3D Printing News Briefs: October 6, 2019

We’ve got lots of material news for you in today’s 3D Printing News Briefs, starting with a Material Development Kit from RPS. Polymaker and Covestro are releasing three new materials and EOS has introduced a new TPU material for industrial 3D printing. Moving on, CASTOR and Stanley Black & Decker used EOS 3D printing to reduce costs and lead time, and Velo3D is partnering with PWR to make high performance heat exchangers.

RPS Introduces Material Development Kit for NEO800

UK 3D printer manufacturer RPS just launched its NEO Material Development Kit, which was designed by company engineers to be used as a polymer research and development tool for its NEO800 SLA 3D printer. The MDK comes in multiple platform and vat sizes, and allows developers to work with different resin formulations, so that R&D companies can work to develop a range of polymers that are not available in today’s industry. Users can print single layer exposure panes with Titanium software and the 1 liter vat in order to find the photo-speed of the formulation they’re developing; then, tensile testing of different material formulations can commence. Once this initial testing is finished, developers can scale up to the 13 liter vat – perfect for 3D printing prototype parts for use in optimizing final configuration settings.

“This NEO Material Development Kit now opens the door for large industrial chemical companies such as BASF, DSM and Heinkel to push the boundaries of UV photopolymers,” said David Storey, the Director of RPS. “The industry is looking for a quantum jump in materials to print end-user production parts from the stereolithography process.”

New Polycarbonate-Based Materials by Polymaker and Covestro

Advanced 3D printing materials leader Polymaker and polymer company Covestro are teaming up to launch three polycarbonate-based materials. These versatile new materials coming to the market each have unique properties that are used often in a variety of different industries.

The first is PC-ABS, a polycarbonate and ABS blend which uses Covestro’s Bayblend family as its base material. Due to its high impact and heat resistance, this material is specialized for surface finishings such as metallization and electroplating, so it’s good for post-processing work. Polymaker PC-PBT, which blends the toughness and strength of polycarbonate with PBT’s high chemical resistance, is created from Covestro’s Makroblend family and performs well under extreme circumstances, whether it’s subzero temperatures or coming into contact with hydrocarbon-based chemicals. Finally, PolyMax PC-FR is a flame retardant material that’s based in Covestro’s Makrolon family and has a good balance between safety and mechanical performance – perfect for applications in aerospace motor mounts and battery housings.

EOS Offers New Flexible TPU Material

In another materials news, EOS has launched TPU 1301, a new flexible polymer for industrial, serial 3D printing. Available immediately, this thermoplastic polyurethane has high UV-stability, great resilience, and good hydrolysis resistance as well. TPU materials are often used in applications that require easy process capabilities and elastomeric properties, so this is a great step to take towards 3D printing mass production.

“The EOS TPU 1301 offers a great resilience after deformation, very good shock absorption, and very high process stability, at the same time providing a smooth surface of the 3D printed part,” said Tim Rüttermann, the Senior Vice President for Polymer Systems & Materials at EOS. “As such the material is particularly suited for applications in footwear, lifestyle and automotive – such as cushioning elements, protective gears, and shoe soles.”

You can see application examples for TPU 1301 at the EOS booth D31, hall 11.1, at formnext in Frankfurt next month, and the material will also be featured by the company at K Fair in Dusseldorf next week.

CASTOR, Stanley Black & Decker, and EOS Reduce Costs and Lead Time

Speaking of EOS, Stanley Black & Decker recently worked with Tel Aviv startup CASTOR to majorly reduce the lead time, and cost, for an end-use metal production part that was 3D printed on EOS machinery. This was the first time that 3D printing has been incorporated into the production line of Stanley Engineered Fastening. In a CASTOR video, EOS North America’s Business Development Manager Jon Walker explained that for most companies, the issue isn’t deciding if they want to use AM, but rather how and where to use it…which is where CASTOR enters.

“They have a very cool software in which we can just upload the part of the assembly CAD file, and within a matter of minutes, it can automatically analyze the part, and give us the feasibility of whether the part is suitable for additive manufacturing or not. And in case it is not suitable, it can also let us know why it is not suitable, and what needs to be changed. It can also tell us what is the approximate cost, which material and printer we can use,” said Moses Pezarkar, a Manufacturing Engineer at Stanley’s Smart Factory, in the video.

To learn more, check out the case study, or watch the video below:

PWR and Velo3D Collaborating on 3D Printed Heat Exchangers

Cooling solutions supplier PWR and Velo3D have entered into a collaborative materials development partnership for serial manufacturing of next-generation heat exchangers, and for the Sapphire metal 3D printer. PWR will be the first in the APAC region to have a production Sapphire machine, which it will use to explore high-performance thermal management strategies through 3D printing for multiple heat exchange applications. Together, the two companies will work on developing aluminum alloy designs with more complex, thinner heat exchange features.

“PWR chose Velo3D after extensive testing. The Velo3D Sapphire printer demonstrated the ability to produce class-leading thin-wall capabilities and high-quality surfaces with zero porosity. Velo3D and PWR share a passion for pushing the limits of technology to deliver truly disruptive, class-leading, products. We are a natural fit and look forward to building a strong partnership going forward,” said Matthew Bryson, the General Manager of Engineering for PWR.

“Heat exchanger weight and pressure-drop characteristics have a huge impact on performance and are significant factors in all motorsport categories. Using additive manufacturing to print lightweight structures, enhancing performance with freedom-of-design, we have the ability to further optimize these characteristics to the customer’s requirements whilst providing the necessary cooling. The broad design capabilities and extremely high print accuracy of the Velo3D Sapphire 3D metal printer will help us optimize these various performance attributes.”

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the comments below. 

The post 3D Printing News Briefs: October 6, 2019 appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Is Additive Manufacturing’s Future On Track with Process Control Technologies?

We take successful 2D printing for granted in the home or office. Simply press [CTRL+P] and what you see on the computer screen materializes in short order. Achieving the additive manufacturing equivalent of this simple computer command is a lofty goal that remains a central challenge for the broader 3D printing industry. Printing a part […]

VELO3D’s Metal Printer Tackles Design and Build Limitations

After working under the radar for many years, California-based VELO3D finally emerged as one of the most promising startups in August 2018 with the release of its Sapphire metal 3D printer. The company developed a metal printing process with more design freedom in metal, able to print complex geometries below 45 degrees, and reduce part costs by 30 to 70 percent, which would make more 3D printed parts possible. Based on the company’s Intelligent Fusion technology, the system comes with fewer constraints than other printers, becoming the only metal laser system with support-free capability and an end-to-end integrated workflow, which many consider will change metal 3D printing forever. 

Brian Spink

Now, thanks to a free webinar hosted this month by the company’s Applications Engineering Manager, Brian Spink, the firm is taking metal 3D printing engineers and specialists through the design process for VELO3D’s Sapphire System, discussing the considerations to keep in mind when selecting parts for their printer, including a deep understanding of angle and floating geometry guidelines, as well as their advanced non-contact recoater mechanism (a truly revolutionary invention).

 

“Designing parts for VELO3D‘s Sapphire printer has fewer restrictions than other systems. In fact, you may not need to redesign your parts at all since the technology can print support-free in a wider range of geometries and has overcome the 45-degree rule, with a first print success rate of 90 percent, and parts that meet and exceed metal manufacturing density requirements over 99.9 percent,” suggests Spink,

VELO3D‘s Sapphire printer is a next-generation laser fusion metal AM system designed for advanced 3D metal printing. While conventional 3D printing systems often require supports for any geometry below 45 degrees, VELO3D’s Sapphire uniquely enables engineers to realize designs with overhangs lower than 10 degrees, and large inner tubes up to 40 mm without supports. Some applications can even be printed free-floating in the powder bed, built layer by layer in Inconel 718 (IN718) or Titanium alloy (Ti6Al4V), using two powerful kW lasers and a patented non-contact recoater. The technology is designed from the ground up with high volume manufacturing in mind featuring a 315 mm diameter by 400 mm height build envelope. Additionally, and to maximize productivity, Sapphire also features integrated in-situ process metrology that enables first-of-a-kind closed loop melt pool control.

Sapphire laser fusion system

The development is truly a game-changer. Users typically had to go through an iterative redesign process in order to make parts that are suitable for additive manufacturing, meaning an extra design effort. During the webinar, the expert explained that there is no support needed for overhangs over 15 degrees for both materials: Inconel and Titanium. Usually, supports have to be designed up-front in order to keep the parts from warping, and then, once the part is built, they have to be removed, which leads to costly post-processing.

“In general, the way people address residual stress along the part is to just add support material. Supports help, but they are not the only way to build and they also introduce other issues, such as restraining or anchoring the part down to keep it from warping up and also acts as energy sync,” he said. “There are major drawbacks to these supports which is why VELO3D does not want to include them, allowing for some unique processes to run through,” Spink went on.

VELO 3D controls the thermal/mechanical behavior of the geometry through proprietary hardware and advanced process controls. The system recognizes many more unique geometries, especially using angle based rules to apply unique processes to the geometries, to avert more control and have a fuller experience without breaking down. 

“Another added level of control that VELO3D has introduced is a closer control for certain process parameters. We have a couple of sensors that monitor the melt pool in real time, and using this data we can recreate a close loop that can adjust the laser parameters–also in real time–to help control the consistency of the melt pool and avoid breakdowns.”

A heat exchanger made in Inconel

“In some of these cases, we are taking something that couldn’s be done with any other AM process and enabling it on the VELO3D system, such as with dome closures where internal cavities have manifold type geometries that can be printed using the firm’s technology without adding support.”

According to Spink, being able to print the feature without supports is highly dependent on the angle normal to the surface, but also on other driving factors that determine angle-based rules, including the curvature of the leading-edge of growth of the part, the number of layers the geometric feature propagates, the laser angle of incidence relative to the angle of growth, and other local geometric characteristics that affect how the energy is being absorbed and how the melt pool is behaving locally.

“Every geometry is unique so its hard to generalize an exact rule for an infinite amount of parts, this is why we are attempting to give the users a couple of proxies and a handfull of rules on simple geometries so that they may interpolate them on other geometries they are experiencing with.”

The specialist explained how to deal with plane and conical geometrical shapes, suggesting, via a “Probability of Breakdown” graph, whether and when the geometry needs to be constrained. The angle guidelines for the conical shapes–which are simple proxy– reveal that an outward growing conical surface (convex) has a higher probability of breakdown once it goes above a full height of 5 mm, meaning it is quite risky, and at 10 mm it behaves at very high risk. Spink suggests that in this cases two basic forces are working together that may lead to breakdowns: global residual stress which is shrinking each layer by pulling the geometry inward towards the local mass, and the other is a skin process that forms a ring around the geometry that contracts and wants to pull it inward. 

Otherwise, an inward growing conical surface (concave) geometry at a 10-degree angle is very stable and does not require support because the probability of breakdown is very low.

Example: strut and impeller mock up

To better understand how conical geometries work in VELO3D, Spink suggests looking into a strut and impeller example, which has a critical internal flow path when it is oriented in an outward growing conical shape (convex) and if it is not supported, there is a high risk of breakdown. This conical shape is going to behave pretty unfavorably and put the user at a higher risk when he or she avoids adding supports. So by flipping it into a concave conical shape, the relatively high-risk downfacing surface keeps the same angle range but the general shape is an inward growing conical one that can maintain stability and avoid breakdowns in the process without having to add supports. 

VELO3D systems also have the ability to print floating parts, which means they are not attached to the build plate at all or any other surface in the build volume, which means no added support material.

“The build starts in powder and the main enabler here, aside from the process control, is the unique non-contact recoater mechanism (which applies a fresh layer of powder on the print bed, making it ready for a pass by the lasers for selective fusing). Because there is no interference between the part, which is now floating loose in the powder, you will find it very rewarding to open a build chamber and simply reach in to pull the part out, without having to remove any support material attached to it,” Spink explained.

There are a few rules for the floating geometries. They must originate from a small-cross section or point of geometry, meaning you can’t print a large flat plane because there will still be residual stress even with VELO3D’s unique processes. And the second main rule is that there must be one powder start and no connection with the build plate. 

VELO3D still has a strong process development team working on ongoing research and development, especially regarding stability on existing processes and spearheading other efforts, but most experts agree that the powerful 3D metal printing technology they have developed is groundbreaking. As you can see in the VELO3D images and videos, there is a lot of detail and accuracy in the geometries. These capabilities mean that the Sapphire System can now print objects that were impossible on other 3D printing systems. VELO3D says they can even achieve a 500:1 aspect ratio on structures, as opposed to the more typical 10:1 ratio on competing systems (or even less 4:1 or 5:1 on other powder bed fusion machines), but you should probably try it out for yourself and see what it is all about.

[Images: VELO3D]

The post VELO3D’s Metal Printer Tackles Design and Build Limitations appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

VELO3D ships largest order of Sapphire metal 3D printers to aerospace customer

Californian metal 3D printer provider VELO3D has announced the largest order of its laser powder bed fusion (LPBF) Sapphire system. The company will deliver an additional four 3D metal printers to an undisclosed aerospace customer, bringing its installed base of Sapphire systems to a total of nine. Benny Buller, CEO of VELO3D, said, “We are excited to see […]

VELO3D partners with Boom Supersonic to develop XB-1 Mach-speed aircraft

Californian metal additive manufacturing technology company VELO3D has announced a partnership with Boom Supersonic, a Colorado-based aerospace company, to 3D print flight hardware for the XB-1 aircraft. As the first independently-developed supersonic jet traveling at Mach 2.2 (1687mph), the XB-1 comprises of over 3,700 parts including custom composite structure, tricycle landing gear, flight control actuators, […]

Boom Supersonic Working with VELO3D to Make Metal 3D Printed Hardware for Supersonic Flight Demonstrator

Metal 3D printing startup VELO3D came out of stealth mode last year with its innovative, support-free laser powder bed fusion process that offers a lot more design freedom than most metal systems. Since the company commercialized in 2018, it’s made known that aerospace manufacturing is one of its largest target markets, and since that time at least two OEMs in that industry are using its Sapphire 3D printing systems to make parts. Now, it has just announced a partnership with Colorado-based Boom Supersonic – the company working to build the fastest supersonic airliner in history.

“Boom is reimagining the entire commercial aircraft experience, from the design, build, and materials used. Our technology is designed to help innovators like Boom rethink what’s possible, empower advanced designs with little or no post-processing, and enable an entirely new approach to production,” said VELO3D’s CEO Benny Buller. “Boom needed more than just prototypes and we’re thrilled to help them create the first 3D-printed metal parts for an aircraft that will move faster than the speed of sound.”

Boom, founded in 2014 and backed by several investors, employs over 130 people to help realize its vision: use supersonic travel to make the world significantly more accessible to the people who live in it. The company wants to bring businesses, families, and cultures closer together, and has recognized that 3D printing will help speed up the process. Recently, Boom renewed its existing partnership with Stratasys in order to create 3D printed parts for its XB-1 supersonic demonstrator aircraft, which is exactly what VELO3D will be doing as well.

“High-speed air travel relies on technology that is proven to be safe, reliable, and efficient, and by partnering with VELO3D we’re aligning ourselves with a leader in additive manufacturing that will print the flight hardware for XB-1. VELO3D helped us understand the capabilities and limitations of metal additive manufacturing and the positive impact it would potentially have on our supersonic aircraft,” said Mike Jagemann, the Head of XB-1 Production for Boom Supersonic. “We look forward to sharing details about the aircraft development and improved system performance once XB-1 takes flight.”

The 55-seat, Mach-2.2 (1,687 mph) aircraft is the first supersonic jet to be independently developed, and is made up of over 3,700 parts, combined with multiple advanced technologies, such as a refined delta wing platform, an efficient variable-geometry propulsion system, and advanced carbon fiber composites. Because the demonstrator aircraft – a validation platform called the “Baby Boom” – has such demanding precision, performance, and functional requirements in order to reliably provide safe and efficient travel, Boom is using VELO3D’s Intelligent Fusion technology to make the metal flight hardware for the jet, as it offers more design freedom, process control, and quality assurance; these qualities are essential in challenging design environments.

Boom is also working with VELO3D in order to leverage its customer support partnership, market expertise, and ability to guarantee consistent production quality. The supersonic flight company hopes that by utilizing metal 3D printing, it will be able to improve system performance and speed up the development of its XB-1 – which should eventually fly at twice the speed of sound – and any future aircraft as well.


The two companies have already conducted validation trials together, which were successful in their accurate performance and achieving the desired results. VELO3D developed two 3D printed titanium flight hardware parts, which will be part of the ECS system and make sure that the supersonic aircraft is able to conduct safe flights in any conditions; these parts will be installed on the prototype aircraft early next year.

In addition, the company also 3D printed some engine “mice” for Boom, which were used to validate the additive process.

Engine “mice” as 3D printed on the VELO3D Sapphire system

“The mice allow for high engine operating line testing, ensuring we can achieve safe flight at all conditions,” Ryan Bocook, a manufacturing engineer at Boom Supersonic, said in a VELO3D blog post.

“The 3D printed mice helped Boom execute the test plan and validate predictions, and furthers the success of the program.”

These mice helped to facilitate testing, which included flow distortion simulation at the inlet, by decreasing the nozzle area in order to help simulate stall conditions while the engine is running from part power to mil power.

Not only did Boom Supersonic receive 3D printed flight hardware out of its partnership with VELO3D, but the company’s engineers also had the chance to familiarize themselves with the limitations and capabilities of 3D printing in terms of supersonic aircraft.

Discuss this story, and other 3D printing topics, at 3DPrintBoard.com, or share your thoughts in the Facebook comments below.

[Source/Images: VELO3D]

3D Printing News Sliced: AMUG, Desktop Metal, Stratasys, Royal DSM

This week Sliced, the 3D Printing Industry news digest, covers a variety of developments from the 2019 Additive Manufacturing Users Group (AMUG) conference as well as the Hannover Messe trade show. Elsewhere, we see novel applications in 3D printed electronics, artworks, watches, pattern-less investment casting and more. AMUG 2019 releases AMUG 2019 has now come to a close. […]

VELO3D enhances Flow software for metal 3D printing

California-based metal additive manufacturing technology company VELO3D has made enhancements to its Flow print preparation software. VELO3D’s Flow software is designed specifically for its Sapphire System, a laser powder bed metal additive machine. The software works to determine predictable print outcomes using an integrated simulation engine. In addition, its CAD workflow UI controls performance to […]

Velo3D Reveals Capabilities of its Metal 3D Printing Technology Interview with Stefan Zschiegner

A heat exchanger 3D printed with Velo3D.

A heat exchanger 3D printed with Velo3D.

Velo3D raised $22 Million in 2015 and was working in secret to revolutionize metal 3D printing. For the past years the company has been quiet as a mouse about its process and intentions. A lot of speculation abounded as to what Velo3D could unleash upon the world. Today we learn that the company has developed a metal printing process with more design freedom in metal. The company says that its systems can print complex geometries below 45 degrees. Which would make more 3D printed parts possible with their technology. The company has also developed its own software to acompany its process. And rather than just raising $22 million it turns out that they’ve raised over $90 million in funding. 3DPrint.com interviewed Stefan Zschiegner, Chief Product Officer at Velo3D, about the secretive start up now coming out of stealth mode. From their answers, their published work and patents we can conclude that this is a well captilalized start up with a lot of candle power that seems to have gotten quite far in controlling for many the important variables in metal 3D printing. 

Acetabular Cups 3D printed on a Velo3D.

Acetabular Cups 3D printed on a Velo3D. We can see that in terms of the sheen and the look of this that it is very different from the usual output of metal 3D printers.

Why all the secrecy?

The model for Silicon Valley has typically been to announce and hype products long before they are commercially available. For a solution like the one we are bringing to market which aims to disrupt the $500 billion global manufacturing industry, we felt it was necessary to wait until we had a thoroughly vetted, customer tested product available for sale before announcing ourselves to the world.

 

Unpacking Acetabular cups (for giants) with the Velo3D.

What’s special about Velo3D?

We started Velo3D with a bold vision to enable additive manufacturing without design constraints. We are solving problems with deep insights and getting to the root cause. Based on that we build a solution from the ground up for high volume manufacturing consisting of our Sapphire System and Velo3D Flow print preparation software. Intelligent Fusion is the technology that powers the combination of Flow and Sapphire and enables an end-to-end integrated workflow.

While conventional systems often require supports for any geometry below 45 degrees, Velo3D’s Sapphire uniquely enables engineers to realize designs with overhangs lower than 5°and large inner diameters without supports.Some of our key benefites include

1st print success rates of 90%

Reduced part costs by 30-70%

 

Look at the teeny tiny blue windows, not sure what is going on in there but it is very powerful and plasma-y. Am I the only one getting a kind of DoD InQtel feel from this?

Is this a manufacturing technology?

Yes, Velo3D is a metal additive manufacturing solution company. Our customers are service bureaus who offer metal 3D printing services to end users, as well as leading OEMs for use in-house.

What kind of parts can be made with your technology?

We have removed design constraints by enabling overhangs below 5 degrees and large internal openings up to 40mm. Key applications include shrouded impellers, heat exchangers, pump housings and other turbomachinery components which are critical for the aerospace, energy and industrial applications. We also enable medical instruments and implants, such as orthopedic hip cups.

You state that more geometries can be made? How?

The ability to design and print complex geometries is enabled by our Intelligent Fusion technology. Intelligent Fusion is a Velo3D proprietary technology invented to free the conventional powder bed laser fusion approach from design constraints through process simulation, prediction, and closed loop control.

An impeller 3D printed by Velo3D.

Did you manage to correct for melt pool size in order to improve microstructure control?

Yes. Microstructure control is only one of Velo3D’s benefits. It allows us to build previously impossible designs and to improve part-to-part consistency.

What kind of reliability and repeatability are you getting?

We are meeting and exceeding reliability and repeatability tests by our customers. Currently we are testing with external labs and plan to publish the results soon.

A Shrouded Impeller Printed on the Velo3D, note the supports on the bottom.

 How dense are parts?

The parts meet and exceed metal manufacturing density requirements of over 99.9%.

What kind of Ra are you getting off the machine?

The surface properties are geometry dependent and customer application defined. We are demonstrating below < 3 SA.

Both Impellers.

What post processing typically needs to be done?

The Velo3D solution minimizes the need for supports reducing typical support volume 3-5 times.  It avoids internal supports that prevents the manufacturability or causes laborious post processing with conventional approaches.

Who are your target customers?

Service Bureaus and OEMs with expertise in additive manufacturing.

A stator ring and impeller

What are your target applications?

Aerospace, energy and Industrial applications, as well as medical applications (i.e., orthopedic implants). Applications include engine parts such as impellers, heat exchanges, and other critical turbomachinery parts, as well as assembly simplifications but also spare parts and spine implements, and larger implements such as hip cups.

Velo3D has come out of nowhere to seem quite the contender. If their estimates and performance claims pan out in the real world then this is a very interesting technology indeed. Simulation is very difficult to do in metal 3D printing and its a key element of getting prints right. Finding out $5000 and three days later that your parts don’t work kind of holds the technology back. This opens up new applications for 3D printing. Especially if they can have a sucess rate of 90% on the first time printed parts. Sometimes in Powder Bed Fusion you have to come up with different support strategies and print a part four or five times to get it right if it is a new geometry. Powder Bed Fusion in metals is great at making a million different hip cups but if we’d throw a radically different shape in the printer for the first time than this will most likely fail. Many applications are being held back because of this. Think of “draw your own jewlery” as a start up idea for example. Reducing supports will also make this much cheaper in terms of overal part costs and may save time as well. Supports are still manually removed on, nearly all, Metal Powder Bed Fusion 3D prints. You can see how parts are being unpacked on the Velo3D here. Manual removal of supports adds considerable cost to the final part so any gain here would be very beneficial. The increased design space could open up new applications, especially in new customers that have thusfar been unable to make their parts with metal 3D printing.

3D printing is very much a testing and data game if you want to take on manufacturing. You’ll need hundreds of kilos of a powder to make sure it works well for example. There are also many geometries that can have significant effects on how and if the part builds. Thermal stresses can cause parts to get ripped apart as well. By developing simulation software the 100 strong Velo3D team has really focussed on getting the repeatability right through lowering their testing cost and increasing their dataset. This is a smart move and will bring dividends to them and their customers. The company has a number of patents including a skillfull 3D printing one, an accurate 3D printing one and an adept 3D printing one. Also the first time I’ve ever seen cute patent names. Going by those patents the company has developed a real time melt pool monitoring technology that works in concert with material dosing and laser control and builds closed loop using, probably, a plasma beam.The company seems to also to be able to correct on the fly with cooling to reduce deformation and may use an FPGA or similar to do this. So depending on errors it seems to be able to reduce the insensity of the laser or actively cool a part. Given the teams previous work and published articles they may also be using a MOSFET or Field Effect Transistor to do this.

Also given that velocity fields play an important role in metal 3D printing and the name of the company is Velo 3D, I’m taking a guess here to say that they probably are managing to control velocity fields in some way which would then allow them to have more of a grip on the final part and how it is built. If they then are able to monitor melt pool size and shape in real time using the FPGA and then have influence on the cooling rate of areas of the part while being able to adjust the plasma beam also on the fly then they may have just come close to cracking this metal printing thing. They certainly have the candle power to do it, they’ve hired very bright people who have over the years written some very interesting papers on real time monitoring, modeling and control of metal 3D printing. During my research for this I was actually at one point surprised to learn that Brent Stucker didn’t work at Velo3D now given the overlap.

The patents also seem to disclose that parts can be polished and post processed in part by lasers on the build machine, perhaps in concert with building the part. Another patent seems to point to active cooling or producing multiple layers at once using a preheat step or process. Can’t wait to find out how this actually works. All in all the value propostion seems a solid one and they’re certainly ticking the right goals. They’ve also got a lot of air which they can use to iron out the kinks in the chain. I like the fact that the company seems down to earth and isn’t all “startuppy” about everything. But, first impressions are first impressions and we work in an industry where an awful lot of machines and dreams have caught fire. We’ll have to wait to find out what the performance is as tested or experienced by the customer, it will cost me some beers at a trade show but I’ll find out for you guys.