Universitat Politècnica de Catalunya BarcelonaTech: Characterization of 3D Printing for Ceramic Fuel Cell Electrolytes

Albert Folch Alcaraz recently submitted a Master’s thesis to the Universitat Politècnica de Catalunya BarcelonaTech. In ‘Mechanical and Microstructural Characterization of 3D Printed Ceramic Fuel Cells Electrolytes,’ Alcaraz delves further into digital fabrication using ceramic as a versatile material for creating solid oxide fuel cells—electrochemical devices capable of transforming chemical energy to electrical energy.

Striving to ‘bring science and society closer together,’ Alcaraz aims to develop energy devices that offer better efficiency, as well as offering clean energy that can be generated with less effect on our environment. Fuel cells are categorized regarding the types of electrolytes contained within, from low temperature (the alkaline fuel cell (AFC), the proton exchange membrane fuel cell, and the phosphoric acid fuel cell (PAFC)) to high temperature (operating at 500 – 1000 oC as two different types, the molten carbonate fuel cell (MCFC) and the solid oxide fuel cell (SOFC)).

SOFCs are made from ceramic, comprised of an anode that oxidizes and then sends electrons to the external circuit—and the oxidant which feeds into the cathode, thus ‘accepting’ electrons and then undergoing a reduction reaction. Electricity is created via electron flow from the anode to the cathode.

Working schematisation of a SOFC

Solid ceramic electrolytes prevent corrosion, offer superior mechanical performance for smaller, lighter weight structures, but do still present some challenges in terms of processing and temperatures.

“In theory, any gases capable of being electrochemically oxidized and reduced can be used as fuel and oxidant in a fuel cell,” states Alcaraz.

Working scheme of a fuel cell

Physical and chemical characteristics of the four components of a SOFC

For suitable performance, fuel cells must contain the following

  • High conversion efficiency
  • Environmental compatibility
  • Modularity
  • Sitting flexibility
  • Multifuel capability

Different applications of fuel cells; a) Fuel cell in the Toyota Mirai model and, b) a fuel cell for ships as part of a maritime project for the U.S. Department of Energy

More traditional techniques for production with ceramic materials include uniaxial and isostatic pressing, tape casting, slip casting, extrusion, and ceramic injection molding. 3D printing has been used in connection with ceramics and a variety of different projects around the world, to include the use of ceramic brick structures in architecture, porous ceramics with bioinspired materials, and establishing parameters in quality assurance.

Techniques such as powder bed binder jet/inkjet 3D printing are popular with the use of ceramics.

“It must be mentioned that although printed material in plaster-based printers is a ceramic material, if impregnated with and adhesive, it will not be a pure ceramic but a polymer-ceramic composite. As no extreme heating is required during and after processing, colors can be added to the part,” stated Alcaraz.

Examples of powder bed binder jet/inkjet 3D printed parts

Other popular 3D printing methods include selective laser melting (SLM), stereolithography (SLA), and robocasting. Alcaraz noted, however, that 3D printed samples demonstrated 98 percent relative density in comparison to tradition methods—and especially when compared to cold isostatic pressing.

“It has been demonstrated that the 3D printing specimens present similar micro- and nano- mechanical properties with the sample fabricated by a conventional processing route. In terms of the Vickers Hardness, the 3D printed specimens presented higher values than the specimen produced by CIP,” concluded the researchers. “As far as for the nanoindentation hardness and elastic modulus, the 3DP parts presented similar values of hardness. Nevertheless, it has been found that the values found for the elastic modulus are sensitive to different aspects such as the porosity and the roughness of the parts, giving less concise values.

“Concerning the reduction of printing defects, it is recommended to treat the feedstock before printing in order to achieve an homogenous particle size of the powder and be able to use a nozzle with a smaller diameter in order to enhance the resolution of the final 3D printed part. Finally, it would be interesting to follow the investigation of microcompression of the printed samples in order to extract the compression elastic modulus value through a different experiment and compare it to the nanoindentation technique. Furthermore, in the compression stress-strain curve obtained for the 3D printed specimen it is clear to observe a densification process (serrated zone) due to the presence of internal porosity heterogeneously distributed along the entire specimen.”

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source / Images: ‘Mechanical and Microstructural Characterization of 3D Printed Ceramic Fuel Cells Electrolytes’]

The post Universitat Politècnica de Catalunya BarcelonaTech: Characterization of 3D Printing for Ceramic Fuel Cell Electrolytes appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

ExOne launches #MakeMetalGreen campaign to push sustainable metal part production

ExOne, the global leader in industrial binder jetting AM technology, has launched its new #MakeMetalGreen social media campaign drawing attention to the sustainability of its metal binder jet 3D printers. The campaign is also intended to educate manufacturers on the benefits of using metal binder jetting over alternative manufacturing technologies, additive or otherwise. Sustainable binder […]

A General Review of Methods and Materials for 3D Food Printing

Researchers from the University of Birmingham published a paper that reviews various methods and materials related to the scope of food 3D printing, which they write is “an area of great promise to provide an indulgence or entertaining experience, personalized food product, or specific nutritional needs.”

“One of the more challenging and complex areas of AM are in the emerging field of gastronomy, or in other words, “3D Food printing” [4]. The ability to selectively deposit material within a 3D volume and, hence, gradate the composition offers the possibility of controlled production of complex structures for altering texture, taste, and morphology in food products,” they write. “Manipulation of microstructures by regulating the mixing and selective deposition of materials can allow regulation of fracture, breakdown, or dissolution mechanics during product use, which gives the possibility of a range of functional and novel foods.”

AM has many advantages, including increased efficiency, design freedom, reduced waste, and faster turnaround. The technology enables customization and personalization, and has seen promising use in several application areas, including healthcare, aerospace, construction, fashion, and gastronomy.

Haddock, 3D printed by Matís using the Foodini.

There have been several reviews in recent years on various aspects of 3D food printing, including 3D printable food formulations, methods applied to designing food materials, environmental implications and possible legal challenges, and advantages and disadvantages of various food 3D printers. But the field is growing, and “there is a need to collate and categorise published reports and to consolidate these developments.”

“As such, we can have a better understanding of the accomplishments to date, and potential areas for future studies,” the researchers state.

ASTM F2792-12a has categorized seven specific AM headings, though different acronyms are often used to describe the same process:

  1. Vat Polymerization
  2. Material Extrusion
  3. Directed Energy Deposition (DED)
  4. Powder Bed Fusion (PBF)
  5. Binder Jetting
  6. Material Jetting
  7. Sheet Lamination

Five of these so far – vat polymerization, extrusion, PBF, binder jetting, and inkjet printing – have been used to print food.

“The same process principles, for AM in general, also apply to 3D Food printing,” they write. “However, different degrees of pre-processing, such as fine-tuning of food recipes, and post-processing, such as cooking and oven drying, might be necessary for 3D food printing [4].”

(Image: Natural Machines)

There are some unique challenges involved with 3D food printing. For instance, some 3D printed food samples show a high microbial concentration when stored in air, which could mean that further consideration is needed for hygienic equipment design. Also, many consumers often negatively view foods that “appear to have undergone a lot of processing.” But the potential seems to far outweigh any issues.

First, reducing food waste and “increasing the usage of existing food materials” can help streamline the supply chain and resolve food shortages. One example is Upprinting Food, a company that uses food waste as the “ink” for food 3D printers by combining ingredients like fruits, bread, and vegetables to make a puree that can be 3D printed. The prints are then seasoned, baked, and dehydrated “so that the resulting product is nicely crunchy and long durable.”

(Image: Upprinting Foods)

Many food manufacturing processes, like baking and shaping, are eliminated through the use of 3D printing, which saves time, and the technology also makes food transport easier. 3D printed food can also be used to customize food in order to treat malnutrition, or help people with special dietary needs, like those with Celiac disease or dysphagia. It can promote low-carbon food products, such as insects, and 3D printing meatless meat reduces environmental impact.

Vegan 3D printed steak (Image: Novameat)

You can see a chronological summary of reported 3D printing methods and food materials, such as milk chocolate, wheat dough, Vegemite, powdered broccoli and carrots, and heat-induced egg yolk paste, that have been used in Table 1.

“For 3D food printing to become practical, precise calibration of printing parameters should be carried out, dictated by the mechanical properties of the material. Furthermore, the study of the relationship between the rheological characteristics and their connection with printing parameters is key for improving the overall quality of 3D printed food [2],” the researchers noted.

“In general, 3D printable materials must exhibit a controllable viscoelastic response, must form stable structures capable of withstanding compressive stresses from capillary forces, and must not shrink too much when undergoing drying, to avoid deformation and/or fissure formation [58]. These materials must be able to hold their shape once deposited. They need to be printable into defined shapes without slumping, spreading, or bridging.”

It’s important to classify the materials into examples that are “natively printable,” like hydrogels and dairy, and “non-natively printable,” such as meat and plants. But this will be difficult, as multiple factors affect printability, there isn’t a consensus on how to predict or assess shape fidelity, and just because one material is 3D printable with one AM method doesn’t mean that it’s the case for another.

3D printed sweets. (Image: 3D Systems)

The most suitable 3D food printing materials are carbohydrates, fats, fiber, functional components, and proteins, along with hydrogels like alginate and gelatin, and extrusion is the most widely adopted AM technique for 3D food printing. A material needs to display shear thinning behavior for this, which means that it can be extruded from a nozzle.

Regarding the information from Table 1, the researchers listed what they believe are the most important milestones, starting with research into developing feedstock for food 3D printing in 2009. The next year, after “promising results of tailor-fitted food textures,” researchers investigated the effect of additives on shape fidelity of 3D printed structures before and after cooking and deep frying.

“3D food printing has been employed to design appropriate insect products as a new source of proteins to overcome the disgust of consumers by consuming whole insects. An example of 3D printing technology applied to edible insects is represented by Soares and Forkes [82] in 2014, who printed the flour made out of edible dried insects in combination with fondant to produce icing for top cakes’ decoration,” the team wrote.

“Further work was carried out by Severini et al. [83] to obtain snacks from insect-enriched wheat flour dough as a new source of proteins.”

Researchers used inkjet printing in 2015 for microencapsulation processes – they developed a printhead with 500 nozzles that can fabricate monodisperse droplets that, once dry, turn into highly monodisperse powders. This allowed them to print alginate drops through a calcium chloride solution to make calcium alginate gel particles.

“In 2018, Vancauwenberghe et al. [86] designed a co-axial extrusion printhead to deposit a pectin-based ink and Ca2+ cross-linking solution in the inner and outer flows, respectively. This design facilitates an accurate control over the textural properties and gelation of the printing object as well as eliminates the pre-treatment or post-treatment step,” the researchers wrote.

That same year, another team compared the mechanical properties and textures of melted, untreated, 3D printed cheese samples, and determined that fat globules disrupt during printing, but partially coalesce as the print solidifies. Also in 2018, researchers compared the effects of freeze-drying and oven-drying on shape fidelity of 3D printed samples made from combined material sets of “cold swelling starch, milk powder, rye bran, oat, and faba bean protein concentrates and cellulose nanofiber.”

“Structural properties of the 3D object by varying infill structure has been investigated mostly in polymer and bio-printing,” they explained in reference to research about mashed potatoes.

“The textural and structural quality of mashed potatoes was investigated [96] by changing infill percentages (10%, 40%, 70%, and 100%) with different infill patterns (rectilinear, honeycomb, and Hilbert curve) and variation in shell perimeters (3, 5, and 7 shells).”

(Image: Fast Company)

Lest we forget about dessert, researchers in 2019 presented “semi-trained panelists” with three samples of chocolate that had been 3D printed in a honeycomb pattern with 25%, 50%, and 100% infill percentages, to see if printed objects with 100% infill have a lower breaking resistance than those fabricated with casting technology.

“From the works collected, it is clear that, even though studies have been steadily carried out over the last ten years, there have been few sequential linked developments of complexity and understanding of the chosen formulations. From this, an important factor in future uptake and advancement would be to focus on further developing these materials for more bespoke products and more detailed understanding,” the researchers note.

Finishing up with the future of 3D printing in the food industry, the team notes that while consumer acceptance is still a challenge, global food companies are using the technology, creating food 3D printers, and investing in the research.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

The post A General Review of Methods and Materials for 3D Food Printing appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

What Does the Future Hold for 3D & 4D Printing? Reviewing Current Processes & Ongoing Potential

Researchers come together to review both 3D and 4D printing, as well as exploring its ongoing potential in ‘Recent 3D and 4D intelligent printing technologies: a comparative review and future perspective.’

While both technologies offer great opportunity for industrial users to make and maintain functional parts and prototypes, 3D and 4D printing are a source of fascination around the world due to the ability to innovate at will, cutting out the middleman, and making new objects with new materials that may not have been possible previously.

The brief overview of relevant 3D printing methods

In the 4D realm, we see the progress being made from materials that may be less flexible to those that are able to shift with their environment—and according to the user’s needs. The authors not only delve further into fundamentals and development (especially in the evolution from 3D to 4D) but also perform comparative analysis regarding both forms of digital fabrication.

From the inception of 3D printing in the 80’s via Chuck Hull to its emergence in the mainstream and now integration into many fields—from robotics to tissue engineering, electronics, and more—the authors follow 3D printing, pointing out correctly that it is currently ‘still in the active stage of industrial innovation.’ Designers and engineers are able to take advantage of a wide variety of benefits—even including applications like fashion and jewelry.

Schematic illustration of 1D, 2D, 3D, and 4D concepts

General schematic overview of 3D printing technology with solid, liquid and power-based patterns (a) FDM; (b) SLS; (c) SLA (Sources: https://www.custompartnet.com)

While advantages such as affordability, accessibility, and greater efficiency in production are being enjoyed by many, there are still challenges regarding materials in applications like soft robotics and aerospace. With the ability to shift form while under pressure from temperature or moisture, 4D printed smart materials avail the user of greater flexibility and versatility.

“Compared  to  3D  printing,  4D  printing  updates  the  concept  of  change  in  the  printed  configuration  over  time,  which  relies  on  environmental  stimuli.  Therefore,  4D  printed  structures  should  be  fully  preprogrammed  using  time-dependent  deformations  of  products,” state the authors.

4D printing relies on:

  • Suitable hardware
  • Stimulus-responsive material
  • Stimuli
  • Interactive mechanisms
  • Mathematical modeling

SWOT analysis of a). 3D printing technology; b). 4D printing technology.

Smart materials and the ability to deform and then return to their natural shape mean that 4D printing is suitable for not only for robotics but also self-repairing of materials like hydrogels, piping, and other materials which may be related to reusability and recycling.

The illustration of shapeshifting by self-folding using water absorption materials: (a) 1D to 3D41; (b) 2D to 3D41

While one of the obstacles in 3D printing is the general need to fabricate items with only one material, 4D printing is beginning to emerge as a forerunner in applications like the medical and engineering fields.

3D printed models in the medical area (a) 3D printed heart; (b) 3D printed skull (Source: https://3dprintingindustry.com/news; sketchucation.com)

3D printing is still becoming increasingly popular, however, for use in the military field, creating weaponry and allowing for better maintenance of parts. 3D printed models are improving treatment for patients and can be used as extremely helpful pre-planning devices for surgery. Various hardware has also been created for extrusion of food like chocolate and pancake batter.

As for 4D printing, the authors expect that it will be used to create more advanced smart materials that can transform environmentally as users require, offer ‘self-controllable functions,’ expand longevity in products, and promote greater complexity in structures.

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source / Images: ‘Recent 3D and 4D intelligent printing technologies: a comparative review and future perspective’]

The post What Does the Future Hold for 3D & 4D Printing? Reviewing Current Processes & Ongoing Potential appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Rocket Crafters completes testing of 3D printed Comet engine 

U.S. space technology startup Rocket Crafters Inc. (RCI), has concluded testing of its Comet Series Hybrid 3D printed rocket engine.  Having completed 49 laboratory tests, the latest test firings were designed to be a large-scale proof of concept for Rocket Crafters’ STAR-3DTM hybrid rocket engines, ahead of a planned test flight later this year.  “We’re […]

Sigma Labs posts financial results for Q1 2020

Sigma Labs, the Santa Fe-based quality assurance software developer for additive manufacturing, has announced its financial results for the first quarter ended March 31, 2020. The company’s revenue for Q1 2020 experienced over 200 percent in growth compared to Q1 2019.  In a supporting statement, newly appointed CEO Mark K. Ruport explains that, amid the […]

Adafruit Weekly Editorial Round-Up May 10th – May 16th: RGB Matrix Support in CircuitPython for STM32F405 and More!

IINewImage 21 1 1 2 2


ADAFRUIT WEEKLY EDITORIAL ROUND-UP


We’ve got so much happening here at Adafruit that it’s not always easy to keep up! Don’t fret, we’ve got you covered. Each week we’ll be posting a handy round-up of what we’ve been up to, ranging from learn guides to blog articles, videos, and more.


BLOG

Testing out RGB Matrix support in CircuitPython for STM32F405 @ST_World

We recently added native RGB matrix support to CircuitPython for the SAMD51 and nRF52 processor series – now we have added STM support! This makes it super easy to use these inexpensive colorful displays!

Check out the full post here!

More BLOG:

Keeping with tradition, we covered quite a bit this past week. Here’s a kinda short nearing medium length list of highlights:


LEARN

Hero box shelf

BLE Buzzy Box

Get your Apple Notifications with a Buzz! This project showcases how to use Adafruit Feather Sense nRF52840 and the DRV2605L haptic motor controller to trigger and display lights with Apple Notification Center Service (ANCS).

See the full guide here!

More LEARN:

Browse all that’s new in the Adafruit Learning System here!

“Best of Adafruit” Photo & Video Series Day 50 #photography #art #design #wfh #bestofadafruit

“Best of Adafruit” Photo & Video Series Day 50 #photography #art #design #wfh #bestofadafruit


Throughout this week, the Adafruit photo team will be posting a “Best of Adafruit” photo each day!

Check in as we take you back to all of our favorite photos and videos.

For our day 50 post, here’s a throwback to one of our favorite wearables learn guides, Cyber Punk Spikes, made out of NinjaFlex 3D printing filament!