CIPRES Introducing New Industrial Dyeing Machine for 3D Printed Parts at formnext

In 2004, coloring process service provider CIPRES Technology Systems was founded by Carlos Prestien; two short years later, the German company branched out and began offering serial production of SLS 3D printed components. Over the years, it’s continued developing color techniques, color units, and solutions for surface finishing. This summer, CIPRES GmbH was formed to take over the original company’s service sector, and also provides coloring and finishing machines for 3D printed components.

At formnext 2018, which opens tomorrow in Frankfurt, CIPRES will be presenting a new industrial dyeing machine: the eCOLOR Type 1/350/1 for 3D printed serial parts and components made out of polymer materials. The company partnered with Thies GmbH & Co. to produce the industrial machine, which was made specifically to treat 3D printed serial components, functional prototypes, and spare parts. The highly productive system offers excellent dyeing results and high reproducibility, in addition to a lower environmental impact and cost.

The new eCOLOR system, which can precisely adapt chemicals and dyes, can run at operating temperatures of up to 140 °C and at maximum 5bar operating pressure. With its user-friendly software and high-tech controller for monitoring each and every step of the process, the system offers what the company calls “perfect process reliability.” The software also helps users define and optimize jobs, according to their application-oriented or technical needs.

The eCOLOR Type 1/350/1 is designed to cover standard production capacities up to 37 liters, and has a packing diameter of 310 mm and packing height of 500 mm. It also has a flexible loading system for small (8 L), medium (19 L) or large (31 L) batch sizes, and all Thies machines comply with safety regulations and pressure vessel codes of various operating sites, such as ASME. In addition, the system’s frequency inverter driven pump allows for an accurate and economic adjustment of the liquor flow and the flow direction, which helps optimize each stage of the dyeing process.

In order to ensure it’s making the strongest products, CIPRES needs the strongest partners, like Thies, which originated in the traditional textiles area of Münsterland, Westphalia over 120 years ago. Together, the two companies are working to complete the product chain in terms of refining 3D printed nylon parts.

“The combination of our complementary expertise in colors, coloring and finishing solutions will open a new chapter in our common history,” CIPRES wrote in a press release. “We will entrance the excellences of this partnership to improve and expand your portfolio.”

In addition to Thies, CIPRES has several other strong partners, such as Additive Manufacturing Technologies (AMT). which offers automated post processing solutions with its complementary PostPro3D technology. CIPRES is also partnering with Swiss specialty chemicals company Archroma, which brings 130 years of color expertise with its soon-to-launch 3D Cosmic range for coloring 3D printed goods, and surface preparation and finishing leader Rösler Oberflächentecknik GmbH. We’re seeing a lot happening in post processing which should bode well for people wanting less expensive better looking 3D printed parts. If we as an industry want to produce high-quality consumer-friendly parts at volume then automation and automated post processing is what will get us there.

Visit CIPRES at formnext this week at booth G38 in Hall 3.1.

What do you think about this news? Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

[Images provided by CIPRES]

Carbon Reduces Bulk Prices on 3D Printing Resins, Announces New and Expanded Partnerships

Last year, Carbon introduced a bulk discount program for its 3D printing resins, giving the manufacturing and 3D printing industries easier access to its now-famous CLIP technology. Today, the company announced that it is driving down prices on certain resins further. EPX 82 (epoxy), EPU 41 (elastomeric polyurethane) and RPU 70 (rigid polyurethane) will now be offered in bulk volumes of 50 or more liters at $50 per liter, fulfilling Carbon’s 2017 promise to eventually offer its resins at under $100 per liter. This is a smart move by the company. The total cost of leasing Carbon systems and the materials was cost prohibitive so far. By reducing resin prices it lowers the part cost and lets more business cases flourish. This more than the previous hype shows us that Carbon is serious about manufacturing.

“The global appetite for using digital manufacturing for high-volume production is rapidly growing, as more and more manufacturers are implementing these next-gen technologies into their processes and supply chains,” said Dr. Joseph DeSimone, CEO and Co-founder at Carbon. “Carbon has made digital manufacturing a reality, and the skyrocketing need for large-volume production enables us to introduce the most radical reduction of resin pricing ever. This move will also create new high-value applications and opportunities that were previously impossible, helping to transform the modest, estimated $10B 3D printing world into a multi-hundred-billion-dollar industry.”

Outside the US, EXP 82 and RPU 70 will be offered in 50 or more liters at  €45 per liter, £40 per liter, CAD $65 per liter and JP¥ 7,500 per
liter. EPU 41 is not currently available outside the United States.

Carbon also announced today that it has expanded its network of production partners with the addition of European service bureaus Complete Fabrications, Erpro GroupKurz, and Rapid Product Manufacturing (RPM). This brings Carbon’s production network to more than 35 companies across the world.

“Digital fabrication technology has evolved from the early days of conventional 3D printing of prototyping applications to full-scale digital manufacturing systems,” said Dana McCallum, Head of Production Partnerships at Carbon. “An important part of Carbon’s strategy is to empower manufacturers around the world with the many benefits of digital fabrication. By being part of the Carbon Production Network, our partners have a truly scalable, complete digital manufacturing platform that offers a faster process and creates high-quality, end-use parts with properties similar to injection molding.”

Carbon is also expanding on an already-existing partnership with Core3dcentres, a global company that offers digital dental production and design solutions. The two companies are expanding their partnership internationally, extending it to four different continents and allowing a broader range of dental labs access to Carbon’s technology.

Carbon and Core3dcentres 3D printed products will now be available to customers in Australia, Benelux Union (Belgium, the Netherlands, and Luxembourg), Canada, Croatia, Germany, Japan, Malaysia, New Zealand, Poland, Singapore, Spain, the UK and the United States. The two companies are capitalizing on the recent growth of 3D printing in the dental market, which, according to a report by SmarTech Publishing, grew by more than 35 percent for the second year in a row and will continue to accelerate in coming years.

“The dental industry’s use of additive manufacturing has skyrocketed over the last couple of years, but it wasn’t always like that. For some time, dental labs were plagued by 3D-printed parts that were inconsistent and poorly made with a limited range of materials, but that’s all changed with Carbon,” said Mark Maier, Managing Director of Global at Core3dcentres. “We’ve seen tremendous success deploying Carbon’s technology in the U.S. – high throughput, accuracy of prints using durable, high-quality materials, constant uptime, first-class education and customer support. We want to implement the same success in our dental labs around the world.”

Core3dcentres has made products such as surgical guides and dentures more affordable using 3D printing technology, and the partnership with Carbon has helped the company improve turnaround time as well as the diversity of its offerings.

“Core3d is at the forefront of innovation in digital dentistry, and Carbon is thrilled to expand our partnership in support of our shared global vision and commitment to the continuing development and enhancement of the digital ecosystem,” said Brian Ganey, General Manager of Carbon’s Dental Business. “The age of digital 3D Manufacturing is here, and Carbon is redefining what’s possible with a complete dental solution that delivers on the promise of digital fabrication for production at scale.”

Carbon will be present at formnext, which is taking place in Frankfurt, Germany this week from November 13th to 16th. If you’ll be attending, stop by and visit Carbon in Booth B30, Hall 3.0.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

 

3D Printing News Briefs: November 9, 2018

Buckle your seat belts, because we’ve got a of news to share with you in today’s 3D Printing News Briefs, starting with more event announcements and moving on to several new partnerships, a workshop, and a 3D printing project. Nanogrande introduced its new 3D printer for nanometer metallic particles at Fabtech this week, while Sartomer and Nanoe are launching new 3D printing innovations at formnext. Creatz3D is working to accelerate ceramics 3D printing in Singapore, while partnerships were announced between Valuechain and Clad Korea, PostProcess and Rösler, and Additive Manufacturing Technologies and Mitsubishi Electric. Finally, two Fraunhofer Institutes are hosting an AM materials workshop, and a maker from YouTube channel Potent Printables is sharing a new project.

Nanogrande Introduced First 3D Printer for Nanometer Metallic Particles

At FABTECH 2018 in Atlanta this week, Nanogrande officially introduced its new 3D printer. The MPL-1, enabled with the company’s Power Layering Technology, is actually the first nanoscale 3D printer for metallic particles in the world, and could successfully open up new 3D printing horizons. Nanogrande has spent years working to develop the new 3D printer.

“Power Layering, while maximizing particle compaction, allows MPL-1 to use particles of all shapes, sizes and types. With this approach, we can easily print with particles as small as a nanometer, but also particles of 5 microns, what the industrial sector is currently seeking. At this size, the particles stick to each other, virtually eliminating the need for support structures typical to 3D printing. In this way, there is a considerable reduction in post- printing costs,” said Juan Schneider, the President and Founder of Nanogrande.

“Today we are witnessing the culmination of a long process of research and development that has given us the chance to set up a team that generates many innovative ideas. Alone, it is possible to have excellent ideas; but, as a team, we can bring these ideas to life. I am very pleased to highlight the success of the efforts of the people who work for Nanogrande.”

Sartomer Europe Introducing New UV-Curable Resins

At formnext in Frankfurt next week, the European division of specialty chemical supplier Sartomer, a business unit of Arkema, will be launching new products in its N3xtDimension line of UV-curable engineered resins as part of its new commercial 3D printing-dedicated platform. The new materials will help companies fulfill performance and regulatory requirements for multiple industrial applications, thanks to their excellent tunability and mechanical properties. At its booth H58 in Hall 3.1 at formnext, Sartomer will introduce N3D I-2105, with impact resistance for manufacturing functional parts; N3D-F2115, which can achieve varying levels of flexibility depending on post treatment; and N3D P-2125, which is perfect for prototyping with its homogeneous network and limited evolution of mechanical properties after post-curing is complete.

“We are addressing the needs of demanding and innovative 3D printing markets by partnering with global leaders to deliver custom material solutions for end-use applications. Through our range of products and services dedicated to additive manufacturing, we are supporting the 3D printing sector as it grows and continues to develop new applications,” said Sumeet Jain, the Global Director for 3D Printing Business at Sartomer.

Nanoe Launches Ceramic and Metal 3D Printer

In other formnext news, French company Nanoe, which is a leader in high-tech raw materials and also specializes in ceramics 3D printing, will be introducing its new Zetaprint system for desktop 3D printing of ceramic and metal materials. The team will perform a live demonstration of the 3D printer at the event, and explain the full 3D printing, debinding, and sintering process.

Additionally, the company will be launching its new stainless steel 16L Zetamix filament. These filaments, made up of a ceramic or metal powder and a polymer matrix, can be used to make high density parts in any FDM 3D printer.  Nanoe, which is also developing materials in Inconel and titanium, will also soon be launching a complete line of adapted FDM 3D printers. Visit the company at booth A74 in Hall 3.0 next week at formnext to see a live Zetaprint demonstration and 3D printed parts in various Zetamix materials.

Creatz3D Accelerating Ceramics 3D Printing in Singapore

Speaking of ceramics, Creatz3D Ceramics Service Bureau is dedicated to 3D printing ceramics parts. Founded last year, its parent company is Singapore-based 3D printer and AM software solutions seller Creatz3D, which partnered with 3DCeram Sinto in Limoges to create the service. This partnership, signed in 2016, facilitated the first installation in Singapore of 3DCeram Sinto’s Ceramaker 900 Ceramic 3D printer, at the Advanced Remanufacturing Technology Centre. The Creatz3D Ceramics Service Bureau, which offers diverse material options and a hassle-free experience, is the first, and only, ceramics-focused 3D printing service in the country, and is helping to increase awareness and adoption of ceramics for 3D printing.

“The addition of ceramics to Creatz3D’s portfolio ensures that they stay ahead of the pack in the competitive 3D printing landscape, and their expertise can demonstrate the game-changing capabilities that the technology has to offer to help advance design, engineering, and manufacturing,” said Sean Looi, the General Manager of Creatz3D.

Valuechain Signs Strategic Partnership with Clad Korea

British technology company Valuechain reports that it has signed a strategic partnership with manufacturing company Clad Korea, in order to digitalize 3D printing in East Asia. Both companies will be able to grow their association together in the initial agreement, in addition to bringing Valuechain’s solutions, including its flagship DNA am production control software, to the East Asian AM marketplace. This software addresses 3D printing production process niche requirements, like powder traceability and managing AM build plans.

“Valuechain’s DNA am technology is a unique offering to the market, with great potential to enable rapid and mass production of additive manufactured parts. As we look to enter the additive manufacturing market ourselves, we believe this product will give us a competitive advantage in the industry, and we’re excited to be able to contribute to the growth of this technology in Asia by helping to deliver this solution throughout South Korea,” said Brandon Lee, the CEO of Clad Korea Co. Ltd.

PostProcess Technologies Partnering with Rösler

Moving on with strategic partnerships in the 3D printing world, PostProcess Technologies Inc., a pioneer of software-drive 3D post-processing solutions, is working with Rösler Oberflächentechnik GmbH, which sells finishing systems for traditional manufacturing, to bring automated, intelligent post-print solutions to Europe. Rösler will provide PostProcess’ data-driven support removal and surface finishing solutions for 3D printing to the European market, making it the only surface finishing supplier that will be providing solutions tailored to the needs of both traditional and additive manufacturing. The two companies will debut their partnership next week at formnext, with PostProcess’ technology on display in its booth H68, as well as Rösler’s booth E20, both of which are in Hall 3.0.

“The additive space is rapidly growing, especially in Europe, and as such, the demand for an automated post-printing solution is accelerating. Rösler is a unique partner for PostProcess, bringing expertise in finishing systems with a broad European footprint, thousands of existing customers, and a strong presence across a range of industries that will greatly benefit from PostProcess’ proprietary and integrated software, hardware, and chemistry solution,” said Bruno Bourguet, the Managing Director for PostProcess Technologies.

Additive Manufacturing Technologies Announces Partnership with Mitsubishi Electric

Sheffield-based Additive Manufacturing Technologies Ltd (AMT) has entered into a partnership with Mitsubishi Electric in order to further develop its PostPro3D system with an integrated automation solution, which could provide a major productivity boost for 3D print post-processing. This new solution is based on Mitsubishi Electric’s MELSEC iQ-F Series compact PLC, HMIs, SCADA and MELFA articulated arm robots. While PostPro3D is already pretty impressive, with its ability to automatically smooth an object’s surface to 1μm precision, AMT wanted to further develop the system with certified automation products so it would be suitable for Industry 4.0. Now, PostPro3D is equipped with a Mitsubishi Electric power supply and low voltage switchgear, servo drives and motors, FR-D700 frequency inverters and the optional six-axis robot arm.

“To realise our concept, we needed an automation partner that could provide the whole range of machine control systems, as well as the actual robotics. This is fundamental to truly integrate our machine into the production line of the future as well as to benefit from a lean, single vendor distribution model,” explained Joseph Crabtree, CEO at AMT.

“Mitsubishi Electric was the clear choice because it offers a one stop shop for state-of-the-art automation solutions. In this way, we can be sure that the different components are compatible and can share data. Overall, the company can offer us products that adhere to UL, CE as well as Industry 4.0 requirements.”

Fraunhofer AM Materials Workshop 

On November 29 and 30 in Dresden, Germany, Fraunhofer IKTS and Fraunhofer IWS are holding a workshop called “Hybrid materials and additive manufacturing processes.” The two institutes are working together to organize the workshop, which will be held in English and discuss innovative technologies for 3D printing metallic and ceramic components, in addition to application-specific manufacturing of material hybrids. Participants in the workshop’s practical insight sessions will be able to see diverse AM devices for multimaterial approaches live and in action.

“Why is that interesting? Additive manufacturing technologies for material hybrids open up new possibilities in production for diverse industrial branches,” Annika Ballin, Press and Public Relations for Fraunhofer IKTS, told 3DPrint.com. “It is not only possible to realize complex geometries, but also to functionalize components (sensors, heaters), to individualize production (labeling, inscriptions) and to combine different materials properties in one component (conductive/insulating, dense/porous etc.).”

The workshop, which costs €750, will be held at Fraunhofer Institute Center Dresden, and registration will continue until November 22.

DIY 3D Printed Linear Servo Actuators by Potent Printables

A maker named Ali, who runs the Potent Printables YouTube channel, recently completed a neat design project – 3D printed linear actuators. Ali, who was partly inspired by a Hackaday post, said that the project has received a great response on both Twitter and Instagram. He designed the parts in SOLIDWORKS, and controls them with an Arduino Uno. The simple rack-and-pinion design, perfect for light loads, comes in two sizes for different space constraints and force outputs.

“Each design has a pinion that has to be glued to a servo horn, and a selection of rack lengths to suit your needs,” Dan Maloney wrote in a new Hackaday post about Ali’s project. “The printed parts are nothing fancy, but seem to have material in the right places to bear the loads these actuators will encounter.”

Check out the video below to see the 3D printed linear actuators for yourself:

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

Ford and trinckle Partnering to Automate Design of 3D Printed Production Tools

3D printed lift assist

Popular automotive manufacturer Ford, which has long used 3D printing to fabricate assembly tools and was recently recognized for its work with the technology, is now partnering up with award-winning software company trinckle in order to automate the design process for its 3D printed production tools. The two companies will present the joint project next week during formnext.

“The additive manufacturing itself is no longer the dominating cost factor limiting the scalability of the application. Up to 50% of the total costs per tool are caused by the manual design, which is the new bottleneck. For each new line and each special edition, these tools must be specifically designed to position the badges with exact accuracy,” explained Lars Bognar, an engineer with Ford Research & Advanced Engineering Europe. “This design task is not a trivial one, as the tools have to adapt precisely to the free-form surfaces of the car body sheet. It can easily last between two and four hours to create an appropriate AM-ready design. Time that is hard to spend for the designers, who are already working at full capacity. In the worst case, a short-term demand can result in a delay of assembly because the corresponding tools are not available. It was time for us to rethink the design process from scratch, and that’s when we came across the trinckle team.”

Based in Berlin, trinckle, a 3D printing service and software company, specializes in product configuration and automated design. The company uses its cloud software paramate to create software applications, which can integrate the user into the process, for the automated design of 3D printed products across a wide range of industries, including automotive.

Many automotive manufacturers use 3D printing to fabricate assembly aids and hand tools, like fixtures and jigs. There are many advantages, including lower weight and production costs and faster availability. Ford, which currently has over 50 different 3D printed tools in serial production, is working with trinckle to further scale the applications of the technology.

Bognar and his fellow engineer Raphael Koch didn’t want to settle for just saving a little money, and decided to, as trinckle put it, look “at the AM application as a whole.” They decided to use a hand tool called a labeling jig, which places model badges on the body of a vehicle, as an example.

trinckle developed an internal application for Ford so it could efficiently generate these tools by creating new jig designs in just minutes. Employees can upload the car body’s model data, and the necessary badges, through an intuitive user interface. Then, with just a click of the mouse, standard elements like edge guides, handles, magnet mounts for fixation, and text fields can be easily added. Software algorithms generate the tool’s geometry so it fits the contour of the car body.

“The trinckle software application does not only dramatically reduce manual design times and costs, but also streamlines the entire process,” said Koch. “We enable our employees on the shop floor to take over more responsibility and relieve our designers at the same time. The latter can focus on their core activities again.”

Now, instead of lasting two to four hours, the design process only takes 10 minutes, thanks to the straightforward handling provided by paramate. Because AM-compliant design expertise is not necessary, assembly line employees can easily design 3D printable tools on their own and independently carry out tool optimization iterations.

Using automation to design 3D printable labeling jigs is only the first step in the right direction for Bognar and Koch, and in the near future, other additive tools will likely undergo similar automation.

To learn more about this work with Ford, and its other business applications, visit trinckle at booth C07 in Hall 3.0 at formnext in Frankfurt next week. Bognar and Dr. Ole Bröker, the Head of Business Development at trinckle, will also be presenting the joint project at the TCT Conference during the show.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

Roboze to Debut Xtreme 3D Printer Series and New High Performance 3D Printing Materials at formnext

Roboze, a leader in functional 3D printed prototypes produced in industrial materials like PEEK, CarbonPA, and ULTEM AM9085F, manufactures 3D printers that can handle high-performance, high temperature polymers, such as SABIC’s LEXAN EXL AMHI240F. Now, the company is getting extreme with FFF 3D printing, with an announcement about the new desktop production 3D printing series it will debut at next week’s formnext in Frankfurt.

“The new Xtreme solutions, is the result of intense work by the entire Roboze team, that has allowed us today to create a new line of systems capable of meeting the most extreme needs of our customers, offering greater versatility in the materials and accuracy of the prints as well as better performance,” said Alessio Lorusso, CEO & Founder of Roboze. “We have rewritten the history of 3D printing and the Formnext 2018 represents the best showcase to tell the story.”

The new Xtreme 3D printer series, made up of the Roboze One Xtreme and Roboze One + 400 Xtreme, will strengthen the company’s PEEK and CARBON PEEK solutions for FFF 3D printing, bringing users closer to true additive production.

Roboze has become a major manufacturing player thanks to its innovative technology, like the Beltless System that allows operators from around the world to 3D print both finished parts and prototypes with 25-micron mechanical tolerances, which all but guarantees repeatability and, as the company puts it, “immediate economic advantages.”

But this new Xtreme series launch is an even bigger deal for the company, as it sets up a point of contact between the production ARGO 500 3D printer and its desktop One and One + 400 systems.

Rocco Maggialetti, head of the mechanical design of Roboze, explained, “The strong collaboration between all the members of Roboze’s R & D team has allowed us to design this new system that improves the previous one, guaranteeing longer useful life of the machine.”

The newly designed covers for the Xtreme 3D printers are made of sheet metal, and designed to lower maintenance on the machines while also improving their robustness. In addition to providing a more elegant aesthetic, this new feature also makes the Roboze Xtreme series extremely quiet.

The Roboze One Xtreme and Roboze One + 400 Xtreme 3D printers were built by Roboze engineers who changed up the status quo in order to offer extremely versatile and accurate 3D printing solutions. The series feature a new, advanced sensor system, which includes an endstop aimed at leveling the semi-automatic plan, WiFi and USB connections, motor encoders for closed loop control that monitor the printing process, and optical endstop/touchless, which promises less maintenance because it decreases typical issues.

The Beltless System on this new 3D printer series has also evolved from the original, and features racks machined with chemical nickel plating. This lowers the contact friction between the rack and pinion for faster print speed, and also increases the resistance to wear and corrosion.

The Xtreme series also includes a Cabinet Support System (SSC), which is meant for unloading machine vibrations and controlling material temperatures, as well as storing coils so they’re not exposed to atmospheric agents. Just like with the ARGO 500 and the Roboze One + 400, these new 3D printers also house a Vacuum Box for vacuum generation, which provides greater first-layer flatness and print surface adhesion for faster 3D printing.

Roboze 3D printers are certainly impressive, thanks in large part to the versatility of materials they can handle. Many of these were developed specifically to add enhancements to parts with properties not dissimilar from metals. In addition to its Xtreme desktop production 3D printer series, Roboze is also introducing several new materials at formnext 2018.

Carbon PP is the first, and is good for use in automotive applications, because it promises the same high performance of PP (polypropylene), combined with the advantages of carbon fiber.

“Carbon PP’s carbon fiber provides a 25% resistance increase level compared to PP. The addition of specially selected carbon fibers improves the mechanical properties of the material and increases its HDT maintaining its properties even at a higher temperature than that of PEEK,” said Maria Luisa Geramo , PhD, Head of Applications – Roboze R&D Material Engineer.

According to Roboze, its new PP has excellent electrical insulating properties and high resistance against abrasion, chemical agents, and shock, and “represents the most commodities polymer primarily used in applications for objects of common use and automotive components,” while its new Glass PA – a polyamide loaded with glass spheres – is a good electrical insulator, and ensures high dimensional stability because it has lower moisture absorption and increased mechanical properties when compared to standard polyamide.

Carbon PEEK, which has excellent mechanical properties and thermal stability, is already used with the company’s ARGO 500 production 3D printer, and is the only new material that’s available for use solely on the Roboze One + 400 Xtreme.

Come see all of Roboze’s new 3D printing materials and solutions at next week’s formnext – visit the company at booth C78 in Hall 3.1.

Discuss this news and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

3D Printing News Briefs: November 7, 2018

We’re starting with more formnext announcements on today’s 3D Printing News Briefs, then moving on to classes and workshops. Verashape is launching a new 3D printer at next week’s event in Frankfurt, while Cubicure will be presenting its new CSS software solution for 3D printing. In the meantime, SelfCAD is releasing an updated version of its software. Finally, the EU-funded METALS project has published an online 3D printing course, and the people behind a new program for 3D printed construction technology in India are organizing a workshop on construction 3D printing.

VSHAPER 500 Med Launching at formnext

Just like Polish 3D printer manufacturer Verashape introduced its 5-Axis VSHAPER 3D printer at last year’s formnext, the company is taking advantage of the 2018 event in Frankfurt, estimated to gather a record number of participants in its largest space yet, to launch its newest 3D printer – the VSHAPER 500 MED, which was developed to meet the growing demands for spatial printouts used in the medical field. The VSHAPER 500 MED, which includes a vacuum table, a closed chamber with UV light, and silver-based antibacterial coatings, is perfect for creating precise, high quality 3D printed medical models. The 3D printer also has a 420 x 420 x 400 mm workspace, along with an extruder with two V-JET heads.

“3D Printing technology is becoming an increasingly valuable tool in medical diseases treatment, fighting disabilities and increasing the effectiveness of complicated surgeries,” said Marcin Szymański, the company’s VSHAPER Product Manager. “The technology is already used to aid the creation of dental crowns, bone parts, blood vessels and hip-joints prosthetics.”

To see the new VSHAPER 500 MED 3D printer for yourself, visit Verashape at formnext from November 13-16 at Stand 3.1-G88.

Cubicure Presenting CSS Software Solution at formnext

Cubicure, a spin-off company of TU Wien, will be presenting its new, platform-independent software solution for additive manufacturing data preparation at formnext. The software, called CSS for Cubicure Support & Slice, can generate complex support geometries, as well as edit STL files. The comprehensive tool allows users to generate, edit and repair 3D models, in addition to easily exporting layer information for the 3D printing process. Developed with graphic software provider DeskArtes and based on 3Data Expert, CSS is applicable for DLP and SLA (stereolithography), and Cubicure’s own Hot Lithography technology, and also comes with an intuitive import function of several surface models, a user-friendly GUI, and data conversion tools.

Dr. Robert Gmeiner, the CEO of Cubicure GmbH, said, “With this software solution Cubicure offers another important product for the additive manufacturing value chain.”

You can visit Cubicure Booth G59 in Hall 3.1 at formnext.

SelfCAD Releasing Updated Software

Browser-based 3D design platform SelfCAD, founded in 2015, combines 3D modeling, slicing, and several other tools and functions in one easy program. Now, SelfCAD has launched an updated version of its software, which was developed based on users’ expectations of powerful but easy to use 3D modeling software. Version 2.0 of the modeling software includes more capabilities, like a 3D sketching toolset to increase the user’s level of freedom, and simplified design, including an intuitive user interface with a less confusing toolbar that makes it easy to use, even for beginners.

Additional features include new selection modes, a simple objects view with both light and dark modes, a measurement option for easier design of accurate models, new sketching brushes, and new shapes. What’s not new is that SelfCAD, with a price of $14.99 a month or $139.99 a year after a 10-day free trial.

METALS Project Publishes Online 3D Printing Course

The three-year MachinE Tool Alliance for Skills (METALS) project, funded by the European Union under the Erasmus+ program and coordinated by CECIMO, ended last week, but not before releasing a free, online course about the fundamentals of AM. The project was characterized by a comprehensive partnership across Germany, Italy, and Spain, with a goal of increasing the competitiveness of Europe’s machine tool industry by providing the necessary skills to benefit from new disruptive technologies, such as 3D printing. The e-learning course, which is available in English, German, Italian and Spanish, intends to support the development of the AM workforce, and includes 27 learning units divided along three main areas: knowledge of AM, work-process, and entrepreneurship.

“Training and education are important elements for the industrialisation of additive technologies in Europe, which is the objective of CECIMO,” said Filip Geerts, CECIMO’s Director General. “With METALS, learners will be able to access relevant online knowledge at no cost and start building their competences to interact with AM. Coupled with on-hands training, which remains essential, initiatives like METALS are useful to increase the overall awareness of what AM concretely is and entails.”

National Workshop in India on 3D Printing Construction

Indian 3D printing startup Tvasta Manufacturing Solutions, based out of Bangalore and Chennai, is a design and manufacturing organization that specializes in industrial 3D printing. The startup, founded by a group of alumni from the Indian Institute of Technology Madras, developed India’s first 3D printed concrete structure in collaboration with the IIT Madras Civil Department. Now, Tvasta and IIT Madras are organizing a national workshop, to be held in Chennai on November 16, all about 3D printing in construction.

The objective of the conference is to present how construction 3D printing has the potential to majorly boost the country’s affordable housing sector. Many reputable speakers from around the world, including academic and industry experts, have been invited to speak about developments in automation, specialized concrete mixes, structural design, and other topics during the workshop. The conference will be held in the IC & SR Auditorium at IIT Madras.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

MetalMaker 3D Launching Rapid Prototyping Service for Metal 3D Printed Parts On Demand

Tomorrow, North America’s largest metal forming, fabricating, welding, and finishing event, FABTECH, will begin at the Georgia World Congress Center in Atlanta. Many industry announcements will be made at the trade show, including one from advanced manufacturing startup MetalMaker 3D. The Connecticut-based company has just launched its new rapid prototyping service for on-demand 3D printing of metal parts. The process, which integrates investment casting with 3D printing, is said to be a more practical alternative to direct metal laser sintering, or DMLS, 3D printing.

“Until now, there has been a clear divide between the promise of metal additive manufacturing and reality of the types of metal parts that can practically be used in industry,” Eric Sammut, the CEO of MetalMaker 3D, told 3DPrint.com. “We are bridging that gap and offering a solution that maintains the performance of traditional manufacturing while delivering on the promise of additive manufacturing.”

Backed by seed accelerator Techstars and Stanley Black & Decker, MetalMaker 3D offers an industry-compatible solution for 3D printing metal parts that addresses many limitations of DMLS. Because parts made with DMLS 3D printing don’t have the same material properties as traditionally manufactured components, they are often also too expensive to use for the purposes of prototyping. But, MetalMaker 3D claims that it can offer truly isotropic metal parts, which are up to ten times cheaper than parts made with DMLS, with just one week of lead time.

Sammut explained, “Our goal is to enable manufacturers to use this additive pattern investment casting process in-house to produce custom metal parts in less than 24 hours.

“By combining additive manufacturing with investment casting, we get the best of both worlds: the design freedom, customizability, and rapid iteration of additive, along with the consistent mechanical, dimensional, and material properties of metal casting.”

The startup’s process can make functional metal parts with the design freedom inherent to 3D printing, while also providing the “isotropic mechanical and dimensional properties” that occur with high precision casting.

Currently, MetalMaker 3D is developing small-scale foundry systems for in-house investment casting so manufacturers can use the process for prototyping and low-volume production of complex metal parts, and is already working with several manufacturers, including partner Stanley, on real-world case studies. But, at FABTECH tomorrow, the startup will officially launch its rapid prototyping service, which involves working closely with its manufacturing customers to “refine their commercial product offering.”

While MetalMaker 3D does plan to expand its range of material options in the future, it will begin by offering rapid prototyping for aluminum parts with the aluminum 356 casting alloy – one of the most widely used in both the aerospace and automotive industries. In addition, the startup will also be offering optional T6 heat treatments as part of its new prototyping service.

Sammut said, “We can match the alloy, process, and heat treatment to create functional metal parts that are indistinguishable from commercially manufactured components.”

MetalMaker 3D will be running its prototyping service at the same time it works to continue developing its product offering, so its manufacturing customers can complete the process in-house. To request quotes and order custom 3D printed metal parts through the startup’s new on-demand rapid prototyping service, just fill out the quote form to receive a response within 48 hours…once FABTECH is over, of course.

If you will be attending the trade show in Georgia this week, visit MetalMaker 3D at Booth B5642 in the Additive Pavilion.

Discuss this news and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

Carbon Announces Changes to Executive Leadership Team and Board of Directors

Today, Carbon announced that it has appointed Ellen J. Kullman as Lead Independent Director of its Board of Directors. In addition, the company appointed Deborah M. Messemer to its Board of Directors and promoted Elisa D. Martel to Chief Financial Officer. Martel will chair Carbon’s newly formed Audit Committee.

“These strategic updates to Carbon’s Board and executive team strengthen our corporate governance and are in line with our maturing as a company,” said Dr. Joseph DeSimone, Carbon’s CEO and Co-founder. “Ellen, Debbie and Elisa are extraordinary executives with histories of strong leadership and business acumen, and the deep experience each of them brings is invaluable to the continued growth and success for Carbon.”

Ellen J. Kullman

Kullman served as Chair of the Board of Directors and Chief Executive Officer of DuPont from January 2009 to October 2015. During her tenure, she helped to stimulate growth and position the company to be a leader with its scientific and market knowledge. Even before being named CEO, she was helping the company to survive the financial crisis of 2008, moving it away from commoditized businesses and establishing it as a market-driven scientific company.

Kullman has a Bachelor of Science in Mechanical Engineering from Tufts University and a Master of Science in Management from the Kellogg School of Management of Northwestern University. She is also a member of the boards of of directors of United Technologies Corporation, Dell Technologies, Amgen, and Goldman Sachs, as well as serving on the board of trustees of Northwestern University and the board of overseers of Tufts School of Engineering. She is a member of the National Academy of Engineering and co-chairs Paradigm for Parity, a coalition of business leaders dedicated to addressing the corporate leadership gender gap.

“It has been an honor to serve on Carbon’s Board of Directors, and I am very much looking forward to continuing to work with this dynamic, deeply invested team as we embark on Carbon’s next chapter,” said Kullman. “With its powerful fusion of hardware subscriptions, cloud-based software updates, and ongoing resin sales, Carbon’s ground-breaking Hybrid-SaaS business model is a powerful new entry in the connected-products business world. Hybrid SaaS combines the long-term revenue predictability of SaaS with the greatly accelerated growth potential enabled by large-scale manufacturing systems, giving Carbon the opportunity to scale at unprecedented speed.”

Deborah M. Messemer

Messemer served as the Managing Partner of KPMG’s Bay Area and Northwest region until her retirement in September of this year. In that position, she led more than 3,000 team members in 10 offices across all functions, including audit, tax and advisory. She was honored as Financial Woman of the Year by the Financial Women of San Francisco (FWSF) in 2016, and for more than seven years was consistently named as one of the Bay Area’s Most Influential Women in Business by the San Francisco Business Times.

Messemer also serves on the board of directors for Allogene Therapeutics, and has been on several other non-profit and advisory boards including the Bay Area Council, the San Francisco Committee on Jobs, the California Chamber of Commerce, the San Francisco Chamber of Commerce, the UC Berkeley Fisher Center Policy Advisory Board, San Francisco Ballet, and Posse. She is a member of the National Association of Corporate Directors (NACD) and the San Francisco Chapter of Women Corporate Directors (WCD). Messemer has a Bachelor in Accounting from the University of Texas at Arlington.

“I am very excited to join the Carbon Board, and look forward to contributing to the company’s growth and market leadership across a vast array of industry sectors,” said Messemer. “The era of digital manufacturing is here, delivering digital design and fabrication, QA/QC and end-to-end, data-centric production solutions.Carbon is uniquely poised to be one of the most significant manufacturing innovators of our day.”

Elisa de Martel

 

 

 

 

 

De Martel has been acting as Vice President of Finance for Carbon since February 2018 and is responsible for the company’s overall financial activities and global finance organization. Before that, she was with Apple Inc. for 11 years, most recently as Director of Manufacturing Finance. Prior to that, she was a a finance manager with Citroen UK and a supervisor at PricewaterhouseCoopers. De Martel earned a Master’s degree in Political Economy from the University of Essex, and a Master’s degree in Business Administration from the EDHEC Business School.

“Carbon is disrupting the manufacturing industry with a connected, software-first, digital solution,” de Martel said. “I am delighted to be part of this team, and look forward to contributing to Carbon’s continued growth as we expand our ecosystem and deliver on our deep commitment to enabling our customers to move to mass digital and sustainable production at scale.”

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

 

Zortax introduces post-processing solution for FDM 3D prints

Zortrax, a Polish 3D printer and materials manufacturer, has introduced its latest post-processing device which removes visible layering from FDM 3D prints. The Zortrax Apoller Smart Vapor Smoothing (SVS) device, which will be unveiled at Formnext 2018, is a desktop system utilizing acetone and MEK solvents on 3D models. The Zortrax Apoller Smart Vapor Smoothing […]

3D Printing News Briefs: November 3, 2018

In this month’s first edition of 3D Printing News Briefs, we’re starting again with news about formnext, before moving on to other business news, a medical story, and a case study. Mimaki will be bringing over 10 million colors to formnext, and M. Holland has signed a distribution agreement with 3DXTECH. Some exciting medical news out of South Korea – the country’s first chest transplant using 3D printing has been successfully completed. Finally, LulzBot published a case study about its work to help produce a haunting stop-motion animation short film.

Mimaki Showcasing Over 10 Million Colors at formnext

At formnext in Frankfurt later this month, Mimaki will be bringing its advanced, full-color 3D printing technology, under the theme of ‘Shape the Future in Colour.’ Its 3DUJ-553 3D printer, which offers consistent results in over 10 million colors, will be running live during the event so visitors can see the super fine, photorealistic detail it offers. In addition, through a collaborative project with Materialise, Mimaki’s 3D printed models are currently available under the name Multicolor+ through i.materialise. These models, 3D printed in UV-cured photopolymer resins with inkjet printing heads, have a strength that’s higher than other color 3D printing technologies and can be handled directly off the 500 x 500 x 300 mm build plate of the 3DUJ-553.

“Materialise is currently trialling Mimaki’s full-colour 3D printing technology. The material, Multicolor+, allows us to create smooth surfaces with vibrant colours that enhance the value of a finished object. Multicolor+ offers more vivid and intense colours and enables stronger, sturdier materials with a minimum wall thickness of 1mm. It also allows for printing interlocking parts. As a result, Multicolor+ is ideal for printing decorative parts such as figurines, avatars and architectural models,” said Miranda Bastijns, Materialise Director Manufacturing Online.

Come see Mimaki’s full-color 3D printing capabilities for yourself at booth D26 in Hall 3.1 at formnext, November 13-16.

M. Holland Signs New Distribution Agreement

This spring, international thermoplastic resins distributor M. Holland signed its first 3D printing product distribution agreement with Owens Corning to sell the company’s XSTRAND product line. Now, the company has announced that it signed its second distribution agreement, this time with Michigan-based manufacturer and supplier of high-performance 3D printing materials and parts 3DXTECH. This agreement will provide M. Holland’s industrial manufacturing clients with access to a larger team of commercial and technical support resources, in addition to adding over 24 materials, like carbon fiber and fire-retardant materials, to the company’s current 3D printing product portfolio.

“At M. Holland, our mission is to give our industrial clients agnostic advice about how to integrate 3D printing into their operations to create value. The 3DXTECH product line gives us a full portfolio of high quality, engineering-grade materials, which we can marry with objective recommendations about methods and machinery to deliver the optimal solutions to our clients,” said Haleyanne Freedman, M. Holland’s global 3D printing and additive manufacturing engineering specialist.

South Korea Completes First Local Chest Transplant Using 3D Printing

3D printed sternum model

A 55-year-old man, who chooses to remain anonymous, has just received the first chest transplant using 3D printing in the country of South Korea. Following Spain, Italy, the US, Britain, and China, this makes it the sixth nation in the world to complete this amazing medical innovation. The patient had a malignant tumor in his thorax, and while he’d had four other surgeries and anti-cancer drugs in the past, these conventional methods did not ultimately work, and the cancer returned to his body.

“All of a sudden, the patient once again was feeling pain, and the lump on his chest became clearly visible. This meant the cancer had grown resistant,” explained Professor Park Byung-Joon with Chung-Ang University Hospital. ” We felt the new treatment was necessary and so we had to perform surgery urgently.”

He knew that 3D printing could help customize treatments for patients. Together with the rest of his team, Professor Park created a 3D printed breastbone for the patient that would have been nearly impossible to create with other methods of manufacturing. The hope is that this 3D printed chest transplant will help spur additional innovation in South Korea.

To learn more, watch the video below:

LulzBot Helps Produce Stop-Motion Animation

Dale Hayward and Sylvie Trouvé of Montreal-based See Creature Animation, together with the National Film Board of Canada, have been working together for the past three years to produce the short film Bone Mother, a stop-motion animation version of the Slavic folklore tale of the witch Baba Yaga. For the first time, See Creature decided to use 3D printing, and chose the LulzBot Mini as the affordable, reliable machine they needed to create nearly the entire film with 3D printing. Then, the team decided to add three more to the studio, due to how much 3D printing was required – over 1,500 unique faces were needed, and See Creature used woodfill PLA by colorFabb, with a light infill, to make them. Adjustments were also made to reduce print precision, as one character needed plenty of wrinkles.

“Our main character, Baba Yaga is an ancient witch and naturally she should have wrinkles. So instead of sculpting them into the computer model, we found that if we print the face lying down, the layers look like a topographical map and the print naturally accentuated the curves of her face, creating a lot of the wrinkles for us,” Hayward explained. “We loved the look and it fit her character so much that we actually lowered the resolution to get even more stepping.”

“Where technology has forced traditional hand-drawn animation to adapt or fade away, stop-motion has always ridden the tech wave, so much so that there has become a renaissance of stop-motion films over the last decade. This is attributed to technologies like 3D printing…. they have opened the doors to greater creative possibilities at a lower budget.”

Bone Mother, which clocks in at less than nine minutes, recently premiered in Toronto. See it for yourself below:

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the comments below.