CRP Technology Used SLS 3D Printing and Windform XT 2.0 to Make Aircraft Model for Wind Tunnel Testing

The new AW609 wind tunnel model designed for Leonardo HD by Metaltech S.r.l. and 3D printed by CRP Technology

CRP Technology, part of the larger CRP Group, is well-known for its 3D printing applications in the automotive sector, but lest we forget that it is also accomplished in aerospace 3D printing, the company has come out with a new case study about its work creating a new 3D printed wind tunnel model (1:8.5 scale) of the Leonardo TiltRotor AW609 for the Leonardo Helicopter Division (Leonardo HD, formerly known as AgustaWestland).

According to the case study, CRP Technology was able to “highlight the perfect union” between its advanced SLS 3D printing technology and high-performance, composite Windform materials – particularly its Windform XT 2.0, a polyamide-based carbon fiber reinforced composite. Metaltech S.r.l. designed the model.

The goals of Leonardo HD’s project included:

  • design and manufacture an internal main structure out of aluminum alloy that can easily have new geometries added
  • complete the work in a very short timetable, but with an extremely high level of commonality and reliability
  • make components out of materials with high mechanical and aerodynamic characteristics

3D printed aircraft propeller spinners

These goals are why Leonardo HD was referred to CRP Technology – it would be able to meet these goals while 3D printing the external parts for the wind tunnel model, which was designed, manufactured, and assembled in order to complete a series of dedicated low-speed wind tunnel tests. Some of the parts that were 3D printed for the wind tunnel model include nose and cockpit components, fairings, external fuel tanks, rear fuselage, wings, and nacelles.

The level of detail that went into these 3D printed parts “is crucial to the applied loads to be sustainable,” as the wind’s aerodynamic loads in the tunnel are high. So load resistance was one of the more important project aspects, along with maintaining good dimensional tolerances, under load, of large components.

“It is important to remember that the performance of these components affects the final performance of the entire project, especially because the external fairings have to transfer the aerodynamic loads generated by the fuselage to the internal frame,” CRP Technology wrote in the case study.

3D printed tail fairing

The tests needed to cover the standard range of flight attitudes at Leonardo HD’s Michigan wind tunnel facility, in addition to Politecnico di Milano, and varying external geometries were changed during testing, so that technicians would be able to gain a better understanding of “aerodynamic phenomena.”

Today, the CAD-CAM approach is used to design models for wind tunnel testing, before an internal structural frame of aluminum and steel is milled and assembled. Then, 3D printing is used to obtain all external geometries. Because Leonardo HD used CRP Technology’s advanced 3D printing and Windform XT 2.0 material the project was completed much more quickly, with “excellent results and with high-performing mechanical and aerodynamic properties.”

CRP analyzed the dimensional designs that Leonardo HD had sent in order to make the best composite material recommendation: its Windform XT 2.0, with high heat deflection, increased tensile strength and modulus, superior stiffness, and excellent detail reproduction.

“The choice of the Windform XT 2.0 composite material was not casual, all the goals required by Leonardo HD were considered, such as the importance of a short realization time, good mechanical performances and also good dimensional characteristics,” CRP Technology wrote in the case study.

It was necessary to 3D print the single parts separately, as “some components were dimensionally superior to the construction volume of the 3D printing machines,” but CRP Technology was able to complete the project with no time delays. The company used CAD to evaluate the working volume’s functional measures in order to determine which parts to split, and to figure out how to maximize contact surface where structural adhesive would be added to the model.

3D printed aircraft nose and cockpit

It only took four days to 3D print the various parts of the components.

The case study noted, “Different confidential efficiencies, which are an integral part of CRP Technology’s specific know-how, allowed the reduction of the delivery lead time and allowed CRP to minimize the normal tolerances of this technology, and eradicate any potential problem of deformation or out of tolerance.”

The completed model underwent surface finishing, before it was assembled by Metaltech S.r.l. and mounted directly onto a rig assembly, so any small imperfections resulting from single components being put together could be optimized. Thanks to CRP Technology, this step was finished very quickly, and Leonardo HD was able to efficiently flatten the model’s surface and treat it with a special liquid to both prepare for painting and make the model waterproof.

Leonardo HD needed to review the behavior of the aircraft, and so completed a high-speed wind tunnel test campaign, which encompassed speeds Mach 0.2-Mach 0.6, on a new 1:6 scale model at NASA Ames Unitary Plan 11′ x 11′ transonic wind tunnel. The company called on CRP USA, based in North Carolina, to speed up the process, using its partner company’s SLS 3D printing and Windform XT 2.0 composite material to make the external fuselage and some additional components.

3D printed model installed in the 11’x 11’ test section at NASA Ames

While the architecture of the new 3D printed model, which spanned nearly 2 meters, is similar to the original AW609 version, some improvements were made so remote controls could be used for the wing flaperons and elevator surfaces. Additionally, by using four different 6-component strain gauge balances, all the loads were able to act on the complete model, the nacelle, the tail surfaces, and the wing alone.

The model was constructed in such a way as to be mounted in the transonic wind tunnel on a single strut straight sting support system.

Discuss this news and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

[Images: Leonardo HD]

3D Printing News Briefs: November 13, 2018

We should really call today’s 3D Printing News Briefs the formnext 2018 Briefs, as announcements from the show are numerous this week. EnvisionTEC, XYZprinting, BASF, and DSM all introduced new 3D printing materials at the event in Frankfurt today, and in the only news not related to formnext, Imerys Ceramics has announced a new range of ceramic feedstocks.

EnvisionTEC Debuting First 4K 3D Printing System

At formnext, 3D printer manufacturer EnvisionTEC debuted the industry’s first DLP-based 3D printer that uses a true 4K projector with UV optics tuned to the 385 nm wavelength. Available in three production-ready variations, with a gray body and a 2560 x 1600 pixel projector resolution, the Perfactory P4K 3D printer delivers highly accurate parts with an ultra-smooth surface finish. Additionally, the Perfactory P4K, has access to the rest of the Perfactory line’s versatile materials portfolio for production capacity.

“The P4K is the highest resolution advanced DLP printer with the largest build envelope and deploys artificial intelligence in pixel modulation to deliver the highest accuracy parts with the smoothest available surface finish in the 3D printing space. This will deliver the next level of production-grade 3D printing solutions,” said Al Siblani, the CEO of EnvisionTEC.

The new Perfactory P4K will be on display at formnext all week.

XYZprinting Introducing New 3D Printing Materials

Another company introducing new materials at formnext this week is desktop 3D printing brand XYZprinting. In order to expand the capabilities of both domestic and professional grade 3D printers, the company is launching a new antibacterial PLA material, along with copper metallic PLA and Carbon PLA materials. The first of these can destroy up to 99% of bacteria, including E. coli and Staphylococcus aureus, and comes in four colors: white, red, yellow and neon green.

The copper metallic PLA, made of 65% copper powder, is a good alternative for hobbyists when it comes to sculpting metal for ornamental models. The material is being launched in conjunction with XYZprinting’s new nozzle, made of carbon hardened steel. Finally, the new Carbon PLA, which is also compatible with this new nozzle, is made of 10% carbon fiber, and its matte finish is ideal for showing off fine details. You can learn more about these new materials at XYZprinting’s booth D10 in Hall 3.1, where it will also be exhibiting its latest 3D printer, the da Vinci Color AiO, with a 3D scanner and optional laser engraver.

BASF 3D Printing Solutions Presents New Products at formnext

Germany-based BASF 3D Printing Solutions GmbH (B3DPS), a 100% subsidiary of BASF New Business GmbH, is also at formnext this week, to introduce several new materials for photopolymer and laser sintering methods, in addition to announcing some new partnerships and alliances. First, B3DPS is introducing flame-resistant Ultrasint Polyamide PA6 Black FR, Ultrasint PA6 Black LM X085, which is suitable for most current SLS 3D printers, and Ultrasint PP, a polypropylene with great plasticity, low moisture uptake, and resistance to liquids and gases. Additionally, B3DPS has also grouped its photopolymer materials under the new Ultracur3D brand name.

András Marton, Senior Business Development Manager at B3DPS, said, “Our Ultracur3D portfolio enables us to offer customers various UV-curable materials for 3D printing that provide far better mechanical properties and higher long-term stability than most available materials.

“These materials have been developed for functional components that are subject to high stress.”

The subsidiary also announced that it’s partnering with California company Origin and 3D printer manufacturer Photocentric to develop photopolymers and photopolymer 3D printing processes, and working with Chinese 3D printer manufacturer Xunshi Technology, which operates in the US under the name SprintRay, to open up new applications for the Ultracur3D range. Additionally, B3DPS subsidiary Innofil3D is partnering with Jet-Mate Technology in China and US-based M. Holland to distribute plastic filaments. Visit B3DPS at formnext this week at booth F20 in Hall 3.1.

DSM Announces 3D Printing Product Launches

Vent cover used for PIV windtunnel testing, printed in Somos PerFORM Reflect

In today’s final formnext news, science-based company DSM has unveiled two new high-performance materials for 3D printing structural parts. Somos PerFORM Reflect is a groundbreaking new stereolithography material for wind tunnel testing with PIV (Particle Imaging Velocimetry), and saves more than 30% post treatment cost by eliminating the need to apply PIV coatings to printed parts. In addition to helping customers conduct iterations and collect data more quickly, the resin could actually help break speed records for wind tunnel testing.

“Speed is crucial, whether in automotive, aerospace or other transportation design. Eliminating the need to apply PIV coatings is a major breakthrough for customers who are using PIV wind tunnel testing. It allows them to speed up their aerodynamic design optimizations. We are thrilled that our strategy of focusing on helping customers create their applications have enabled us to deliver such tremendous value. Overnight, Somos® PerFORM Reflect will not just set new speed records but new industry standards,” said Hugo da Silva, Vice President of Additive Manufacturing at DSM.

The company’s second new material is the thermoplastic copolyester (TPC) Arnitel ID2060 HT, which is perfect for the FDM 3D printing of structural parts for automotive applications. The material features a balance of prolonged high temperature resistance, flexibility, and chemical resistance against exhaust gas recirculation (EGR) condensate.

Imerys Ceramics Introduces EZ Print 3D Range of Ceramic Feedstocks

As part of the Imerys group, Imerys Ceramics designs, produces, and markets high-performance mineral solutions for the ceramic industries, and is making ceramic 3D printing easy with its new, unique range of ceramic materials called EZ Print 3D.

EZ Print 3D is available as a plug & play cartridge, so users can enjoy efficiency and ease of use when it comes to 3D printing. The materials are also available as a “ready to fill” ceramic feedstock, and have been tested on several 3D printers currently on the market. EZ Print 3D has a low firing temperature of 1220°C that’s compatible with most kiln temperature limits, and the genuine low porosity (<0,5%) of a porcelain. The technology is perfect for tableware and giftware applications, and the company plans to expand EZ Print 3D accordingly as 3D printing adoption grows. Imerys Ceramics also provides technical support and a dedicated team that’s competent in 3D printing to help customers.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.