Introducing Three Tough SLA Plastic Materials

Shapeways is excited to announce the launch of three new SLA Plastic materials that provide extreme durability, high resolution and detail as well as a smooth surface.

One of the first 3D printing technologies developed, Stereolithography (SLA) has been widely used for creating models, prototypes and patterns. To produce parts using SLA systems, a laser selectively cures liquid resin in a resin bath above it, moving up layer by layer until the part is complete. Using large format SLA technology, you will be able to produce much larger parts than other resin-based technologies while achieving similar fantastic surface quality.

Our SLA Plastic launch includes the following three acrylate-based materials:

Accura® 60

This clear plastic produces rigid and durable parts with similar properties to molded Polycarbonate (PC). It has the ability for fine details making it apt for tough, functional prototypes, lighting components, medical instruments and fluid flow and visualization models.

Accura® Xtreme™

A material with similar physical properties to polypropylene and ABS, Accura® Xtreme is an ultra-tough grey plastic with outstanding durability, accuracy, moisture and thermal resistance and the ability for great detail. It is ideal for snap fit assemblies, enclosures for consumer and electronic products, master patterns for vacuum casting, and general purpose prototyping.

Accura® Xtreme™ 200

This white plastic is the toughest SLA material available and can replace CNC-machined polypropylene and ABS articles. It is perfect for projects that must withstand extreme, harsh conditions making it ideal for challenging functional assemblies. It can be applied to similar projects as Accura Xtreme as well projects that demand the highest durability like automotive parts, drill/tap applications, assemblies with self-tapping screws, enclosures for consumer electronic components, general purpose prototyping, and master silicone molding.

All three of these SLA materials produce rigid, robust parts that resist breakage and are durable enough to create functional parts as well as provide excellent detail and accuracy. SLA Plastics are printed on large format 3D printers which is great for creating more sizable parts for visual prototypes, short-run production and mass customization including specific applications such as:

  • Master patterns for vacuum casting
  • Shell investment casting patterns for metal casting
  • Complex assemblies
  • Wind tunnel models
  • Rapid production of flow test rigs
  • Mass customization production (orthodontic, dental)
  • Custom assembly jigs and fixtures

These materials have a larger build volume than standard SLA technology, which means your projects  will have less limitations. We are excited to see what you create!

The post Introducing Three Tough SLA Plastic Materials appeared first on Shapeways Magazine.

Boom Supersonic & VELO3D Printing Parts For XB-1 Aircraft

In the realm of supersonic airplanes, the name that stands tallest is probably the Concorde. This once novel name became associated with speed, having broken the sound barrier to win its fame. Now, Boom Supersonic and Velo3D are looking to bring its successor to life with a little help from additive manufacturing. Both companies will […]

The post Boom Supersonic & VELO3D Printing Parts For XB-1 Aircraft appeared first on 3D Printing.

Nanoscribe introduces Quantum X, a two-photon 3D printer for microoptics

Nanoscribe, a German manufacturer of two-photon additive manufacturing systems has introduced a new machine, the Quantum X. The latest system uses two-photon lithography for fabricating nano-sized refractive and diffractive micro-optics which can be as small as 200 microns. Breaking the law According to Dr. Michael Thiel, co-founder and CSO of Nanoscribe, “Beer’s law imposes strong limitations […]

voxeljet enters alliance to industrialize core tooling production using 3D printing

German 3D printer manufacturer voxeljet has entered into an alliance with Loramendi, a Spanish tooling maker, and ASK Chemicals, a global foundry material-science company, to develop the Industrialization of Core Printing (ICP) technology. Reportedly the “world’s first fully automated 3D printed core production solution”, ICP has been designed to produce complex sand core tooling for […]

Additive Manufacturing Processes Improve NDFeB & Organic Magnets

In ‘Analysis of 3D printed NDFeB polymer bonded and organic based magnets,’ Chimaobi Ibeh—a thesis student from New Jersey Institute of Technology—explains that industrial users in many cases today are more interested in miniaturization of electronics, allowing for maximum latitude in design as well as reducing cost, and wasted materials. Ibeh’s goal is to promote additive manufacturing processed with NdFeB bonded and organic based magnetic materials, hoping to ‘open doors to new applications in magnetism.’

“Recent research studies have made magnets the future candidates for new sensor and actuator applications, electric motors and smart materials/systems,” explains Ibeh.

“The improvement of permanent magnets (PM) have shown the ability to slow down the energy consumption and increase energy efficiency,” state the authors. “PM with the combination of the advancements of semiconductor electronics such as MOSFET (metal oxide semiconductor field effect transistors) and IGBT (insulated gate bipolar transistors) have brought 3 innovations to the electric motors, power electronics and intelligent controllers.”

Ibeh also adds that with greater knowledge about SmCo and NdFeB, common magnetic materials, energy efficiency can be greatly improved. Nd2Fe14B is the most powerful PM available in the world but is extremely costly. In terms of techniques used to create magnets, AM processes have good potential, beyond the obvious benefits of prototyping with plastics like PLA and ABS. Miniaturization is in greater demand, and Ibeh sees the application of AM methods opening the door to applications like sensors.

“Organic based magnets are a new emerging class that bring unique material properties and will further the development in magnet fabrication,” states the author, also going on to point out that extrusion printing of NdFeB bonded magnets has been successful previously.

NdFeB is an RE-Fe-B bonded composite, consisting of melt-spun RE-Fe-B powder and polyamide (PA12) binder, and offering the ‘best overall magnetic performance in the classes of hard magnets.’ Previous research and experimentation with net shape NdFeB magnets resulted in complex, small-scale designs, which the author points out is hard to achieve with other techniques—especially because the alloy is delicate. Parameters must be just right to achieve the correct density and quality.

NdFeB Bonded Composites Granules used for the experiment.

In attempting to fabricate magnets from RE organic materials, researchers seek the following properties:

  • Low density
  • Transparency
  • Electrical insulation
  • Low-temperature

    Magnetic and Physical Properties of the NdFeB bonded composite fabrication

“The next big challenge for scientists is to create many new high-spin molecules that possess energy gaps, an order of magnitude greater, at room temperature as well as kinetic stability that rivals the most stable organic monoradicals,” concluded Ibeh.

“Combining the development of organic based magnets with AM methods will further bring new and interesting innovation to the technological world we live in.”

The photograph of printed magnets of various shapes. The left object, expanded view on the bottom image, demonstrate the full power of 3D printing very complex shape, a novel functionality to the hard magnets

SEM images of samples bonded magnet NdFeB with variation of rubber binder.

Individuals new to 3D printing may be floored by the countless innovations being introduced into nearly every industry around the world today, but in delving further, the depth with which the science of materials is being explored—and mined—is even more fascinating. And the learning continues for users on every level. Composites are becoming more popular than ever, from materials meant to promote thermal management to bioprinting, along with efforts to further miniaturization. Learn more about magnetization in 3D printing here. What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

Periodic table highlighting the rare earth minerals.

[Source / Images: Analysis of 3D printed NDFeB polymer bonded and organic based magnets]

3D Printed Continuous Flow Reactor Analyzes Degradation of Acetaminophen in Urine

In ‘Ultraviolet photolysis of acetaminophen in a 3D printed continuous flow reactor,’ thesis student John Goetze is not only exploring the benefits of urine as fertilizer but also experimenting with 3D printing devices that could be used in the field to pinpoint degradation of chemicals like pharmaceuticals that are harmful to agriculture. While many consumers may be leery about their potential food supply being sprayed with a supply of urine from the public, even worse would be ingesting the surprising amounts of unmetabolized pharmaceuticals. Degradation of residual medications could render the use of urine as a possibility, however.

Farmers rely on fertilizers rich in nitrogen, phosphorus, and potassium (NPK) to encourage the growth of healthy plants. Human urine contains all these nutrients, and especially phosphorus. Goetze explains that numerous studies have shown that while phosphorus is necessary to many different applications, it is expected to be depleted in as little as 50 years.

“Phosphorus is the most important of NPK when considering urine for its fertilizer value. Source separation of urine maximizes its value for fertilizer. Obtaining phosphorus from wastewater is more difficult, as it is diluted and possibly contaminated with other materials auxiliary to those in urine. Widespread source separation in developed countries would require retrofitting of current sanitation facilities,” states Goetze.

Pharmaceuticals do present an issue, however, posing ‘ecotoxicological risk,’ mainly by NSAIDs, antibiotics, and carbamazepine. And while much of the benefits of prescribed (or not) drugs are metabolized, large portions may still be left to pass through the urine.

The concentration of selected drugs in the general population sourced urine and drug concentrations in lettuce and soil after urine was added to field plots.

For the purposes of this study, Goetze used acetaminophen, which is also commonly referred to as paracetamol. The author used this over-the-counter pain reliever for the following reasons:

  • Measured consistently in wastewater
  • Easy to obtain
  • Can be measured with UV spectroscopy
  • Absorbs UV light

For this research, the author used Kroger 500 mg acetaminophen caplets. They were crushed and mixed with deionized water, then stirred and heated, until the solution was diluted enough for analysis. Aqueous acetaminophen concentrations were chosen at 2.5 ppm, with the consideration that previous research shows urine from public events measuring 0.5 ppm.

Goetz 3D printed most of the parts (nine, in total) for the continuous flow reactor, designing them in SOLIDWORKS and then using a MakerBot Replicator 2 FDM printer with PLA.

“Trials showed that more acetaminophen is degraded as residence time and light intensity increase. Continuous flow reactor performance is comparable to MFR and PFR idealized models with respect to residence time. Data corresponds more closely to the ideal reactor models as light intensity decreases. Pseudo-first order rate constants (k’) were determined using a best fit of MFR and PFR models to the data at each separate intensity. Rate constants increased linearly with light intensity,” concluded the author.

Up to 80 percent of the acetaminophen was degraded in the experimental conditions of the continuous flow reactor. This demonstrates that levels of the pharmaceutical can be significantly reduced via UV photolysis. The reactor design can be easily scaled up, since the specialized components can be produced quickly with 3D printing. Artificial light sources producing an intense 254 nm wavelength are commonly available on the consumer market. The lack of catalysts and oxidizers reduces costs and eliminates some materials access barriers. The reactor, artificial light, and pump apparatus can be applied quickly and cost-effectively in laboratory or industrial settings. The photolysis data from this study can inform the design of future applications.”

Experimental apparatus for continuous flow trials. Equipment includes 254 nm light source (A), syringe
pump (B), 3D printed reactor (C), and UV-vis flow cell (D).

3D printing has been connected with innovation in diagnostic devices due to the ease in design and production, and affordability in manufacturing—especially in the medical field, from innovations for detecting cancer to malaria and even tuberculosis. What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source / Images: ‘Ultraviolet photolysis of acetaminophen in a 3D printed continuous flow reactor’]

 

HP and Materialise Improve Compatibility Between Their 3D Printers and Software

HP, an international leader in digital and printing solutions, and Materialise, a Belgium-based provider of 3D printing services, have announced that they’ll be updating the user experience and interaction of their respective products in an effort to enable more industrial scale 3D printing. Materialise’s file preparation software will be integrated with HP’S Multi Jet Fusion […]

The post HP and Materialise Improve Compatibility Between Their 3D Printers and Software appeared first on 3D Printing.

Interview with Ganit Goldstein on Craft, Technology, Fashion & 3D Printing

Ganit Goldstein

Ganit Goldstein is a Designer whose interest lies in the intersection between Craft and Technology. Ganit studied Jewelry and Fashion. She received the Excellence Award from Bezalel Academy of Arts and Design, Jerusalem, Israel. Her work is focusing on new methods of incorporating 3D Printing into the world of Textiles, Shoes and Fashion. In her Collection ‘Between The Layers’, she created garments and shoes, inspired by her study of ‘IKAT’ weaving in Tokyo, Japan. Her collection received great interest and immediate press recognition, and was presented at Exhibitions and Museums around the world including Milan Design week, New York Textile Month, Asian Art Musuem – San Francisco, Holon Design Museum, ‘TALENTE’ exhibition in Munich and more. Ganit Goldstein believes in an interdisciplinary approach to design- mixing Tradition with Futuristic techniques – 3D printing & 3D body scanning.

Give us some background on your experiences so far.

I studied at Bezalel Academy of Arts in Design and majored in the department of Fashion and Jewelry. Since my first year of study, I was fascinated by using 3D design software, especially because of the design-freedom it allowed me. During my studies, I have often incorporated tools from other disciplines into my work, whether it is CNC, laser cutting, 3D scanning and 3D printing. The use of different tools and mindsets helped me discover my own desig language.

During my third year of study, I was expected to participate in an exchange student program. My decision was to apply for the opposite direction of what I was used to. Meaning, the opposite of the cutting-edge technology field. I found my way to the Craft Department ’Textile Art’ program at Tokyo University of the Arts – GEIDAI. During this time, every single process of my designs was made using traditional handmade techniques. Meaning, I turned completely low-tech, changing my entire thinking structures and patterns. That was very significant for me in terms of expanding my horizons and changing my view on design. Talk about stepping out of your comfort zone! When I finished my studies in Tokyo, I went back to Jerusalem to finish my final project. That’s when I decided to combine the traditional methods I recently learned, with the latest technology I was working on before. This was translating both worlds of the past and future into one design language.

Since my graduation, I was lucky to participate as a finalist in four international competitions, presented my projects in New York Textile Month, Hong Kong Fashion Week, Asian Art Museum- San Francisco and ‘Talente’ exhibition in Munich. These competitions helped me a lot to reach my goals, discover possibilities, and meet great people that influence my work until this day.

Craft and Technology Outfit

When did you first get excited about fashion and design?

I was excited to mix the borders between art and fashion, back in high school, when my project consisted of dresses made from broken glass and metal wires. I was looking at garments as a platform to make art pieces, that aren’t necessarily meant to be worn, but rather a manifestation of aesthetics, culture, language, and design. 

One exhibition that is very powerful in my memory is a solo exhibition (2014) of Iris Van  Herpen at the Design Museum Holon. The exhibition was very special and it featured beautiful outfits, that crossed borders between art, fashion, and futuristic techniques. It was influential for me because it dealt, or perhaps answered the question of whether fashion can be presented at museums as art pieces.  

When you did your first 3D printing project with fashion?

As part of my second-year curriculum study, we were asked to reconstruct costumes from the 18th- 19th centuries. I was asked to build an entire costume, made up of 7 different layers, just as it was made back in the history of fashion. The dress I was assigned to reconstruct is held by The Metropolitan Museum of Art (Costume Institute collections) – from the year 1870. This decade was a “golden decade” for lace dresses.  In the next semester, we were asked to think about the outfit in a modern perspective, and I was focusing on the lace. I decided to design and create a 3D lace of our times, based on algorithms printed with hard material, combining flexible properties inside the printed part. This was the first time I used 3D printing as an integral working method in my designs, and that’s when I discovered the huge potential in using algorithms, software and parametric design in the process of my work.

During my studies, and especially due to this project, I began working closely with the Institute of Chemistry – Casali Center at the Hebrew University, for innovative research in 3D printing. The research group, led by Prof. S. Magdassi, focuses on materials science, nanotechnology and their applications in a variety of fields such as 3D and functional printing.

This collaboration gave me the opportunity to work with great researchers, and thus better understand the different approach for material research studies, working on innovations in the field of 3D printing.

How important is the differentiation of fully created 3D printed items vs hybridized fashion products from textiles and 3D printed material?

The harmony of putting together two different worlds makes the innovation approach, and bring forward a new way of thinking about design. I believe in taking the essence of the traditional techniques from our past and translate those methods to the new technology- a different point of view from the traditional technique inside the process of the newest technology.

I feel it is important to make the hybrid of textiles and 3D printing together because it has the power to bring 3D printing to a much more wearable level. I also understand that fully 3D printed fashion is still in a building stage, and the combination of traditional textile methods helps this method is growing quicker. Hybridized craft methods in 3D printing are important in my opinion because we should not lose sight of the traditional processes. Technology will always move forward, but craft methods can disappear easily. I believe it is important for the designers also to remember the traditional working processes, not to lose the history of crafts. Bridging the craft methods and technology to move forward with the latest technology.

Craft and Technology Shoe

What are some of your favorite projects that you have worked on in 3D printing?

Seeing the first 3D printed multi-color shoes that were made in collaboration with Stratasys was an extremely exciting moment. In these shoes, my aim was to create a fabric-like texture inside the printing process. I couldn’t hope for better results. Since my graduation presentation, the shoes were presented in exhibitions worldwide (the last exhibition was in Milan Design Week 2019). Most of the people I have met during the exhibitions were sure the shoes are made from fabric and not from 3D printing. The shoes are now part of the Holon Design Museum permanent collection, they were the first pair I made together with Stratasys. We made a few more designs, but nothing compares to the success and joy that was brought by my first pair.

One of the most exciting projects that has had a huge impact on my projects so far, was working in collaboration with Intel ‘RealSense’ studio in Jerusalem. We incorporated their technology into the design process by 3D scanning an entire body thus allowing to create customized fashion and accessories, designed for a specific person. We also launched together an AR App (made together with Yoav from RealSense Studio) that demonstrates the 3D printing process using a hologram featured on the reality).

Another very exciting collection will be soon launched together in collaboration with Prusa Research company for FDM processes of wearable shoes. I worked closely with their maker-lab, and we made huge progress, the shoes are 100% wearable with multi-color and flexible materials!

Stratasys and Goldstein Collaboration

What is currently being worked on for you within the 3D printing world?

I am a great believer in collaboration and partnership with great people and open-minded companies. I want to continuously break boundaries, that is my core value, and I understand that in order to do that, I must turn to other disciplines and utilize what they have to offer. The ability to combine both worlds of past and future technique has a big impact on both my past and current projects. This is my take on the future of the 3D printing world.

Harnessing the power of the new technology and utilizing traditional techniques helped me create my own design language. I think that the ability to be open minded in the design process enables me to achieve my goals. I am a great believer of trying new methods, and not putting limits. This works because the design process has ups and downs, and from some failures and material tryout, you can reach better-designed results.

How was it to partner with Stratasys so early on in your journey?

My 3D printing journey started in a small room in my parent’s house, which I filled with 2 desktop printers. That room became my very own printing lab, where I got to experience, try-out materials and utilize the good old “trial and error” method.

I was fortunate enough to gain that experience, because I believe that is what enabled me to work with a “tip of the spear” company such as Stratasys.

The collaboration with Stratasys established after I had many “flight hours”, examples and tryouts. We partnered up during my last year studies. As my vision was to integrate colors inside my printed projects, They allow me to carry out my vision and turn it into reality. I’ve been incredibly lucky, and honored, especially knowing it came at such an early stage of my career. And it also makes me very proud.

I worked closely with the R&D team, and therefore, we shared the same vision of pushing the boundaries of the technology through design research. During the making process, we made some very interesting tryouts with the ability to control any voxel (3D pixel). At the same time, our research was growing, I made it into the final stage of numerous worldwide competitions and exhibitions (‘Talente’ & Milan Design Week), so we were continuing our collaboration for specific events that lead to new developments and exciting processes in each of the projects.

Woven 3D Print Shoes

Do you wish to branch out of just 3D printing? 

I wish to further develop in the field of augmented/virtual reality.

3D printing is already well integrated into our lives and in many industries. From medicine to automobiles, furniture, military equipment, housing, fashion, etc.

I believe in the future of 3D printing and its applications. I also believe that 3D printing is directly linked to 3D scanning and ARVR applications and that this technology will completely alter the user experience in public sites and will be adding new features to the digital medium.

The adoption of the technology by museums to reach new levels of audience experience- multi sensational- rather than just viewing. I believe AR will soon be in every museum, using the newest technology for public use, and even controlling our experiences in different senses- not just by looking at an art piece.

I’m also very interested in the smart- textile field, adding new reactions for textile by using programming software. I find especially the 4D printing process very interesting topic to work on, creating 3D objects that change their shape over time.

What are some key skills needed to be a designer within the 3D printing world?

I believe that the main key is determination. Not to be afraid of failure. 3D printing can be very attractive on the one hand, but on the other hand, it is a relatively new technology, there are some limits and tons of failures in the making process. It takes time unti you figure out the path to the final project, it takes time and extra effort.

Being a Maker- For me, to be a designer in the 3D printing world means to be a ‘maker’, I believe in hard work from the beginning. You need to be experimental with many technology techniques. Building your own printer and so on are examples of how I describe a ‘maker’.

Professionalism and expertise- 3D designing and printing is just like programming. You must “study the language”. You must learn the 3D software skills, be an expert in your field. Luckily, in our times, this information is approachable by everybody via the internet. It is possible to study everything you set your mind to, every single feature is fully covered.

Independence and self-confidence – I believe to fully be in control of your designs, anyone that wishes to be a designer in the 3D printing world, should do the work on his own, and not rely on others people’s skills. The making process changes the way the final object will appear, and for me, this is the main freedom space, that you have the ability to bring your design from your imagination into reality and constantly improve it upon your request.

Who are organizations you want to partner or collaborate with in the future?

I want to continue my work with the partners that supported me and have been fantastic in our collaboration: Stratasys, Prusa Research and Swarovski.

I believe the future of my work also lays in collaborating with companies that have new technological developments and have design potential that can become a platform for combining my design visions.  I would love to work with researchers of innovation in material research such as Neri Oxman and designers working in the field such as Iris Van Herpen. I’d like to extend the collaboration for shoe design with companies that develop 3D printed shoes such as Adidas.

Designers are not fully on the 3D printing wave just yet, how does it feel to be an early adopter?

It’s extremely exciting to be a part of a relatively small group that consists of designers and makers, who are investigating into how design can be developed in a sustainable and innovative way, using 3D printing technology.

This era is the most stirring time for pushing the boundaries of this technology, and I’m looking forward to working on new projects that will inspire me to think about “re-inventing” our future.

I feel that there is so much space for designers to grow in this field, working together with researchers and scientists all while keeping an open mind for new opportunities.

I feel blessed and extremely lucky to have become an early adopter in this field. It is a magical time filled with opportunities to seize and enjoy and to continue being excited from any new features, ideas, and projects.

I think 3D printing has great potential in so many fields, and design is one of the most exciting uses for this technology, clearing the way for further development of Art and Design (and maybe the concept of fashion and design as art), presenting each artist’s point of view the production process, from imagination to reality.  

Where do you see the field of 3D printing and fashion in 5 years?

I see 3D body scan as a key process that will be an integral part of any fashion development department. I believe that 5 years from now, personalization will receive a different meaning and will bring a drastic change in the fashion industry, moving from mass production to one of a kind customizable piece.

In my opinion, another upcoming major change that will take fashion design forward is the ability to design your own clothing- the customer will be his own designer by, ‘pushing buttons’ (by simplifying the design and programming software) for producing his favorite design.

I’ve also found the development of flexible material as a very important process for 3D printed fashion, and the development of new material will be a major step for 3D printed textile to make 3D printing – wearable.

Where do you see yourself in 5 years?

With 3D printing and 3D scanning, we can utilize the new technology to develop tailored pieces and fit to measure clothing for individuals. I want to take this a step further and produce customized clothes, based on body scans, ready-to-wear fashion and I hope to have designers and partners in the future, bringing innovative approach into daily production methods of fashion.

In the next two years, I will be studying at the Royal College of Arts in London, in the master’s program for smart textile developments called ‘Soft Systems’.

I believe this upcoming period will greatly influence and affect my career, and I hope that 5 years from today I will be able to continue developing my design language, and open my own brand, start-up, lab and continue researching and developing the wearable technology field. I hope to continue being thrilled and excited from any new project, any new printing method and constantly breaking the boundaries of the latest technology 

Massive 3D Dataset Helps Robots Understand What Things Are

MzMyMTIxNQ 1

Via IEEE Spectrum

Nobody has seen every single lamp there is. But in most cases, we can walk into someone’s house for the first time and easily identify all their lamps and how they work. Every once in a while, of course, there will be something incredibly weird that’ll cause you to have to ask, “Uh, is that a lamp? How do I turn it on?” But most of the time, our generalized mental model of lamps keeps us out of trouble.

It’s helpful that lamps, along with other categories of objects, have (by definition) lots of pieces in common with each other. Lamps usually have bulbs in them. They often have shades. There’s probably also a base to keep it from falling over, a body to get it off the ground, and a power cord. If you see something with all of those characteristics, it’s probably a lamp, and once you know that, you can make educated guesses about how to usefully interact with it.

This level of understanding is something that robots tend to be particularly bad at, which is a real shame because of how useful it is. You might even argue that robots will have to understand objects on a level close to this if we’re ever going to trust them to operate autonomously in unstructured environments. At the 2019 Conference on Computer Vision and Pattern Recognition (CVPR) this week, a group of researchers from Stanford, UCSD, SFU, and Intel are announcing PartNet, a huge database of common 3D objects that are broken down and annotated at the level required to, they hope, teach a robot exactly what a lamp is.

See more!