintainers were created. We have completed the airworthiness determination and are currently in the final stages to get the covers implemented on the B-2 fleet, which will be the first additively manufactured part to be approved and installed on the B-2.”

The B-2 stealth bomber (Image courtesy of Northrop Grumman/US Air Force)

Originally created to evade radar detection and attack without warning from the Soviet Union’s command and control centers during the Cold War, no B-2’s have ever actually flown over Russian aerospace. Even so, over its 31-year life span, the B-2 Spirit bomber has been a veteran of several conflict operations, from Iraq and Afghanistan to the war in Kosovo, where it took out 33 percent of the Serbian targets in eight weeks. Described by its manufacturer, Northrop Grumman, as “practically indestructible”, the B-2 can fly 6,000 miles without the need to refuel, and the capacity to haul in excess of 20 tons of weapons in any weather completely undetected.

At $2.2 billion per aircraft, it is one of the most expensive warplanes ever made, capable of delivering large and precision-guided weaponry, both conventional and nuclear. Yet, up until now, the B-2 has only been used to drop non-nuclear bombs. For decades, experts have warned against deploying mission bombers with nuclear weapons that might trigger an accidental nuclear war, and this comes as no surprise, with nine nuclear-armed states possessing an estimated 13,400 weapons, the risk always remains latent – even more so with sophisticated bombers like B-2 that cannot be detected.

The B-2 stealth bomber (Image courtesy of Northrop Grumman/US Air Force)

As the world’s only known stealth bomber, the aircraft continues to be a display of military force for the U.S., especially amid escalating tensions with countries like North Korea, China, and Russia. Recently, the B-2 Spirit bombers were deployed in the South China Sea amid a military exercise drill with troops practicing how to seize back the Andersen Air Force Base in Guam from an “invading” force; most likely as a response to China stepping up defensive military operations and exercises around Taiwan. In spite of its many years in the US Air Force fleet, the B-2 continues to be one of the most feared aircraft ever built, which is why sustainment modifications today remain an important aspect of the B-2 program, from coming up with cost-effective ways to repair and maintain the jets to teaming up with Northrop Grumman to ensure the units remain mission capable.

The U.S. Air Force often requires low-cost creative ways to replace parts on many of its aircraft. As such, it has already launched numerous research initiatives into additively manufacturing parts, from creating 3D printed replacement parts for F-35 fighter jets to saving thousands of dollars by using 3D printing to make cup handles and modify standard-issue gas masks. The latest 3D printed protective cover could become a great solution for an underlying problem that has already caused some havoc to B-2 pilots. For high operating cost aircraft like the B-2 (at a reported $122,000 per flight hour), repairs can be equally costly, but in-house production technologies like additive manufacturing can help aerospace engineers tasked with maintaining decades-old jets up to date and working as stealthily as they did 30 years ago.

The post US Air Force 3D Prints Part for $2.2 Billion Stealth Bomber appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

US Air Force uses Senvol software to develop multi-laser 3D printing applications

The US Air Force is using Senvol’s data-driven machine learning software for additive manufacturing (AM), to enable the production of large-scale aerospace parts using multi-laser 3D printing technology. Utilizing an EOS powder bed fusion (LPBF) 3D printer, the program is focused on developing baseline mechanical properties and design allowables, to optimize the production of end-use […]

U.S. Army Researchers create 3D printed customized ear plugs for soldiers

Researchers from the US Army Aeromedical Research Laboratory have used 3D printing to produce and test customizable earplugs for members of the US Armed Forces.  The army scientists’ new technique for producing ear protection, could be deployed to prevent hearing loss among members of the armed forces. Damage to soldiers’ hearing can cause them to […]

U.S. Air Force & GE Collaborate in Parts Certification, 3D Print F110 Sump Cover

A collaboration that began last year between GE Additive and GE Aviation and the U.S. Air Force is now coming to fruition. As the U.S. Air Force sought help with creating a metal additive airworthiness and certification path, beginning mid-2019, they received a proposal from GE offering a streamlined plan for readiness, affordability, and sustainment in an AM program.

With some aircraft reaching 60 years of service for the military, the U.S. Air Force’s Rapid Sustainment Office (RSO) began considering better ways to perform maintenance and manufacture spare parts. As the GE team reached out to the ROS, they realized that GE had the experience in qualifying and certifying AM parts that they required.

“The RSO is excited to partner with GE Additive and its efforts to deliver additively manufactured parts for the Air Force,” said Nathan Parker, deputy program executive officer for the RSO who oversees and provides funding for the project with GE. “Their successes will help ensure our systems rapidly obtain the high-quality parts they need to stay flying and at the ready.”

Additively manufactured, cobalt-chrome sump cover for F110 engine. (Photo: GE Additive, GEADPR035)

As continued proponents of 3D printing and additive manufacturing processes—for years, before most people were even aware of such technology—both GE Additive and a variety of different military divisions have continued to innovate, expanding AM facilities around the world, developing new materials, and creating new parts for U.S. Air Force planes and even runways. In this partnership, the two organizations have developed a multi-phased program that ascends in both complexity and scale as each phase is completed.

“The Air Force wanted to go fast from day one and gain the capability and capacity for metal additive manufacturing, as rapidly as possible, to improve readiness and sustainability,” explains Lisa Coroa-Bockley, general manager for advanced materials solutions at GE Aviation.

“Speed is additive’s currency, and by applying our additive experiences with the LEAP fuel nozzle and other parts additively printed for the GE9X, being able to offer an end-to-end solution and also applying lessons learned of a robust certification processes, we’ve been able to accelerate the pace for the USAF,” added Coroa-Bockley.

The program, based on a spiral development model, begins with basic part identification and then moves forward to part consolidation and certifying more complicated systems like common core heat exchangers.

“The collaborative effort between the US Air Force and GE shows great promise toward the adoption of metal 3D printed parts as an option to solve the US Air Force’s current and future sustainment challenges. This capability provides an alternate method to source parts for legacy propulsion systems throughout their life cycle, especially when faced with a diminishing supplier base or when infrequent demands or low volume orders are not attractive to traditional manufacturers,” said Colonel Benjamin Boehm, director, AFLCMC/LP Propulsion Directorate.

So far, the collaborative team has completed Phase 1, identifying GE Aviation spare parts for the F110 and TF34 engines, and then evaluating and proving their readiness for flight. Work had already been started on a sump cover (in use already for F-15 and F-16 aircraft) for the General Electric F110 engine, and it became the focal point of the first phase in the program.

Phase 1b, in the planning stages, will reflect continued complexity in the stages, as the team works on a sump cover housing. This is a ‘family of parts’ currently found on the TF34 engine—part of an aircraft that has been in use for over four decades.

“Re-engineering legacy parts and additively manufacturing low quantities of traditionally cast parts has incredible potential to improve USAF supportability. It’s worth our focus to develop a fast, highly repeatable process,” said Melanie Jonason, chief engineer for the propulsion sustainment division at Tinker Air Force Base (AFB).

Excited about the project from the beginning, Jonason is working with the GE Aviation military team, the chief engineer, Dr. Matt Szolwinski, James Bonar, and a team of GE Additive engineers.

“Compared to other parts on the F110 engine, the sump cover might have lower functionality, but is incredibly important. It needs to be durable, form a seal and it needs to work for the entire engine to function – which is of course critical on a single engine aircraft like the F-16,” said James Bonar, engineering manager at GE Additive.

GE Additive and GE Aviation have worked together closely in designing the aluminum sump cover—with the first builds produced on GE Additive Concept Laser M2 machines running cobalt-chrome at their Additive Technology Center (ATC) in Cincinnati.

Beth Dittmer

“The program with GE is ahead of schedule and the preliminary work already done on the sump cover has allowed us to move forward quickly. As we build our metal additive airworthiness plan for the Air Force, the completion of each phase represents a significant milestone as we take a step closer to getting an additive part qualified to fly in one of our aircraft,” said Beth Dittmer, division chief, propulsion integration at Tinker AFB.

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

GE Aviation F110 engine.

[Source / Images: Source / Images: GE Additive]

The post U.S. Air Force & GE Collaborate in Parts Certification, 3D Print F110 Sump Cover appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

US Air Force produces on-demand surgical retractor using 3D printing

A research team from the US Air Force (UAF) has successfully produced a surgical retractor using 3D printing.  The medical instrument, created a desktop 3D printer, is designed to be used in logistically challenging hostile environments where it is not possible to restock medical supplies using conventional methods. It has been produced as a proof […]

Air Force Institute of Technology develops high-strength steel for 3D printed munitions

The U.S. Air Force Institute of Technology (AFIT) has developed a method to 3D print high-performance Air Force steel AF-9628 for weapon applications. Led by Captain Erin Hager, and sponsored by the Air Force Research Laboratory (AFRL) Munitions Directorate, this powder bed fusion (PBF) technique enables the production of steel exhibiting higher tensile strength than conventional […]

AFRL and University Partners Used 3D Printed Composite Materials to Make Structural Parts

The Air Force Research Laboratory (AFRL), located at Wright-Patterson Air Force Base (WPAFB) near my hometown of Dayton, Ohio, has long been interested in using 3D printing and composite materials for the purposes of aerospace applications. Last year, AFRL’s Composites Branch at the Materials and Manufacturing Directorate partnered up with researchers from the University of Arkansas, the University of Miami in Florida, Louisiana Tech University, and the University of Texas at El Paso (UTEP) to work on advancing 3D printable composite materials.

The Composites Branch works on the research and development of organic and ceramic matrix composite technologies for legacy, developmental, and future Air Force system components. Together with its university partners, the AFRL branch demonstrated 3D printed composite materials, made from a combination of carbon fiber and epoxy, which had been successfully fabricated and used to make structural parts on both air and space craft. The results of this 3D printed composite material effort will soon be published in a special issue of the Journal of Experimental Mechanics that’s dedicated to the mechanics of 3D printed materials.

Dr. Jeffery Baur, leader of the Composite Performance Research Team, said, “The potential to quickly print high-strength composite parts and fixtures for the warfighter could be a tremendous asset both in the field and for accelerating weapon system development.”

Composite materials are made up of two, or sometimes more, constituent materials that have very different chemical or physical properties. When combined, these components produce a new material that has characteristics which are different from the originals. The individual components that make up the composite will remain distinctly separated within the final material structure.

When compared to the more low-quality polymers that are typically used in 3D printers, the composite materials demonstrated by AFRL and its partners are the same type that are already being used to make Air Force system components. These materials are very strong, while also lightweight, and have higher thermal and environmental durability than most.

Most traditional epoxy and carbon fiber composites are made by layering carbon fiber sheets, coated with epoxy resin, on top of each other. Then, the whole thing is cooked for hours in a costly pressure cooker to finish. The major downside to this method is that it’s more difficult to create parts that have complex shapes when sheets are being used.

This is where additive manufacturing comes in. Composite materials that are 3D printed are able to create parts with those complex shapes, and additionally don’t require the use of long heating cycles or expensive pressure cookers. On a materials level, there aren’t a whole lot of downsides to using composites for the purposes of producing, assembling, or repairing parts for the Air Force, whether at the depot or out in the field.

Military branches in other countries are also seeing the benefit of 3D printable composite materials. For example, engineers in India are manufacturing complex core structures using the composite 3D printing process; when combined with top and bottom face sheets, these structures will create lightweight sandwich structures that have properties tailored specifically to, as AFRL put it, “the physical forces that need to be carried.”

Conventionally fabricated sandwich structures use the same core geometries over the entire area of an aircraft skin, but a 3D printed version would be able to stand up under heavier forces when necessary, while also remaining lightweight in other parts of the skin.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

[Source: Dayton Daily News]

US Air Force Awards nScrypt Research Company Contract for 3D Printed Conformal Phased Array Antenna Project

Florida-based nScrypt, which manufactures industrial systems for micro-dispensing and 3D printing, is already seeing its technology used for military applications with the US Army. But now the US Air Force has jumped on the nScrypt bandwagon as well. Sciperio, nScrypt’s research and development think tank, was awarded a second phase contract by the Air Force for its 3D printed conformal phased array antennas project.

Sciperio specializes in cross-disciplinary solutions, and developed technology that was commercialized by nScrypt under the Mesoscopic Integrated Conformal Electronics (MICE) program with the Defense Advanced Research Projects Agency (DARPA). In 2016, the research group developed the first fully 3D printed phased array antenna for the Air Force, and has continued attempting to conform these antennae to complex surfaces, which would allow advanced communication technology to be added directly into an aircraft or vehicle body.

A phased antenna array uses both constructive and destructive interference to individually control each element’s signal phase and precisely “aim” the signal, instead of radiating it out in multiple directions. This feature is critical in terms of military applications, as it makes communications more secure and less likely to be intercepted by the enemy.

“Directly printing active phased array antennas on curved surfaces will provide unique capabilities to the DoD (Department of Defense), but the ultimate goal is to do this at a fraction of the cost of traditionally manufactured arrays,” said Casey Perkowski, Sciperio’s Lead Developer on the project. “This will allow the DoD to use these antennas in a more ubiquitous manner and this will translate to commercial applications.”

Not only is this technology important for the military, but it’s also vital to nScrypt’s vision of fully 3D, non-planar next generation electronics that will either conform to, or be embedded in, an object’s structure. At present, PCBs are placed into boxes and connected with unwieldy wiring harnesses; nScrypt is working toward a future where the PCB, box, and harness will be depleted so electronics can be smaller, less expensive, more lightweight, and integrated directly into the structure.

nScrypt’s Direct Digital Manufacturing platform, called the Factory in a Tool (FiT), enables the company’s vision of integrated electronics. The FiT has multiple tool heads, including nScrypt’s nFD for Material Extrusion, the SmartPump for Micro-Dispensing, nMill for micro-milling, and nPnP for pick and place of electronic components, which are placed on a high-precision (1 micron accuracy) linear motion gantry. Multiple cameras allow for automated inspection and computer vision routines, while a point laser height sensor maps surfaces.

All of these features add up to allow for successful conformal printing, or micro-dispensing, onto objects. Because everything is combined in one platform, manufacturers of complex structural electronics can create them with the press of a button.

nScrypt and Sciperio bring an additional advantage to the table in their projects for the DoD: high-precision motion and micro-dispensing excels. Each dimension in RF electronics is critical, and if a line is off by even the smallest fraction, the circuit’s performance is ruined, and so is that of the device with which it’s being used.

But the previously mentioned SmartPump offers picolitre volumetric flow control, while the nFD extruder provides precision deposition and the motion platform has 0.5 micron repeatability. This means that nScrypt’s unique platform can produce both conductive and dielectric features to high tolerances…ensuring successful RF circuits for the DoD.

[Image: nScrypt]

The goal of the Air Force project that nScrypt and Sciperio are working on is to produce an 8 x 8 element array on an ellipsoidal surface. The University of South Florida is a subcontractor on the project, as it previously worked with Sciperio back in 2016 to develop the first fully 3D printed phased array antenna, and will once again support antenna design, simulation, and testing.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

Relativity Space to launch 3D printed rockets from Cape Canaveral Air Force Station

Relativity Space, a Californian aerospace startup, has signed a contract with the U.S. Air Force to operate its own launch facility on one of their sites. The agreement permits the company to test its 3D printed rockets at the Cape Canaveral Air Force Station in Florida. The company plans the first launch of its Terran […]