Markforged Metal 3D Printing Replaces Obsolete Part for Legacy Race Car

Founded in 2013 by Greg Mark, Massachusetts-headquartered Markforged quickly became a powerful presence in the 3D printing industry, first with carbon fiber reinforced 3D printing and then developing a novel metal 3D printing technology.

With a range of end-to-end processing systems, Markforged offers its customers access to the boldest advantages in additive manufacturing—not only through rapid prototyping but also rapid speed in the fabrication of high-performance parts. Past the initial investment, industrialists are able to see substantial savings, along with a new ability to innovate upon casting aside the restrictions of older technology. These benefits drew the attention of Tecron, a European company known for its manufacturing and engineering services in the automotive industry.

In a recent case study, the Markforged team details how metal AM processes improved the production of high-performance parts needed for the vintage race cars Tecron has been working on lately. Metal 3D printing offered the opportunity for Tecron to make a shift, especially in working with one of their most important clients, Škoda Motor, to streamline the production of an original, discontinued racecar carburetor.

Tecron’s collaboration with Škoda Motor exemplifies one of the most exciting benefits in 3D printing—offering the ability to create parts that may have become obsolete and are nearly impossible to find. We have followed other projects too within automotive and railways applications, with 3D scanning of original parts allowing for better rebuilding and maintenance.

In the case of the missing design for the carburetor, the original die used in traditional die-casting methods was lost long ago. The Tecron design team not only made an affordable copy of the initial race-car component, but they also modified the structure for better optimization.

Tecron replica carburetor

In another study, Czech Aerospace Research Centre (VZLU) partnered with Tecron for prototyping and testing new parts. Engineers were tasked with creating a new wing design and challenged with finding a method that was not cost-prohibitive. Prototyping can require extensive (and expensive) measures for applications like aerospace, and VZLU realized the need for different, advanced technology in creating complex models like their innovative nozzle design.

“The narrow slit in the design improves overall wing performance, and was crucial to the success of the process. Deconstructing the design into several more manageable parts would have a negative impact on performance,” stated the Markforged case study.

The use of electrical discharge manufacturing (EDM) was another possible choice, but was not cost-effective and would have taken much longer than with metal 3D printing. In using the Metal X by Markforged, the engineers were able to complete their highly customized design, quickly and affordably.

After analyzing over 100 additive use cases, Markforged discovered that industrial users are concerned with the following:

  • Accessibility
  • Design freedom
  • Physical strength and durability
  • Reliability

Data was compiled from the 2020 Additive Trends Report by Markforged, also showing that 46 percent of companies expect to be using additive manufacturing within the next two years. Download the study here.

[Source / Images: Markforged]

The post Markforged Metal 3D Printing Replaces Obsolete Part for Legacy Race Car appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing News Briefs, June 10, 2020: 3D Systems, nTopology, Jellypipe

We’re discussing an upcoming event and some business news in today’s 3D Printing News Briefs. 3D Systems is holding a virtual trade show next month. nTopology and Yamaichi have signed an agreement, and a 3D printing platform has announced the onboarding of Europe’s largest purchasing and marketing association for industrial B2B.

3D Systems Holding Virtual Trade Show

On Wednesday, July 8, 2020, 3D Systems will be holding an exclusive virtual trade show centered on helping manufacturers keep their competitive advantage by using digital manufacturing solutions to fix supply chain dependencies, streamline supplier distribution, reduce supply interruptions, and lower risk. By integrating both additive and subtractive technologies into the environment, businesses can improve their productivity and agility, and offer customers new innovations. 3D Systems’ own Phil Schultz, Executive Vice President, Operations, and Radhika Krishnan, Executive Vice President and General Manager – Software, will give the keynote address for the event.

“Phil Schultz and Radhika Krishnan outline the essence of agile manufacturing, explaining in practical terms how to transform your environment to deliver a digital end-to-end manufacturing workflow that is fit for today and perfect for tomorrow.”

The event will kick off at 9:30 am EST and, in addition to the keynote, will include live webinar presentations and a virtual exhibit hall. Register here. If you’re unavailable to attend on the day of, the virtual trade show will be available on demand for the 30 days following the event.

nTopology and Yamaichi Sign MoU

Software startup nTopology has signed a Memorandum of Understanding (MoU) with Yamaichi Special Steel (YSS) to bring its next-generation nTop software platform to Japan. YSS is part of the automotive and heavy industry manufacturing supply chain in Japan, and its additive division promotes 3D printing and DfAM in the aerospace, automotive, and medical industries. The two have set up a reseller and service agreement, where YSS will bring nTop to its Japanese customers, providing support and training to users. Then, the Cognitive Additive solution of YSS will be connected to the nTop platform, to help users predict cost and printability.

To kick off the partnership, the YSS Additive Manufacturing team used topology optimization to redesign a brake caliper. As the part is used in a high temperature and fatigue environment, YSS designed a TPMS-based heat exchanger for the caliper, and also added an oil circuit and shielding surfaces. The brake caliper was 3D printed out of aluminum alloy AlSi10 using laser powder bed fusion (L-PBF) technology.

Jellypipe Onboards PVH Future LAB and E/D/E

German 3D printing platform Jellypipe uses its Jellypipe Eco-system to help companies take their 3D business to the next level, and features a comprehensive marketplace and the largest 3D printing factory in the D-A-CH region. Now, it’s announced the onboarding of PVH Future LAB, an innovation platform for technology-driven business models, and Einkaufsbüro Deutscher Eisenhändler GmbH (E/D/E), which drives PVH and is the largest purchasing and marketing association for industrial B2B in Europe. Both will now connect to the Jellypipe Eco-system.

“With Jellypipe’s 3D ecosystem – the connection with 3D specialists and our partners is a most important step in the digital automation and supply of 3D printed parts,” said Thilo Brocksch and Frederik Diergarten, both General Managers at PVH FUTURE LAB GmbH. “We can now offer our customers a new and wide process range for 3D printed products.”

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

The post 3D Printing News Briefs, June 10, 2020: 3D Systems, nTopology, Jellypipe appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing News Briefs: December 3, 2019

We’re starting today’s 3D Printing News Briefs out with a new case study, and then concluding with some business. CRP USA has been working with additive manufacturing in the motorsports sector. Moving on, Gardner Aerospace has acquired FDM Digital Solutions Ltd. Finally, the Head of Engineering at Formlabs is joining up with Digital Alloys.

CRP USA AM in Motorsports Case Study

3D printed oil pan in Windform SP, University of Victoria’s Formula SAE race car 2019 version

The University of Victoria (UVic) Formula Motorsport team has been using 3D printed oil pans on their SAE competition cars for the last four years that were created with CRP USA‘s laser sintering process, and Windform TOP-LINE composite materials. As a CRP case study details, carbon-composite Windform XT 2.0 was used to print the oil pans for the race vehicles in 2016, 2017, and 2018, and while they performed “amazingly” the first two years, the engine overheated during a test of last year’s car, which caused the temperature of the oil to rise above what the pan could handle.

For this year’s vehicle, the team decided to use the carbon-filled Windform SP composite material to 3D print the oil pan, as it has a higher melting point. They also made the mating flange thicker to lessen the chances of failure, and both of these changes led to a better, more robust oil pan. At next week’s Performance Racing Industry (PRI) Trade Show in Indianapolis, CRP USA will be showing off some of the other 3D printed solutions it’s helped create for the motorsports industry at booth 1041 in the Green Hall.

Gardner Aerospace Acquires FDM Digital Solutions

Graeme Bond (FDM) & Dominic Cartwright (Gardner Aerospace)

Global manufacturer Gardner Aerospace announced its acquisition of FDM Digital Solutions Limited, one of the UK’s top polymer additive layer manufacturers. FDM was formed in 2012, and its business model of original design solutions, manufacturing capability, and customer collaboration is successful in the aerospace, automotive, medical, and motorsports industries. The company will now become part of the new Gardner Technology Centre business unit, which is focused on R&D and advanced technology.

“Gardner Aerospace is breaking new ground in terms of technology. The acquisition of FDM and the creation of our new Technology Centre business unit provides us with the perfect opportunity to expand our technical knowledge, R&D capability and product offering, and aligns us with our customers’ growing expectations on innovative solutions, continuous improvement and cost competitiveness,” stated Gardner Aerospace CEO Dominic Cartwright.

“The role of 3D printing within manufacturing is constantly expanding and this newly acquired additive layer manufacturing capability complements Gardner’s long-standing capabilities as a producer of metallic detailed parts and sub-assemblies.”

Formlabs’ Head of Engineering Joins Digital Alloys

Carl Calabria

Carl Calabria, an AM industry veteran and the Head of Engineering at Formlabs, is leaving the company to join Digital Alloys, Inc. as its CTO. The Burlington, Massachusetts-based 3D printing company introduced its unique Joule printing last year, which it claims is the fastest way to make the hardest metal parts, as the wire-feed process doesn’t require any metal powder. By adding Calabria to its team, where he will be responsible for the company’s research and engineering, Digital Alloys can accelerate the release of its high-speed metal AM process.

“Leaving Formlabs was a difficult decision, but I was drawn to the size of Digital Alloys’ market, the team, and the opportunity to use Joule Printing to deliver metal printing solutions that have the speed, cost and quality needed for volume manufacturing of larger parts,” said Calabria. “The remarkable technology is producing titanium and tool steel parts faster, and at lower cost than conventional manufacturing processes.”

Watch this video to see Digital Alloys’ Joule printing process in action:

 

What do you think? Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the comments below. 

The post 3D Printing News Briefs: December 3, 2019 appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing News Briefs: October 25, 2019

We’re talking about art and business in today’s 3D Printing News Briefs. An art installation at Millennium Park was created through the use of 3D printed molds, provided by Fast Radius. Farsoon has signed a joint development agreement with Rapid Manufacturing, and EVOK3D is partnering up with the Currie Group to accelerate its sales growth.

Fast Radius Makes 3D Printed Molds for Art Installation

Artist Edra Soto was commissioned to build an outdoor art installation in Chicago’s popular Millennium Park, which resulted in her freestanding Screenhouse, constructed by Navillus Woodworks out of over 400 custom-cast concrete blocks and opening today in the park’s Boeing Gallery North. Navillus enlisted the help of Fast Radius to create 3D printed molds for the blocks, which helped save on development time and money. The company printed the molds out of PA 12 material, using HP’s MJF technology. 3D printed lattice structures were used in the construction, which also helped reduce the weight of the piece.

“Our mission is to make new things possible to advance the human condition. I can think of no better way to serve that mission than helping bring Edra Soto’s beautiful design to life in Chicago’s Millennium Park, where it will be enjoyed by our fellow Chicagoans and visitors from around the world. This project with Navillus shows the potential of additively manufactured molds to redefine construction project design,” Fast Radius CEO Lou Rassey said in a case study about the project.

Farsoon and Rapid Manufacturing Sign Joint Development Agreement

PA12-based parts fabricated by Rapid Manufacturing on the beta-Flight-HT403P in Rümlang.

Stuttgart-based Farsoon Europe GmbH, a subsidiary of Chinese company Farsoon Technologies, has signed a joint development agreement for beta testing of its Flight technology with Rapid Manufacturing AG, headquartered in Rümlang, Switzlerland. Per the agreement, earlier this month Farsoon installed its new Flight-HT403P, with a 400 x 400 x 540 mm3 build cylinder and 500W fiber laser, at Rapid Manufacturing. After completing initial tests successfully, the Swiss company is now using the laser sintering system to make plastic PA12 components and parts with high resolution, low surface roughness, and good mechanical properties for its customers.

“We are impressed by the strong will power to increase the competitiveness of laser sintering, which Rapid Manufacturing is systematically implementing with the installation of our machine,” stated Dr. Dirk Simon, the Managing Director of Farsoon Europe GmbH.

EVOK3D and Currie Group Partnering

Australian company EVOK3D, which supplies and supports both professional and production 3D printing solutions and is the HP 3D Production Specialist Partner for the country, announced that it has signed a partnership equity agreement with Currie Group, a top end-to-end Graphic Arts service supplier in New Zealand and Australia. Currie Group provides and services high-quality printing equipment, and EVOK3D will leverage its management experience to continue growing its sales and support capability.

“3D printing has moved beyond just prototyping and is now a viable direct manufacturing technology. To meet the growing demand for these technologies we needed to scale the business and Currie Group is ideally positioned having pioneered digital disruption of the 2D print industry over the last 20 years. For our clients across education, design, industry and healthcare it means they can continue to invest with confidence,” stated Joe Carmody, the Managing Director for EVOK3D.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

The post 3D Printing News Briefs: October 25, 2019 appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing News Briefs: September 2, 2019

In this edition of 3D Printing News Briefs, we’ve got stories to share about a new material, a case study, and an upcoming symposium. Liqcreate has released a new 3D printing material for dental professionals. FELIXprinters published a case study about its automotive 3D printing work with S-CAN. Finally, ASTM International will soon be hosting an AM symposium in Washington DC.

Liqcreate Releasing New Dental 3D Printing Resin

Manufacturer of professional-grade 3D printing materials Liqcreate has been hard at work on a new 3D printing resin to help dental professionals optimize their digital workflow and scale up their in-house manufacturing. The hard work has paid off, as the company is announcing the release of its newest material, Liqcreate Premium Model – an accurate, low shrinkage resin for fabricating dental and aligner models.

The opaque photopolymer is matte, and the color of skin. Parts 3D printed with Liqcreate Premium Model have low shrinkage and excellent dimensional stability, and its low odor makes it great for office use. Other benefits include high detail and accuracy, and temperature resistant for aligner production. The resin is compatible with the Anycubic Photon, Wanhao D7, and Kudo3D Bean 3D printers, in addition to all open source 385 – 420nm LCD and DLP systems. You can purchase Liqcreate Premium Model through the company’s distributor network starting September 2nd.

FELIXprinters Publishes Case Study

Dutch 3D printer manufacturer FELIXprinters published a case study about its work with reverse engineering and 3D scanning company S-CAN 3D Ltd, a UK customer which uses FELIX’s AM platforms to manufacture jigs, create casting molds and masters, and prototypes. Founded in 2012, S-CAN also uses FELIX technology to manufacture automotive parts, like the pictured engine block. FELIXprinters offers a range of systems for industrial prototyping and production applications, inlcuding its Pro 3 & Tec 4 series of AM platforms and its new, larger Pro L and XL models.

“We have found FELIXprinters AM platforms to be very easy to use. You can be up and running within a few minutes of getting them out of the box. We run all of our printers through Simplify3D software so you load the profile, pick a material and you are ready to go. In-house we now have the first machine we bought from FELIX back in 2015 (the Pro 1), and a Tec 4.1, a Pro 3 and the new Pro XL. Our first Pro printer has paid for itself 10 times over,” stated James Senior, MD of S-CAN 3D.

“Internally, S-CAN 3D use FELIX 3D printers for prototyping designs. We might do five or more different concept designs of a particular part or component, as it’s much easier to visualise a part when it’s in your hand. We are putting a lot of work through the newly purchased XL printer and it’s opening up things which we wouldn’t have been able to do before (at least to the same quality and size), so things are very encouraging. We have found FELIX machines to be very repeatable which is our most fundamental requirement for any application, and we also haven’t noticed any accuracy degradation over time.”

At the upcoming TCT Show in Birmingham, September 24-26, the two partnering companies will exhibit together at Stand E50 in Hall 3. Visitors will be able to view FELIXprinters’ Pro series of 3D printers, as well as its new advanced, customizable 3D bioprinting platform.

ASTM International’s AM Symposium

Speaking of industry events, ASTM International, which recently announced that it will be hosting its second Additive Manufacturing Center of Excellence Workshop in France, will also host a symposium in the Washington DC area. The Fourth ASTM Symposium on Structural Integrity of Additive Manufactured Materials and Parts, held by the ASTM International Additive Manufacturing Center of Excellence (AMCOE) from October 7-10 at the Gaylord National Resort and Convention Center, National Harbor, Maryland, is designed to give AM professionals a forum to exchange ideas about the structural integrity of 3D printed components and materials, focusing on quality and certification criteria and the lack of design principles and industry standards.

Paper topics for the symposium include the effect of anomalies, process optimization to improve performance, feedstock and its related effects on mechanical behavior and microstructure, and the applicability of existing test methods. Sessions will be organized by sector-specific applications, such as aviation, consumer, maritime, and spaceflight. Registration for the event will be open until October 2nd, 2019.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

The post 3D Printing News Briefs: September 2, 2019 appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing News Briefs: August 11, 2019

We’re starting off this 3D Printing News Briefs edition with some good news from Xometry – this week, it announced the availability of Carbon DLS technology as one of its process options. Moving on, Markforged published a case study and Aeromet announced new properties for its A20X powder. Finally, HP has launched a design competition.

Xometry Offering Carbon DLS Technology

Just this week, custom on-demand manufacturing network Xometry announced that it will be offering Digital Light Synthesis (DLS) technology by Carbon as one of its available 3D printing process options, in addition to SLS, SLA, FDM, DMLS, PolyJet, and HP’s Multi Jet Fusion. Through its Instant Quoting Engine, Xometry customers can get quotes, design feedback, and lead times for production-grade parts 3D printed with Carbon’s DLS. You can learn more about how to get the most out of this technology, and the Xometry platform, during a live webinar on Wednesday, August 14, from 12 – 1 pm; each attended will be entered to win a pair of Adidas Futurecraft 4D shoes with 3D printed soles by Carbon.

“We are very excited to add Carbon’s cutting-edge DLS technology to Xometry’s capabilities. Our additive customers have been asking us for it due to its reputation for speed and quality,” stated Bill Cronin, Xometry’s Chief Revenue Officer.

Aeromet Announces New Properties for A20X Alloy 

 

 

announcement covering new record-breaking properties achieved by the A20X alloy after a research project involving Rolls-Royce, Renishaw and Aeromet.

A20X™ cements its status as a leading aluminium powder for additive manufacturing after breaking the critical 500 MPa UTS mark.

6th August 2019: A20X, the aluminium alloy developed and patented by UK foundry specialist Aeromet International, has cemented its status one of the strongest aluminium additive manufacturing powders commercially available after surpassing the key 500 MPa UTS mark.

As part of a recent research project involving aero-engine giant Rolls-Royce and additive manufacturing equipment specialist Renishaw, heat-treated parts produced using A20X™ Powder have achieved an Ultimate Tensile Strength (UTS) of 511 MPa, a Yield Strength of 440 MPa and Elongation of 13% – putting the powder at the forefront of high-strength aluminium additive manufacturing.

Crucially, parts additively manufactured with A20X™ Powder maintain high-strength and fatigue properties even at elevated temperatures, outperforming other leading aluminium powders.

Mike Bond, Director of Advanced Material Technology at Aeromet, commented: “Since bringing the A20X™ alloy to market for additive manufacturing 5 years ago we have seen significant adoption for high-strength, design-critical applications. By working with Rolls-Royce, Renishaw and PSI we have optimised processing parameters that led to record-breaking results, opening up new design possibilities for aerospace and advanced engineering applications”.

The HighSAP project, backed by the UK’s National Aerospace Technology Exploitation Programme (NATEP), was led by Aeromet and involved Rolls-Royce, Renishaw and atomisation experts PSI. A20X™ Powder for additive manufacturing is derived from the MMPDS-approved A20X™ Casting alloy, the world’s strongest aluminium casting alloy, which is in use by a global network of leading aerospace casting suppliers.

 

 

 

  • Aeromet announces new properties for A20X powder
  • Case study: Dunlop uses Markforged technology to save thousands
  • HP launches 3D Print Design Competition

The post 3D Printing News Briefs: August 11, 2019 appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing News Briefs: August 3, 2019

For this edition of 3D Printing News Briefs, we’re starting off with a celebration – Scansite created 3D printed replicas of the spacesuit that Neil Armstrong wore for the 50th anniversary of the moon landing. Moving on to business and metals, 3D Hubs has hired a new Managing Director for the US, and DigiFabster published a case study. IAM 3D HUB’s newest technological partner is ArcelorMittal, and finally, SmarTech Publishing released some new research on metal powder bed fusion.

Scansite Creates 3D Printed Replicas of Famous Spacesuit

Just over 50 years ago last month, Neil Armstrong became the first man to walk on the moon, and people around the world have been celebrating this important anniversary. In 2015, the Smithsonian National Air & Space Museum launched a Kickstarter campaign to conserve, preserve, and digitize Armstrong’s spacesuit from that fateful day; this year, to commemorate the anniversary, the museum contacted Scansite to create 15 extremely faithful replicas of the suit for its 50th celebration of the moon landing. The interactive, life-sized “Apollo at the Park” replicas were made to display at 15 MLB ballparks around the US, together with an augmented reality app so visitors can learn important facts about the Apollo 11 moon mission.

“Baseball parks are the perfect venues for new generations to learn more about that summer night on July 20, 1969. The spacesuit replicas allow us to bring a piece of Apollo to Americans everywhere,” said Ellen Stofan, director of the National Air and Space Museum.

Scansite conducted high resolution 3D scanning of the original spacesuit, which was tricky because it features many details and different materials. The company used both a Breuckmann structured light scanner and a Faro touch probe to acquire the scan data, which resulted in a file with over 5.3 gigabytes of data. The data was edited, using surrounding topology of each hole in the information as a guide to fill everything in, and Scansite created a full-scale 3D print of the spacesuit, in 16 separate panels, on a Voxeljet 3D printer out of porous acrylic material. The sections were glued together to create the master model, which was then used to make a mold; finally, each replica was hand-sanded and painted, finished with a tough, autobody clear coat, and mounted on an engraved granite base.

3D Hubs Names Robert Schouwenburg as US Managing Director

Online manufacturing marketplace 3D Hubs announced that Robert Schouwenburg, the former COO & CTO of Shapeways, will be joining the company as its Managing Director for the USA. The company recently announced an $18 million funding round, which it’s been using to expand its team in the US, including opening a new North American headquarters at Chicago’s mHUB. Schouwenburg has over 20 years of experience in the industry, and will be working with the Chicago team to better service the company’s North American customer base, in addition to expanding 3D Hubs’ CNC machining services offering in Chicago.

“We’re at the start of ‘industry 4.0,’ an era when automation and data exchange will accelerate manufacturing technologies, and 3D Hubs is uniquely positioned to become a leader in this upcoming industrial revolution,” stated Schouwenburg.

DigiFabster Helps MakeItQuick Lower Costs and Increase Revenue

3D printing software and services provider DigiFabster recently released a case study about its customer MakeItQuick, a UK 3D printing service bureau. DigiFabster helps machine shops and service bureaus like MakeItQuick generate more new revenue, while lowering the cost of labor-intensive activities such as order entry, project management, and quoting. MakeItQuick teamed up with DigiFabster not long after it launched, and quickly started seeing results – the company was able to reduce quoting costs by up to 95% and order transaction costs by up to 85%. This allowed MakeItQuick to scale quickly and grow their revenues by 25% a month.

“The software handles 90% of our quotes without the need to manually review every part that is submitted. The time savings were immediately evident,” said Marco Massi, the owner of MakeItQuick.

“We save even more once a quote is confirmed. All the order details are at hand, giving us the opportunity to analyze the data and decide on the best way forward.

“In less than a year with DigiFabster, our revenue has grown steadily. We’re now experiencing a 25% monthly revenue increase, paving the way for our future success.”

IAM 3D HUB’s New Technological Partner

The latest technological partner of AM technology incubator IAM 3D HUB is ArcelorMittal, one of the world’s top steel and mining companies. The company, which has a presence in 60 countries and an industrial footprint in 18, will support the Barcelona-based hub with its technologies, materials, and knowledge to allow for new applications of and metal materials for 3D printing. The two share similar objectives, but ArcelorMittal hopes to use its experiences to contribute a new point of view.

ArcelorMittal’s membership in IAM 3D HUB will allow it to develop new metal 3D printing materials, as well as leverage the hub’s end-to-end solutions platform and work with stakeholders. By incorporating this company, the hub is welcoming a new member in the value chain of 3D printing “as a material developer.” It joins technological developers like HP, Renishaw, and Wacker Chemie, strategic partner Fira de Barcelona, and post-processing specialist Abrast by Coniex.

SmarTech Publishing: New Research Note on Metal Powder Bed Fusion

Less than a year ago, 3DPrint.com’s owner, 3DR Holdings, acquired an interest in industry analysis firm SmarTech Markets Publishing, and we continue to have a great relationship. If you’re ever interested in reading the firm’s latest data reports or market studies, you can find them all under the Research tab on our home page. Speaking of research, SmarTech’s VP of Research Scott Dunham, who has prepared the company’s Additive Manufacturing with Metal Powders Report for the last five years, recently released a research note on metal powder bed fusion, titled “Who Will Win (and Who Will Lose) the Metal PBF Marathon?”

“Despite what headlines, technologists, and marketing executives would have you believe, the metal 3D printing “race” is a marathon, not a sprint. To continue with the metaphor, we’re probably in about mile 10 of the race today –certainly not at the beginning anymore, but also quite a long way from the end. We are now about twenty three years since the first commercial metal powder bed fusion (PBF) systems came into view,” Dunham wrote.

“With so many closely comparable suppliers of metal PBF equipment now vying for market share, this begs the question, who has what it takes to make it? Everyone in the race today is working toward similar visions of an “Industry 4.0” future that hinges on metalworking going fully digital and highly automated from end to end, from prototyping all the way up to scaled production, with varying levels of customization capabilities based on industry needs along the way.”

Dunham goes on to list some of the technology’s “standout traits,” and names the company’s predictions on how the metal PBF race will turn out: which companies will be the front runners (EOS, GE Additive, Trumpf).

To learn more, check out SmarTech’s recently published “Powder Bed Fusion Markets, A Metal Additive Manufacturing Market Analysis.”

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

The post 3D Printing News Briefs: August 3, 2019 appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Betatype and nTopology Use Metal 3D Printing and Intelligent Design to Increase Productivity

3D printing consultancy company Betatype specializes in optimizing metal AM production applications to deliver functional components for customers in many industries, including consumer goods, automotive, and medical. Recently, the company, based in London, published a new case study that explains how it teamed up with software company nTopology to create and manufacture a functionally optimized, 3D printed part for a rocket nozzle.

Betatype recognizes that collaborating with companies in industrial sectors, as well as the AM industry, can help produce better project results, with higher standards, than companies working alone can sometimes manage. Its recent partnership with nTopology is a perfect example of how collaboration was able to increase productivity in metal 3D printing.

“For serial production in additive manufacturing to work, it must make business sense. Through the partnership between nTopology and Betatype, and our shared belief in solving engineering problems by linking design, simulation, and manufacturing processes directly, we are able to present a strong business case for additive manufacturing,” said Brad Rothenberg, the Founder and CEO of nTopology. “We enable our customers to design and manufacture complex parts with speed, efficiency and reliability. We could not be happier with the results of this rocket nozzle case study and are looking forward to working on more joint projects.”

The project at the center of this collaboration was a test part for a rocket nozzle, and was created specifically to show how companies can integrate different solutions through partnerships. nTopology used its own nTop Platform software to help design the rocket nozzle part’s base mechanical structure, converting the part’s 3D model into an implicit one. Then, the design was optimized through the use of nTopology’s advanced simulation and topology optimization tools. Finally, Betatype’s software technology was applied to great effect, before the part was 3D printed.

Additive manufacturing offers material, shape, and structure control in one process, and Betatype’s Engine data processing platform helps maximize these capabilities to the fullest extent. The platform helps users manage, manipulate, and generate CAD and CAM data for multi-scale 3D design, in order to create higher fidelity for complex parts – not easily manufactured with conventional technology – at each scale of 3D design.

By combining technology from both nTopology and Betatype, the two companies were able to optimize the design of the complex rocket nozzle part for metal laser powder bed fusion 3D printing. Together, they achieved a major increase in part productivity – a 28% reduction in build time, down from 25 hours to 18.

“Betatype’s partnership with nTopology is an excellent demonstration of how we can work with talented designers to make additive manufacturing perform,” said Betatype’s Founder and CEO Sarat Babu. “The application clearly shows the benefits of combining the functional design and optimization skills of our partner with process optimization through our technology to achieve productivity levels that would not otherwise be possible with a standard metal LPBF platform.”

Rocket Nozzle: As built onto the base plate in Grade 23 Titanium (190 x 190 x 200).

Betatype fabricated the rocket nozzle test part out of titanium on a Renishaw AM250 3D printer. The nTop Platform’s capabilities highlighted how applying intelligent design can improve a part’s functionality, while also making sure that it is fit for its ultimate purpose. But the input from Betatype showed that design alone only gets you part of the way, and that metal 3D printing, complex functionality, and intelligent design is a winning combination.

Discuss this news and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

[Source/Images: Betatype]

The post Betatype and nTopology Use Metal 3D Printing and Intelligent Design to Increase Productivity appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Nervous System Works with Rice University Researchers 3D Printing Vascular Networks

Nervous System has been heavily engaged in experimenting with 3D and 4D printing of textiles in the past years, and all their research is paying off now as they find themselves engaged in the realm of tissue engineering. The Somerville, MA company is known for their generative design process, combining both programming and art within most of their serious projects, drawing bioengineers from Rice University to turn to them for added expertise.

Assistant professor Jordan Miller invited the Nervous System team to join his researchers on an incredible journey to fabricate examples of possible vascular networks via bioprinting—harnessing their knowledge of software and materials to find a way to create soft hydrogels. Kind of not a phantom but more a path towards ideas that can lead to concepts that may let us build true vascularized structures at one point. As Miller explains, in their research they were able to create large tissue blocks easily, but as so many scientists engaged in bioprinting today have discovered before them, it is extremely challenging to keep cells alive. Viability becomes the goal, and as that becomes more comprehensively mastered overall in bioprinting, it may finally unlock the door to true fabrication of organs that can be transplanted into the human body.

Open-source technology, mainly centered around 3D printing has offered huge opportunity for the bioengineers from Rice University to make progress in their work—and that was what drew them to Nervous System in the first place. Jordan became ‘captivated’ with the structures they were creating, specifically in their Growing Objects series, which was featured as an exhibit at the Simons Center for Geometry and Physics in Stonybrook, NY in August and September of 2014. In speaking with Nervous System, his proposal involved what they describe as an ‘epic task,’ to create simulated synthetic tissue and human organs.

Rendering showing lung-mimicking structures generated within different volumes

“The idea of taking our generative systems which are inspired by nature and using them to actually make living things was a dream come true,” states the Nervous System team in their case study.

Elsewhere the research did,

“…show that natural and synthetic food dyes can be used as photoabsorbers that enable stereolithographic production of hydrogels containing intricate and functional vascular architectures. Using this approach, they demonstrate functional vascular topologies for studies of fluid mixers, valves, intervascular transport, nutrient delivery, and host engraftment.”

As Miller and his expanding team continued to work on developing the necessary tools for bioengineering, part of their research resulted in a new 3D printing workflow called SLATE (stereolithography apparatus for tissue engineering). Their proprietary hardware can bioprint cells encased in soft gels that act just like vascular networks. Nervous System accompanied them (going back as far as 2016) in this bioprinting evolution by designing the materials for the networks—but with their background in programming, the contribution went far beyond designed materials and included customized software for creating ‘entangled vessel networks.’ These networks can be connected to both inlets and outlets for oxygen and blood flow, as they use specific algorithms to ‘grow’ the branching airways.

“Air is pumped into the network and it pools at the bulbous air sacs which crown each tip of the network,” states Nervous System in their case study. “These sacs are rhythmically inflated and deflated by breathing action, so called tidal ventilation because the air flow in human lungs is reminiscent of the flows of the ocean tides.

“Next we grow dual networks of blood vessels that entwine around the airway. One to bring deoxygenated blood in, the other to carry oxygen-loaded blood away. The two networks join at the tips of the airway in a fine mesh of blood vessels which ensheathes the bulbous air sacs. These vessels are only 300 microns wide!”

This project, bringing together scientists and art designers, was featured in the American Association for the Advancement of Science (AAAS) in ‘Multivascular networks and functional intravascular topologies within biocompatible hydrogels,’ authored by Bagrat Grigoryan, Samantha J. Paulsen, Daniel C. Corbett, Daniel W. Sazer, Chelsea L. Fortin, and Alexander J. Zaita.

The recently published article goes into great detail about SLATE 3D printing, indicating that this hardware is capable of rapid bioprinting, and offering possible sustainability to human cells—along with maintaining functionality of stem cells and necessary differentiation.

The project was created by Jordan Miller at Rice University and Kelly Stevens at the University of Washington, and included 13 additional collaborators from Rice, University of Washington, Duke University, and Rowan University.

Nervous System is undeniably one of the most fascinating companies producing 3D printed innovations today. Their versatility has led them to create everything from 4D textiles and 3D printed stretched fabrics to their famed Kinematics Petal Dress. With their latest project delving into 3D printed tissue, the stakes become higher—and their impact on the world much greater. Find out more here.

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

The Miller Lab fabricated and tested the architectures we generated showing that they can withstand more than 10,000 ventilation cycles while being perfused with human red blood cells. Study of the printed gels shows that the architecture we designed promotes red blood cells mixing and bidirectional flow which is hypothesized to occur in the human lung.

[Source / Images: Nervous System]

3D Printing News Briefs: April 21, 2019

We’re beginning with an aerospace 3D printing story in 3D Printing News Briefs today, then moving on to news about some upcoming industry events and finishing with a little business. Launcher tested its 3D printed rocket engine on an important date in history. DuPont will be introducing new semi-crystalline 3D printing products at RAPID + TCT, and Nanofabrica has offered to 3D print micro parts at no cost for interested companies attending the annual euspen conference. Ira Green Inc. used Rize technology to transform its production process, GOM is now part of the Zeiss Group, and the Ivaldi Group received its ISO 9001:2015 certification.

Launcher Tests 3D Printed Rocket Engine

New York startup Launcher, which uses EOS technology to create 3D printed components for metal rocket engines, has completed many firing tests with these parts over the last year and a half. Recently, on the anniversary of the date the first human left Earth to go into space, the startup announced the results of the latest test.

Launcher’s founder and CEO Max Haot posted on his LinkedIn account that the E-1 copper bi-metal rocket engine, which was 3D printed on the EOS M290, broke the startup’s combustion pressure record at 625 psi, mr 2.5. It will be interesting to see how the engine performs on its next test.

DuPont to Introduce New Semi-Crystalline Materials 

At next month’s RAPID + TCT in Detroit, DuPont Transportation & Advanced Polymers (T&AP), a DowDuPont Specialty Products Division business, will be launching an expansion to its 3D printing portfolio: advanced, high-performance semi-crystalline materials, which will give customers more manufacturing agility and open new opportunities to lower costs while increasing production.

Jennifer L. Thompson, Ph.D., R&D programs manager for DuPont T&AP, will be presenting a technical paper about the materials during the event as part of the Material Development and Characterization session. During her presentation at 10:15 am on May 23rd, Thompson will discuss alternative 3D printing methods, like pellet extrusion modeling, in addition to highlighting new engineering materials and talking about tailored material testing programs. Thompson and other DuPont employees will be at DuPont T&AP’s booth #552 at RAPID to answer questions about the company’s 3D printing materials.

Nanofabrica Offers Free 3D Printing Services for euspen Attendees

Last month, Israeli 3D printing startup Nanofabrica announced the commercial launch of its micro resolution 3D printing platform. In order to show off the system’s abilities to potential customers, Nanofabrica has made an enticing offer to attendees at next month’s euspen conference and exhibition in Spain: the startup will print parts for interested companies at no charge. Then, the parts printed on the new micro AM platform will be presented to them at the event, which focuses on the latest technological developments that are growing innovation at the micron and sub-micron levels.

“It’s quite simple really. We believe that the best way to prove what our AM system can do, how high the resolution and accuracy of the parts we make are, is to manufacture parts for attendees,” Jon Donner, the CEO of Nanofabrica explained. “Registered attendees are welcome to send us their files, and we will examine and print them. That is how confident we are that you will be amazed by the capabilities of our system, and this we feel will mean that we can forge meaningful relationships with manufacturers that will endure into the future.”

Rize 3D Printing Transformed Company’s Production Process

Rhode Island-based IRA Green Inc. (IGI), a full-service manufacturer and distributor of unique uniform items earned and worn by military personnel around the world, recently turned to RIZE and its 3D printing capabilities in order to manufacture small fixtures for its tool shop. The company’s products are in high demand, but lead times were growing longer due to bottlenecks and 8 hours of work for each $300 fixture. Precision is also important for these parts, which is why IGI decided to turn to the RIZE ONE hybrid 3D printer. According to a new case study, IGI’s design team uses the printer every day to manufacture accurate fixtures in just 50 minutes for $2.00 a part. Using the RIZE ONE, which has the unique capability of adding ink markings to parts for verification, the company has been able to standardize its nails and molds, which helped lead to an ROI in less than five months.

IGI’s Manufacturing Manager, Bill Yehle said, “Implementing RIZE 3D printing as part of a strategic process shift has completely transformed our production process.

“We have realized an 80% time savings in setup and changeover alone using RIZE and virtually eliminated errors.”

ZEISS Group Acquires GOM

In an effort to expand its industrial metrology and quality assurance portfolio, the ZEISS Group, a technology enterprise operating in the optics and optoelectronics fields, has acquired GOM, which provides hardware and software for automated 3D coordinate measuring technology. By combining GOM’s optical 3D measuring technology with its own products, ZEISS could expand market access, and create new opportunities, for its Industrial Quality & Research segment. Once the transaction is complete, which should happen soon, GOM will become part of this ZEISS segment, while the legal form of its companies in Germany and elsewhere will stay the same. The financial details of the transaction will not be discussed publicly.

“Our growth strategy expressly mentions the targeted acquisition of highly innovative solutions, technologies and companies, which can reach their full potential as part of the ZEISS Group. By acquiring GOM and thereby expanding our solutions portfolio, we are bolstering the leading position of our Industrial Quality & Research segment and will be able to offer even better solutions for our customers. This is entirely in keeping with our corporate strategy, which is focused on our customers’ success,” said Dr. Michael Kaschke, President & CEO of ZEISS.

Ivaldi Group Awarded ISO 9001:2015 Certification

California startup Ivaldi Group, which uses 3D printing and metal fabrication solutions to provide in-port parts on-demand services for the maritime, mining, offshore, and construction industries has become ISO 9001:2015 certified in less than ten months. This standard, which is certifies quality managements systems that focus on customer satisfaction, continuous improvement, and active involvement of employees and management in a process-based approach, is the first step in the certification process that’s required to certify specific products. This proves Ivaldi’s commitment to constantly improving itself.

“Certifying our quality management system has helped us to structure our processes to create a solid foundation. This will allow us to improve efficiency, productivity, and traceability,” said Anna D’Alessio, Quality Management Specialist of Ivaldi Group. “Global quality management systems are important to align processes and optimize operations across facilities. This certification proves our commitment to meet requirements of stakeholders affected by our work.”

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.