Raspberry Pi Zero – Case/Housing #3DThursday #3DPrinting #RaspberryPi

Featured preview IMG 6040 copy

Shard by gus67 on Thingiverse:

NEW case is coming with better ventilation
Raspberry Pi Zero Case/Housing made for my little handy buddy!
There is space to place a heat-sink over the chip-set.

Download the files and learn more


649-1
Every Thursday is #3dthursday here at Adafruit! The DIY 3D printing community has passion and dedication for making solid objects from digital models. Recently, we have noticed electronics projects integrated with 3D printed enclosures, brackets, and sculptures, so each Thursday we celebrate and highlight these bold pioneers!

Have you considered building a 3D project around an Arduino or other microcontroller? How about printing a bracket to mount your Raspberry Pi to the back of your HD monitor? And don’t forget the countless LED projects that are possible when you are modeling your projects in 3D!

SimScale closes €27 million funding round to expand CAE platform

SimScale, a German software as a service (SaaS) company, has closed a €27 million series C funding round led by Insight Partners to accelerate the expansion of its cloud-based computer-aided engineering (CAE) platform. “SimScale’s platform has minimized the barriers that prevented many engineering firms from using or scaling simulation,” said Joshua Fredberg, CAE software veteran […]

3D Printed Flexible Tie – modified – shorted #3DPrinting #3DThursday

Featured preview tie

Billharps shared this project on Thingiverse!

This is only modified original by Pehrsona.
https://www.thingiverse.com/thing:3981256

See more!


649-1
Every Thursday is #3dthursday here at Adafruit! The DIY 3D printing community has passion and dedication for making solid objects from digital models. Recently, we have noticed electronics projects integrated with 3D printed enclosures, brackets, and sculptures, so each Thursday we celebrate and highlight these bold pioneers!

Have you considered building a 3D project around an Arduino or other microcontroller? How about printing a bracket to mount your Raspberry Pi to the back of your HD monitor? And don’t forget the countless LED projects that are possible when you are modeling your projects in 3D!

New Guide! Retro Weather Station

WiFi Weather Station with 8Bit Icons and SFX. Build a weather station with retro inspired 8bit graphics! Use CircuitPython to display data from the Open Weather Maps API. Get temperature, weather conditions, location, time and date! All rendered in chunky fonts and blocky icons.

Learn Guide
https://learn.adafruit.com/pyportal-titano-weather-station/

PyPortal Titano
https://www.adafruit.com/product/4444

STEMMA Buttons
https://www.adafruit.com/product/4431

3-pin JST Cables
https://www.adafruit.com/product/4336

Mini Oval Speaker
https://www.adafruit.com/product/3923

8GB mico sd card
https://www.adafruit.com/product/2692

M2.5 Hardware Kit
https://www.adafruit.com/product/3299

M3 Screws
https://www.albanycountyfasteners.com/Phillips-Pan-Head-Machine-Screw-M3-x-5-p/1066-1008.htm

DIY USB Ribbon Cable
https://www.adafruit.com/product/3563

DIY USB-C Plug
https://www.adafruit.com/product/4108

DIY USB -A plug
https://www.adafruit.com/product/4109

Visit the Adafruit shop online – http://www.adafruit.com


649-1
Every Thursday is #3dthursday here at Adafruit! The DIY 3D printing community has passion and dedication for making solid objects from digital models. Recently, we have noticed electronics projects integrated with 3D printed enclosures, brackets, and sculptures, so each Thursday we celebrate and highlight these bold pioneers!

Have you considered building a 3D project around an Arduino or other microcontroller? How about printing a bracket to mount your Raspberry Pi to the back of your HD monitor? And don’t forget the countless LED projects that are possible when you are modeling your projects in 3D!

The Adafruit Learning System has dozens of great tools to get you well on your way to creating incredible works of engineering, interactive art, and design with your 3D printer! If you’ve made a cool project that combines 3D printing and electronics, be sure to let us know, and we’ll feature it here!

Soft and sweaty 3D printed robots cool themselves down

Researchers from Cornell University, Ithaca, New York, have developed a 3D printed soft robotic muscle capable of controlling its internal temperature through perspiration.  Using hydrogel-based composite resins and stereolithography (SLA), soft, fingerlike actuators were produced that can retain water and respond to temperature. According to Robert Shepherd, associate professor of mechanical and aerospace engineering, this bioinspired form […]

New 3D printing jobs: Formlabs, AON3D, and Bluedge are hiring

In this edition of our 3D printing jobs update, we have vacancies from Formlabs, AON3D, and Bluedge. To apply for the positions listed below, create a free profile and read our guide about how to get a job in the 3D printing industry.  If you don’t see a role for you, check out our 3D […]

Steno keyboard #3DThursday #3DPrinting

ak666666 shares:

This is a board to be used with Plover, a stenography tool.
This one was created to re-use the ideas implemented in the tiny steno board 2 and the extra springs and switches I got from other project.

This board uses Matias Linear Silent switches with springs replaced with Kailh Choco 10gf ones I got laying aroung.
These switches became super soft with high actuation point (read “fast”).

The case resembles the long-gone Soft/HRUF keyboard with two-level key arrangement.

download the files on: https://www.thingiverse.com/thing:4073814


649-1
Every Thursday is #3dthursday here at Adafruit! The DIY 3D printing community has passion and dedication for making solid objects from digital models. Recently, we have noticed electronics projects integrated with 3D printed enclosures, brackets, and sculptures, so each Thursday we celebrate and highlight these bold pioneers!

Have you considered building a 3D project around an Arduino or other microcontroller? How about printing a bracket to mount your Raspberry Pi to the back of your HD monitor? And don’t forget the countless LED projects that are possible when you are modeling your projects in 3D!

Universal Drawing Compass / Scribe #3DThursday #3DPrinting

aerialcopper shares:

A proper compass!

70-80% rectilinear infill, PLA, 0.15 mm layer height
need 30mm m5 or 1.25″ #10 flat-head machine screw. File two flats on the head so it measures 7mm flat-to-flat. Screw it together with washer and thumb nut.

Point can be 2mm-5.5mm diameter. A sharpened nail works nice.

File or sand the wedge so it’s smooth. Trim it to length if you like.

The pivot is much smoother to adjust if you file the sharp edges (where it sticks to print bed) and scribble some graphite/soft pencil onto the touching conical surfaces.

www.aerialcopper.com

download the files on: https://www.thingiverse.com/thing:4069174


649-1
Every Thursday is #3dthursday here at Adafruit! The DIY 3D printing community has passion and dedication for making solid objects from digital models. Recently, we have noticed electronics projects integrated with 3D printed enclosures, brackets, and sculptures, so each Thursday we celebrate and highlight these bold pioneers!

Have you considered building a 3D project around an Arduino or other microcontroller? How about printing a bracket to mount your Raspberry Pi to the back of your HD monitor? And don’t forget the countless LED projects that are possible when you are modeling your projects in 3D!

Stephanie Sharp of 3DQue on Automated Manufacturing With FDM Clusters

I’m a huge proponent of clustered manufacturing. I believe that for many manufacturing parts clusters of FDM printers are the most economical solution for tough durable parts. Especially for parts larger than around five centimeters, FDM is the option that would work best. If a wide variety of materials is needed then FDM would also be at a distinct advantage. Large FDM systems would also be an alternative if reliability is your main concern and material variety was less important. Open systems don’t lock you into a vendor and let you have the lowest cost and widest choice of materials also. But there is still a wide gap to bridge between the current generation desktop printers and manufacturing millions of parts at scale. Surprisingly little work has been done on automating prints in 3D print clusters. Generally, there hasn’t also been much truly innovative work done lately. 3DQue does have a new approach to automating 3D printing clusters. The Canadian startup 3D prints sideways and sells software and clusters that aim to lower costs and automate manufacturing. We interviewed CEO Stephanie Sharp to learn more about the company.

What is 3DQue?

3DQue is a technology company producing automated digital manufacturing systems for in-house, on-demand mass production of plastic parts. Traditional 3D printing is high-touch, limiting its scalability. Whenever a person gets directly involved in the print process — part removal, printer reset, job scheduling, and batch layout — lead times increase and unit costs skyrocket. This limits the application of in-house 3D printing to very low volume applications such as prototyping and emergency parts. Alternatives such as outsourcing to regions with low labour costs increase lead times, reduce cost savings, and increase complexity associated with outsourcing, global shipping, and bulk inventory handling and storage.

We build technology that addresses the frequently overlooked cost-traps of 3D printing. Our QPoD is a multi-printer unit that runs autonomously, eliminating the need for scheduling, batch layout, part removal, and printer reset.

3DQue technology allows companies to take control of production.

How did you get started?

Mateo was an avid 3D printer hobbyist running his own print lab for himself and some friends. Word quickly spread and he was overwhelmed with so many orders, he could not keep up. The manual tasks (removing parts, loading files, etc) were too time consuming and there was a lot of downtime as printers sat idle between prints waiting for Mateo to be at home and have the time to remove parts and restart the next print. He was determined to remove the manual tasks so that he could manage the printing remotely and print continuously without having to be physically present.

After extensive research and trial and error, he came up with the technology (a combination of hardware and software) where he was able to vary the adhesion of the print bed, allowing for high adhesion during printing and automatic release of the print without any need for scraping or preparing the print surface. He then flipped the printer on its side, so that the part would fall off cleanly, allowing the printer to start the next job right away.

After using the technology himself for a few years and conducting extensive research to refine the technology, Mateo decided to offer his technology to the marketplace and enlisted the help of his mentor (and later co-founder), Steph, to lead the business operations and sales.

Why should I work with you?

For print lab operators:

  • Reduce manual tasks by 60% – eliminate need for batch layout, scheduling, part removal, and printer reset. Focus time on increasing quality of parts.

  • Have ability to produce hundreds of functional prototypes without disrupting R&D production.

  • Have ability to produce emergency parts without sacrificing a batch – simply allocate production of emergency part to a printer.

For production engineers

  • Take control of production of jigs & fixtures by printing in-house.

  • Reduce lead time by producing jigs & fixtures on-demand.

  • Reduce lead time by eliminating lengthy process of creating tooling for injection moulding.

  • Reduce  inventory from tens of thousands of dollars to a few hundred with just-in-time inventory at same unit cost as injection molding.

There are a number of advantages:

Scalability

Each QPoD comes with a built-in 9-printer network driven by QSuite software. This frees operators from batch production and offers users the ability to scale production by adding additional QPoDs. With 3DQue’s unique MaaS (manufacturing as a service model), users only pay for the hours that they use the printer and are able to buy “bundles” of hours (like cell phones) at a reduced rate, offering cost scalability.

Digital Manufacturing

With networked 3D Printers, there is no incremental cost to switching production from one part to another.

Essentially, any printer on the network can produce any part at any time, enabling just-in-time manufacturing for many parts in parallel, eliminating the cost, complexity and handling associated with batch production.

This in turn eliminates the need for overstock, reducing surplus inventory, and simplifying inventory management, as parts are only produced as needed.

Space Savings

By eliminating the need for tooling and having production capabilities handled by a limited number of machines, QPoD is able to produce thousands of unique parts in a very compact space (100,000 small parts/yr in 12 sqft).

Shorten the Supply Chain

Orders for any plastic part can be produced on demand on-site, essentially moving the entire supply chain into the warehouse, reducing complicated logistics, bulk shipping and inventory management.

How does it work?

The core tech rests on our VAAPR + Lock System (Variable Adhesion, Automated Part Release + Lock). This technology, driven by QSuite software, varies part adhesion so that prints stay in place during printing and are automatically released once the part is complete.

One of the first things many notice with 3DQue printers is that they are positioned sideways; prints are built outwards from a vertical the print bed rather than the traditional bottom-up approach. Once parts are done, the VAAPR + Lock is released, and gravity takes over causing the parts to drop out of the print area into a bin, conveyor, or dissolvable support tank and the printer is clear to start the next print. The VAAPR lock technology works without consumables such as tapes, glues, or other adhesives, eliminating the need to clear the print bed between prints.

QSuite is the software that runs the printer network. It serves as a central point for interacting with the printers and handles things such as printer monitoring, job delegation, job scheduling, and remote control. Users are able to submit their print jobs to a central queue in QSuite, and jobs will automatically be dispatched to available printers with the necessary configuration, connected to the network.

What kind of customers are you looking for?

We are looking for manufacturers interested in reducing lead times and inventory of plastic parts by having the ability to mass produce plastic parts on-demand and in-house:

  1. COO – automation of 3D printing is the future of plastics manufacturing. It reduces inventory up to 90%, reduces lead times from months to hours, increases sustainability scores by moving manufacturing in-house and on-demand, and produces parts at a unit cost that is comparable to your current costs for mid-volume injection molded parts.

  1. Production engineers – reduce cost and lead times for production of jigs and fixtures.

  1. Mechanical engineers & print lab operators looking to:

    1. scale their current network of 3D printer;

    2. eliminate lead times from days to hours;

    3. increase throughput capacity (9 separate print surfaces in a single unit);

    4. reduce costs 40-60% for rapid prototyping;

    5. have the capacity to easily produce hundreds or thousands of functional prototypes; and

    6. spend more time on high value tasks such as print optimization by eliminating tedious manual tasks (e.g. scheduling printers, designing batch layouts, part removal, and printer reset).

  1. Manufacturers who want to reduce lead time, inventory, and costs associated with plastic parts. For example, companies requiring electronics enclosures for sensors and other components, for example alarms, monitoring systems, etc.

  1. Filament manufacturers looking for hardware optimized to handle high volumes of their proprietary materials and automated part production to simplify the collection of hundreds or thousands of data points for developing new material formulations.

Do you save me money?

Yes. Field testing with a variety of end-users indicates that QPoD produces 3D prints at 30 – 50% less than traditional 3D printing and resulting in costs that are competitive with injection moulding in quantities ranging from 10,000-100,000 parts/yr.

QPoD

Traditional 3D Printer

Hardware + Labour

$1.12/APH*

$2.25 – 4.70/print-hour

Manual scheduling

none

yes

Batch layout

none

yes

*APH = Autonomous Print Hours ($0.79 with pre-purchase of APH)

Why sideways? And like everything works still then?

By printing sideways, the VAAPR + Lock mechanism takes advantage of gravity to clear parts from the print area. This means that we don’t have to introduce any additional moving parts eliminating potential points of failure.

The adhesion provided by VAAPR Lock is strong enough to support parts that fill the entire print surface area. The prints themselves are largely unaffected by printing sideways; for the vast majority of parts, the difference is impossible to tell. In some cases it can even be helpful as overhangs and bridges are no longer competing against gravity.

Whats a QPoD? What can it make? At what cost and yield? And how much does one cost?

QPod is a network of 9 printers that can make the same plastic parts as any other FDM-style 3D printer – plastic jigs, fixtures, electronic enclosures, etc.

Yield: 100,000 small parts/ year

Installation Cost:  $45,000 ($0.12/APH over 5 years)

Production Cost: $1.12/APH (or $0.79 with pre-purchase of APH bundles)

With what materials does it work?

Everything we have tested to date works with the VAAPR + Lock System: PLA, ABS, TPU, PETG, Nylon, PVA and testing for more materials is on-going.

How has it been designed?

QSuite and VAAPR Lock have been designed been designed with agility in mind. The manufacturing industry is entering a period of unprecedented change and the ability to quickly adapt will become a key competitive advantage.

As 3D printing moves production from batch to continuous production, inventory from bulk to just-in-time, and supply chains from outsourcing to inhouse. In 2019 the range of functional materials available for 3D printing more than doubled. The most competitive organizations will be the ones with the agility to take advantage of this rapid change. Recognizing this, we have designed the system for maximum flexibility ensuring that our clients will be able to quickly and easily adapt to market changes.

QPoD’s open architecture allows it to be easily customized to suit customer needs. Configuration options include dry boxes, dual extrusion, larger filament reels, etc.

Is it made in house?

Yes, the printers are all built at our facility in Vancouver, Canada.

Using the best components to meet the client’s needs, we assemble and test each printing unit and frame prior to shipping. Our product team then installs, calibrates and tests the equipment onsite to ensure it is functioning up to client expectations.

And do I need the QSuite?

Yes. QSuite runs the VAAPR Lock System and provides the operator-free functionality. It drives the fundamental job scheduling and delegation for printers on the network.

Can I use one without the other?

If you are a printer OEM, you can license the QSuite system and build it into your hardware.

What do you hope to achieve?

We want to see the world move towards a more sustainable, efficient and innovative form of manufacturing.

Imagine how much CO2 is created by shipping billions of tons of plastic parts around the world and then having to store them in bulk warehouses, handling the product multiple times, consuming energy for vehicles and forklifts, light, heat, humidity, and air conditioning. Imagine how much waste is produced by ordering thousands of parts to get a low unit cost and throwing out half due to obsolescence or simply lack of demand.

Now imagine in addition to reducing your environmental footprint, how much money, time and materials you would save by producing just the parts you need, where you need them (in your warehouse or production facility), when you need them.

Finally, imagine much you could reduce lead time and accelerate innovation by eliminating the following steps:

  1. Design for Manufacturing (DfM – the process of redesigning parts to make them suitable for manufacturing)

  2. Mould design and production

  3. Tooling setup and clean up

  4. Bulk shipping, handling, and warehousing

These steps can add 6, 12 or even 18 months to the part production process. By the time parts are made, the world has changed and the order is obsolete, sending companies back to the drawing board. With QPoD, part design can literally be changed during production – from one part to the next.

For what customers are you making this? What applications?

Mitsubishi Chemical Performance Polymers (MCPP) is using it in their R&D lab for new materials development.

The University of Illinois, Gies College of Business for their print lab. They are the only business school in the world to offer their students hands-on experience with this new production method.

We are also working with a global plastic parts supplier to create a smart factory to transfer mid-volume injection molding operations to an on-demand 3D printing process.

Because of the open architecture type of design for our QPoD, it is easily customizable and able to be used in a variety of applications from materials testing, to mass production of parts. This is great for materials testing as it accelerates the testing process by removing the need for batch processing and reducing downtime as the printers no longer sit idle waiting for operators to be available for part removal and printer reset. This can be applied to a variety of industries.

The post Stephanie Sharp of 3DQue on Automated Manufacturing With FDM Clusters appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Italian Researchers: Eliminating FDM Support Structures with New Algorithm

As researchers from Italy present a novel system for avoiding the use of support structures in additive manufacturing processes, they delve further into an issue that continues to plague users who would prefer not to spend the additional time in post-processing efforts. With their findings outlined in ‘Fused-Deposition-Material 3D-Printing Procedure and Algorithm Avoiding Use of Any Supports,’ the authors explained that they performed their study with FDM (FFF, Material Extrusion), but their work could be transferred to other methods of 3D printing too.

In this study, the research team recognizes the benefits of 3D printing, from lower costs, lower production times, less waste, less space needed for inventory, and more, but they emphasize the desire to truly move away from subtractive manufacturing in using only what material is needed—without any requirements to remove supports later.

“Considering the high number of printable materials and structures that can be realized, together with the peculiarities of FDM technology, it is possible to achieve various and interesting physical proprieties, such as flexibility, toughness, thermal resistance, and electrical conductivity,” state the authors, going on to point that that logically, printing without supports is highly desirable to refine quality, as well as conserving materials.

(a) Support-based object and (b) support-free object.

One of the best ways to avoid dealing with bridges and overhangs (areas that initially lack support during the 3D printing process) is to ‘design for printability.’ This may not always be possible though; in fact, the researchers point out that can often be nearly impossible when designing parts and prototypes.

There are other options also for avoiding having to 3D print with support structures, such as designing parts into a variety of sub-blocks which are easier to deal with in fabrication. While the process of removing supports is eliminated though, users must still spend time in post-processing for assembly, finishing, and more.

(a) Object with poor printability; (b) printable object filleting the floating area; (c) printable object splitting critical area from main body.

Although there are a variety of other choices that could be made regarding design, printing, and post-processing and finishing, the researchers created an algorithm for manipulating the slicing process, allowing them to still print ‘supportless bridges and very steep overhangs.’

Flowchart of proposed algorithm.

For this study, the researchers integrated their new method into Tips slicing software—a customized version of Slic3R. For 3D printing, they used a 3DPRN H5, featuring a dual tilting extruder setup.

(a) Testing 3DPRN LAB H5 FDM printer; (b) dual-extrusion setup utilized for test.

Four different samples were created in the study as the researchers created three with a 90° overhang, and one with a bridge. Each sample was 3D printed ten times, alternating with supports, without, and then with the use of the Print on Air algorithm.

Test samples printed for analysis: (a) bridge, (b) rectangular 90° overhang, (c) circular 90° overhang, (d) triangular 90° overhang (pictures not in scale with each other.

“The layer height was set at a constant value of 0.2 mm, while speed, acceleration, jerk, and cooling were automatically set by the slicer,” explained the researchers.

While there was ‘no effective’ measurement available for samples without supports, floating layers were reported as ‘drooped’ and the prints failed.

“PoA, on the other hand, was capable of remaining within one-layer error (0.2 mm) from the ideal dimension. Supposedly, this error came from the cooling deformation of the plastic (wavy-surface finish) rather than actual material droop; hence, a better cooling profile could further improve the results. Moreover, for larger pieces, this issue is inherently reduced since the extruder physically moves farther away from each deposited strand, reducing unwanted heat exchanges between itself and printed sections.”

Ultimately, the researchers decided that the procedure would be best used when overhangs were required, rather than bridges.

Printed samples: (a) bridge structure (left to right): Print on Air (PoA), supports, supportless; (b) rectangular overhang (left to right): PoA, supports, supportless; (c) circular overhang printed with PoA; (c) triangular overhang (left to right): PoA, supportless.

“The proposed approach can be applied to any object, including long bridges and convex surfaces. The algorithm was accurately tested both with differently shaped overhangs and bridges,” concluded the researchers.

“From analysis, we can conclude that, regardless of shape, the supported structures showed the best accuracy across almost all measurements. However, given that, from a geometrical point of view, the accuracy of the obtained shapes with the proposed algorithm was fully comparable with the previous, considering the saved material, time, and postprocessing, our proposal is a valuable tool.”

Dealing with supports and finishing processes will undoubtedly continue to be an ongoing conversation among 3D printing users and those engaged in AM processes as well as integrating innovation into robotics, developing other methods and tools such as cutting devices, soluble supports, and more.

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source / Images: ‘Fused-Deposition-Material 3D-Printing Procedure and Algorithm Avoiding Use of Any Supports’]

The post Italian Researchers: Eliminating FDM Support Structures with New Algorithm appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.