RENA Acquires HES Hirtisation Segment for Post-Processing for Metal 3D Printing

3D printing with metal gains yet another boost as RENA Technologies acquires the successful Hirtisation segment of Hirtenberger Engineered Services. With the goal of creating a new division for targeting the additive manufacturing sector, RENA announced that the existing HES team will be welcomed into the RENA corporate structure as they continue to serve the solar, semiconductor, and medical industries.

With this acquisition, RENA will have continued access not only to expertise but also progressive Hirtisation technology, offering high-performance tools in post-processing for 3D printed metal.

HES was founded in 2015 as it partnered with Happy Plating—a spinoff from an Austrian research center. Headquartered in Hirtenberg, Austria. HES is known as an exchange-to-exchange (E2E) technical provider specializing in the design and fabrication of functional metallic surfaces. Along with product offerings in coatings, nanowires, and sensors, it also manufactures precise, automated supply finishing modules. These are meant for the mass production of 3D printed metal parts for international customers in over 15 countries engaged in a variety of applications now relying on AM metal parts.

Hirtisation is suitable for all metals and alloys commonly used in 3D printing. A fully automatic finishing module for Hirtisated 3D-printed metal parts makes the process
highly efficient (Image and information from HES).

RENA, headquartered in Gütenbach, Germany, was founded in 1993, and also handles subsidiaries in Berg near Nürnberg and Freiburg im Breisgau. Known as a “wet processing company,” RENA systems are used to treat or customize surfaces, and this includes within the dental industry—an area that has become a focal point for manufacturers, with a wide range of projects emerging—from the use of complex 3D printed models for dental students to practice on to testing their accuracy, as well as forging ahead with new technology for 3D printing dental implants.

RENA’s interest grew in HES due to the experience level of its team, along with “efficient implementation of modern production machinery.” Its technology is expected to complement the RENA product line, to be expanded further at the new RENA Technologies Austria (RENA AT) hub for AM activities and all work related to electrochemical surface finishing.

“We are looking forward enthusiastically to working with our new colleagues at RENA because we can exploit RENA’s worldwide network as a launching pad for marketing our technology globally,” said Wolfgang Hansal, managing director of HES and designated managing director of the new RENA AT. “The first industrial machines have already been successfully introduced to the market. Together with RENA we can speed up establishment of our cutting-edge technology.”

While additive manufacturing continues to become a driving force in many applications today, functioning as a “building block of industrial production chains,” so does metal 3D printing and the associated and continually expanding study of materials and metal powders.

“With RENA Additive Manufacturing we can shape this process actively and gear up for growth,” said Michael Escher, managing director of the new RENA AT and Peter Schneidewind.

[Source: PresseBox]

The post RENA Acquires HES Hirtisation Segment for Post-Processing for Metal 3D Printing appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Comparing 3D-Printed and Traditional Guide Plates for Placing Orthodontic Brackets

The most important part of orthodontic treatment is the correct positioning and bonding of the brackets. Direct bonding is less accurate and often takes longer due to saliva and inaccessible tooth positions, while indirect bonding is quicker and less likely to cause bracket positioning errors, but is costlier. A team of researchers from Beijing published a paper, “Comparison of three-dimensional printing guides and double-layer guide plates in accurate bracket placement,” where they designed different types of transfer trays, using 3D printing and traditional impressions, and evaluated their “clinical efficacy.”

“With the increasing applications of indirect bonding, various designs of transfer trays and novel technologies are implemented in the treatment procedure. In the laboratory stage, the patients’ occlusal interrelationship can be duplicated either by impression or digital scanning,” the researchers wrote. “The former is a traditional method to generate double-layer guide plates; though with a lower cost, this method typically takes longer laboratory time and is susceptible to human errors. The latter is incorporated with cutting-edge 3D printing technology that provides various advantages, such as precise 3D images, convenience in file storage, and accuracy in image analysis and outcome prediction [5].”

The study model. (a) Maxillary model with marking points. (b) Mandibular model with marking points.

In the laboratory stage of indirect bonding, brackets are bonded to the patient’s orthodontic model, and then a customized transfer tray is used to place them on the actual surface of the tooth in the clinical stage. To make the models for this study, the team collected 140 teeth with normal crown morphology and no evident defects or restorations, sterilized them, and arranged them into “five pairs of full dentition” before labeling the marking points “on the buccal/labial surface of the crown.”

Digital design and 3D printing guides. (a) Distinguishing teeth and gingiva on the digital models. (b) Establishing the occlusal plane. (c) Adjusting the bracket positioning. (d) Simulation of bracket positioning. (e-f) Guide plate for indirect bonding on digital models. (g) 3D printing guide – whole denture type, and (h) single tooth type.

Next, they created 3D printable indirect bonding guide plates, beginning by generating digital models with the 3Shape TRIOS Standard intraoral scanner. The occlusal plane, axis, and center of individual crowns were established, and the marginal gingiva labeled, using 3Shape software, and guide plates for the whole denture type and single tooth type for 3D printed on a ProJet 3510 DP.

“The brackets were positioned in the 3D printing guides (the whole denture type or the single tooth type), and 3 M Unitek Transbond™ XT light-curable adhesives were applied to the base of the brackets,” the team explained about the indirect bonding procedure. “The 3D printing guides were then placed on the study models, and each border of the brackets was light-cured for 5 s.”

3D printing guides and indirect bonding procedure. 3D printing guide of the (a) maxillary and (b) mandibular dentitions. 3D printing guides placed on the (c) maxillary and (d) mandibular study models. Completion of bracket positioning on the (e) maxillary and (f) mandibular study models.

In making the traditional trays, the researchers used silicone-based materials to get impressions of the working models with intact marking points, and created plaster casts from the silicone molds.

“A thin layer of separation agents was applied to the cast tooth surfaces; then, the brackets were positioned and adhered on the crowns using 3 M Transbond™ XT light-curable adhesives and light-cured for 5 min,” they wrote. “Double-layer guide plates were manufactured by Erkoform-3D Thermoformer with a 1 mm inner layer (soft film) and 0.6 mm or 0.8 mm outer layer (hard film). Lastly, we trimmed the excess materials of the inner layer to 2 mm above the crowns and the outer layer until covering 2/3 of the brackets.”

The impression of (a) maxillary and (b) mandibular dentitions, and the plaster casts of (c) maxillary and (d) mandibular dentitions.

Bracket positioning on the (a-c) maxillary and (d-f) mandibular dentitions. Double-layer guide plate of the (g) maxillary and (h) mandibular dentitions.

For this indirect bonding procedure, the bracket were placed in the double-layer guide plates, with one solution applied to the surfaces of the teeth and another to the bracket base. Then, the guide plates were put on the study models, and after two minutes of fixation, the researchers removed the outer hard layer first, and then the inner soft layer.

Double-layer guide plates placed on the (a-c) maxillary and (d-f) mandibular study models. Completion of bracket positioning on the (g-i) maxillary and (j-l) mandibular study models.

Next, Materialise Mimics software was used to measure the distance between the marking points and bracket positions in the digital models of both the whole denture and single tooth designs for the 3D printed guide group, while electronic calipers measured the distance in the study models.

Electronic caliper.

Marking points on the plaster cast and study model.

SPSS software was used to analyze the distance.

“The accuracy of indirect bonding between 3D printing guide and double-layer guide plate was compared using the paired t-test. P < 0.05 indicated statistical significance,” they explained.

The data, reflected in the tables below, showed that there was no statistical difference in the accuracy of bracket positioning between the two types (p = 0.078), and that the 0.6 mm type in the double-layer guide group had much better results (p = 0.036) than the 0.8 mm one.

“We then further compared the accuracy of indirect bonding between 3D printing guides (whole denture type) and double-layer guide plates (0.6 mm), the results were comparable between two groups (P = 0.069),” they wrote. “However, indirect bonding using double-layer guide plates (0.6 mm) cost less chair-side time than the 3D printing guides group.”

Table 1: Comparison of different designs in 3D printing guide group.

Table 2: Comparison of different designs in double-layer guide plate group.

Table 3: Comparison of bracket positioning accuracy between 3D printing guide and double-layer guide plate.

However, while the data showed no statistical significance, the researchers noted that “the overall discrepancy before and after bracket transfer was lower in the 3D printing guides group.”

“This finding might be due to our in vitro study models with only mild malocclusion,” they explained. “Further in vivo studies in more severe clinical cases, such as malocclusion with torsion/tilting/overlapping, will be essential to investigate the efficacy and generalizability of 3D printing guides and double-layer guide plates.”

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

The post Comparing 3D-Printed and Traditional Guide Plates for Placing Orthodontic Brackets appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Prosthetic Dental Treatments: Traditional Stone Casts vs. 3D Printed Casts

Egyptian researchers Passent Aly and Cherif Mohsen compare the benefits of 3D printing with conventional techniques for the production of prosthetic dental casts, releasing the findings of their study in ‘Comparison of the Accuracy of Three-Dimensional Printed Casts, Digital, and Conventional Casts: An In Vitro Study.’

In relation to oral and jaw restoration, prosthetics can be critical to the health of many patients. In this study, Aly and Mohsen match conventional stone casts with prosthetic casts 3D printed using stereolithography (SLA), as well as with “digital casts,” that is, 3D scans of existing stone casts. While digital technology is becoming increasingly popular for items like casts—replacing traditional methods with 3D printing for prototyping and creating functional parts—the authors point out that, for clinical practice, such processes must be heavily evaluated first.

In testing the effectiveness of digital casts in this study, Aly and Mohsen used a light desktop scanner to fabricate prototypes. For reference in comparison during experimentation, the researchers used a set of maxillary and mandibular ivory teeth. Five stone casts were made from polyvinylsiloxane impressions.

Maxillary and mandibular conventional stone casts.

“The typodont casts (reference casts) were scanned using intraoral dental scanner (Trios 3Shape) in the following three steps: first maxillary and mandibular casts were scanned  separately; the second step involved articulating the maxillary and mandibular arches by utilizing the ‘bite registration algorithm.’ Third and finally, digital casts (n = 5) were exported in STL file format to be integrated into space analysis software,” explained the researchers.

The digital casts were then printed on a ProJet 6000, using VisiJet SL Clear resin.

3D printed mandibular cast.

“The following linear measurements were taken: mesiodistal (MD) and occlusocervical (OC) for first molar, first premolar and canine in addition to intermolar width (IMW) and intercanine width (ICW) on both arches and sides by the same operator,” stated the researchers.

Digital cast with mesiodistal, intercanine, and intermolar measurements

Errors occurred as follows:

“The errors ranged from 0.003 to 0.142 mm for different measurements. In OC, the errors of digital cast were significantly higher than the errors of the other two groups, where the mean of the digital cast = 0.016 compared with 0.004 and 0.007 for the other two groups (p < 0.0001). Similarly, in MD measurements, the error of digital casts (mean = 0.006) was significantly greater than the error of printed casts (mean = 0.003) but similar to those of conventional casts (mean = 0.005) with overall significant difference (p = 0.02). For IMW and ICW, digital casts had significantly greater errors (mean = 0.142 in IMW and 0.113 in ICW) compared with the two other groups (means= 0.019 and 0.008 in IMW and mean = 0.021 and 0.011 in ICW), p < 0.0001.”

Overall, only a ‘minor error’ was noted in accuracy of the 3D-printed casts as compared to the stone casts. The authors were able to confirm the advantages of using SLA printing in that area. They did, however, note a ‘significant difference’ in accuracy for SLA casts compared to digital casts:

“The cause of this error in the arch width measurements is due to the overestimation of digital measurements in comparison to stone and printed casts. Also, distortion of arch happens during scanning of dental casts,” concluded the authors. “But this error is still within the acceptable clinical range which comes in agreement with other studies.”

“This study used only one type of intraoral scanners and one type of 3D printers. Also, it is an in vitro study not simulating the conditions in the oral cavity, such as saliva, bleeding, limited mouth openings, and difficulty in vision, which are considered limitations of the current study. Thus, further studies are needed to evaluate the accuracy of other scanners and printers in comparison with the types used in this study. In addition, there is a need for future in vivo studies simulating oral conditions.”

3D printing of prosthetics and implants continues to change the quality of life for individuals in need around the world, whether in dentistry, orthodontics, or even limb replacement.

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source / Images: ‘Comparison of the Accuracy of Three-Dimensional Printed Casts, Digital, and Conventional Casts: An In Vitro Study’]

The post Prosthetic Dental Treatments: Traditional Stone Casts vs. 3D Printed Casts appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Dental Students Compare Conventional and 3D Printed Surgical Training Models

There are few things I hate more than going to the dentist. That’s why I’m always glad to hear stories of dental students using 3D printed training models to learn on – if they have to work in my mouth, then I want them to know what they’re doing. A group of researchers from University Hospital Münster in Germany published a paper on this topic, relaying the results of their work using real patient data to create 3D printed surgical training models for root tip resection. Then, they compared them against a commercial typodont model, which is a common simulation model used at university dental clinics with replaceable gingiva masks and teeth that often “show idealized eugnathic situations, which are rarely encountered in everyday practice.”

“Furthermore, the ready-made standard models do not usually depict special pathological or anatomic situations,” they wrote.

A root tip resection, or apicoectomy, removes inflammation around the tip of the tooth’s root. The researchers explained that the typodont model at their university features teeth “in direct contact with the hard plastic that simulates the jawbone,” and simulates the inflammation (apical granuloma) with wax, though it’s missing a sensitive periodontal ligament.

“The teeth used are idealized stereotypes. Anatomical variations, such as extremely long or even curved roots, cannot be simulated with these industrially produced models. Therefore, we have developed a method to create more realistic, individualized training models,” the researchers explain.

The model they created is of a real patient’s upper jaw with three anterior root apices, periodontal ligament, and the apical granuloma, along with a gingival mask.

“We also present an evaluation of the model by dental students and compare it with their evaluation of the conventional typodont model,” the team wrote. “Our intention was to evaluate whether dental students accept the 3D-printed surgical training model just as well as the popular typodont model.”

L-R: Modified plaster cast, modified plaster cast with wax layer.

They used CAD/CAM technology to design the training model, which allowed them to add the simulated inflamed tissue, and took a conventional impression of the area in question in order to make a plaster cast. The gingiva was modeled with a 1 mm thick layer of wax, and an industrial 3D scanner was used to attain the shape of the modified cast with and without the wax gingival mask.

L-R: Scanned surface of the plaster cast without wax layer and meshes of the three teeth aligned to the upper jaw.

The cone beam computed tomography (CBCT) data of another patient was used to create 3D models/meshes of teeth 11, 12, and 21 in Materialise Mimics, and the 3D reconstruction was modified using Rhinoceros 5. To make a model of the periodontal ligament, which the typodont model doesn’t include, they deleted the upper parts of the teeth mesh and thickened the rest by 0.25 mm in Geomagic Wrap.

L-R: Meshes of the roots (rear faces of mesh in blue-green), extruded root surfaces representing periodontal ligament.

They constructed a 6 mm sphere around the root apex of tooth 11 to simulate an apical granuloma.

“The material used to represent the periodontal ligament and the apical granuloma is softer than the material used for the other parts of the model. This allows a more realistic representation than in the typodont model,” they explained.

Meshes of the granuloma on tooth 11 and the periodontal ligament on teeth 11, 12 and 21, 3D printed in soft support material (red).

The 3D printed model also includes a silicone gingival mask so students can practice the surgical incision. A 3D printed matrix technique was used to fabricate the mask directly onto the model, and the model was 3D printed out of liquid photopolymer on an Objet Eden 260V PolyJet 3D printer. The undercut areas and the cavities in the model that simulated apical granuloma and periodontal ligament were filled with a soft support material. It took roughly six hours to 3D print 12 models in a single build.

Silicone gingival mask.

“Dental students, about one year before their final examinations, acted as test persons and evaluated the simulation models on a visual analogue scale (VAS) with four questions (Q1–Q4),” the researchers wrote.

35 students evaluated the typodont model, while 33 students used the 3D printed simulation model. Participants watched a video of the root tip resection exercise, and then completed the procedure once. They were given a questionnaire about the simulation model and the difficulty of the exercise, rated on a visual analogue scale (VAS). There was also an optional free-text section if a participant wanted to express their opinion in their own words.

Surgical incision guidance on the 3D printed model in the phantom.

Osteotomy of the root tip.

Presentation of the root tip. Note: torn gingiva mask.

Resected root tip with demarcation to the bone.

Suture exercise on the gingiva mask.

54.5% of the Group 2 participants said in the free-text section that the gingiva mask in the 3D printed model tore during the procedure, while 20% in Group 1 said that it detached from the typodont model.

Questionnaire results; white dots denote the mean values.

“Shapiro–Wilk normality tests revealed that, with the exception of Q4, normality cannot be assumed,” they explained. “Wilcoxon rank sum tests were therefore carried out to identify differences in the assessments of the two model types. The alternative hypothesis for each test was “The rating for the typodont model is higher than that for the 3D printed”. As the p-values presented in Table 1 reveal, the alternative hypothesis has to be rejected in all cases.”

Table 1.

The researchers determined that their 3D printed training models were “not inferior to the industrially manufactured typodont models,” and that the approach is very flexible – the models can be easily redesigned and adapted for different learning scenarios, and it’s much faster to fix them when necessary. While the 3D printers weren’t cheap, the material costs for a 3D printed single-use model were only about €10, compared to €300 for the multi-use hypodont model.

“A shortcoming of our study is that the exercises were performed by students without surgical experience. As a result, there is a lack of professional evaluation of the models in terms of how well they reflect the reality. Thus, we were not able to check an important quality aspect of the models,” the researchers noted.

“Future studies with experienced surgeons could provide more information about the realism of the 3D-printed models.”

Other issues include the missing color difference between anatomical structures or cortical and cancellous bone structures, and the gingiva mask needs improvement, either through alternative technologies or materials.

“Individual 3D-printed surgical training models based on real patient data offer a realistic alternative to industrially manufactured typodont models. However, there is still room for improvement with respect to the gingiva mask for learning surgical incision and flap formation,” they concluded.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

The post Dental Students Compare Conventional and 3D Printed Surgical Training Models appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Austria: SLA 3D Printing of High Precision Glass Ceramic Parts

Austrian researchers explore lithography-based ceramic manufacturing (LCM) in the recently published ‘Stereolithographic Additive Manufacturing of High Precision Glass Ceramic Parts.’ Focusing on glass ceramics, the authors seek ways to optimize applications like dental replacements.

Today, 3D printing is often associated with the use of ceramics, as well as offering innovative progress in dental and orthodontic labs. Fabrication of crowns, bridges, and implants must be performed, understandably, with the highest level of accuracy.

Superior mechanical properties are necessary for creating both aesthetics and the proper fit—leading industrial users to employ numerous and different types of 3D printing:

  • FDM 3D printing
  • Selective laser sintering (SLS)
  • 3D printing and stereolithography (SLA)
  • Lithography-based ceramic manufacturing (LCM)

For this study, the researchers chose LCM, as it allows for the creation of highly filled and photopolymerizable ceramic slurries, along with dense parts comprised of ‘outstanding’ material properties. Several steps are involved:

  • Slurry is developed and adjusted, depending on the type of additive manufacturing
  • A 3D composite is fabricated
  • Support structures are removed
  • Thermal post-processing begins

Material properties of different ceramics achieved with lithography-based ceramic manufacturing (LCM)

Several different scanning methods were used to evaluate part accuracy, including:
• Optical scanners
• Tactical scanners
• Micro-CT

The main components of the slurry.

The slurry base is made up of the following:

  • Monomer compositions and solvents
  • Photo absorber
  • Photo initiator
  • Ceramic filler with solid load of more than 50 vol %

stl file of the molar crown with different support designs (from left: ‘cross’-support Design A, ‘star’-support Design B).

 

.stl-file of a molar crown with marking the different areas of support attachment.

Support structures are a critical part of the structures, enabling printing with overhanging areas, as well as preventing warping. The researchers printed a sample molar crown for the study, creating a cross-support for the crown’s occlusal side. Another star structure offered added support on the oral side, while the cusps, distal and mesial surfaces, and the gap between the crown and the core’s inner surface were to be avoided as areas for support placement.

To digitize samples, the research team used a variety of scanners, and 3Shape software. The star shape was adjusted in terms of the light absorber and printing parameters, with the potential for adjusting resolution further regarding wet layer thickness in the material vat.

Siemens star, diameter 9 mm: (a) stl file used for the study; (b,c) SEM images of green bodies.

The scientists fabricated one crown and the star support structure sample for comparison, noting that different techniques produced varying results.

“There were challenges in reproducing the real surface due to reflections and translucencies of the ceramic, which resulted in the appearance of a so called ‘orange skin’ effect using the 3Shape D810 infrared scanner,” explained the researchers.

Images of crown A obtained with different scan methods.

LCM-processed crowns were compared with the initial .stl file, as it was rescaled with the x, y, and z factors. The researchers noted that the best results were attained via micro-CT scans, so they used them for following analysis also. Analysis showed that the crown with the star support warped during sintering, not providing enough support. Further improvements resulted in much higher precision, no warping, and with a color scale that could be reduced to minus 80 µm to plus 80 µm.

Procedure of evaluating the precision of the 3D-printed crown (a) CAD-reference model, (b) prepared CAD reference model, (c) micro-CT scan of 3D-printed and sintered molar crown, ‘star’ support was removed after sintering (d) comparison of CAD-reference model and 3D-surface-model using GOM Inspect.

“The improvement of the dimensional accuracy can be seen by using statistical information to compare all tests support types,” stated the researchers. “This was achieved by laying all analyzed crowns on top of the same original file and a surface comparison was done. After, the deviation scale was adjusted to highlight only relevant measurements and that all the colors in the false color diagram were represented. Finally, the maximal and minimal deviation of the color false scale is used for measuring scale in figure 9 [below].

 

Comparison of 3D surface model (sintered molar crown with ‘milling’ support, design C) and stl file using GOM Inspect.

“To show the reproducibility of the process two LCM processed crowns were compared as illustrated in the pseudo color image in Figure 10 [below]. The maximum deviation amounts to 30 µm, which shows a high reproducibility of the whole process chain. These tolerances are also sufficiently low for allowing clinical use of such crowns. The maximum tolerance accepted for clinical use has been discussed during the years and is defined between 50 to 120 µm.”

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source / Images: ‘Stereolithographic Additive Manufacturing of High Precision Glass Ceramic Parts’]

The post Austria: SLA 3D Printing of High Precision Glass Ceramic Parts appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

AMS 2020: Panels on 3D Printing Materials and Applications for Dental Industry

At our recent Additive Manufacturing Strategies 2020 in Boston, co-hosted by SmarTech Analysis, many different topics were discussed in keynotes and panels, such as binder jetting, medical 3D printing, and different materials. Dental 3D printing was also a major topic of discussion at the event, and I attended three panels that focused on additive manufacturing for dental applications.

The first, “Into the dental and oral surgery office,” had three panelists: Dr.-Ing. Roland Mayerhofer, the Product Line Manager for Coherent/OR Laser; CEO Manager of Oral 3D Martina Ferracane; and Mayra Vasques, PhD, a dental prosthesis fellow at the University of São Paulo in Brazil.

Dr. Mayerhofer went first, and provided a quick overview of Coherent’s laser powder bed fusion (L-PBF) systems, and the dental applications for which they can be used.

The versatile CREATOR is the company’s open system, and can print with multiple materials, such as brass, cobalt chromium, steel, and Inconel.

“As long as it works, you can put any powder in you want,” Dr. Mayerhofer said about the 3D printer.

He explained said that the CREATOR setup is “typical but can be as big as a stand-up fridge, not the American double-size.”

You can take a look at the rest of the printer specs above, along with a few features that will be added to the new system that’s coming in 2021, such as two powder hoppers and a build platform.

“Then you can take them out, put fresh hoppers in, and keep going,” Dr. Mayerhofer said.

He stated that the dental field is likely one of the first major adopters of metal additive manufacturing, as the technology offers 100% personalization and can fabricate small, complex parts out of existing materials, like titanium alloys…all perfect features for the dental industry.

Dr. Mayerhofer then discussed Coherent’s digital dental workflow, which can get from scanning to a completed 3D printed part in 12 steps. Some of these steps include designing the CAD file and preparing it for 3D printing in the company’s APP software suite.

Later process steps are annealing, and then sandblasting, support removal, polishing, ceramic coating – added manually – and voila, you have a finished product.

The Dental Cockpit is Coherent’s latest addition. The CAM software makes it easy to load and print parts, which means that the digital dental workflow as a whole is much less complex. There’s one click to select the file, another to choose the materials and properties, and then a final click to generate the G-code.

Dr. Mayerhofer said that Coherent’s whole dental workflow, 3D printing on the CREATOR include, takes just one work day to fabricate a completed bridge in the dental lab.

After the cast skeleton is scanned, the dental lab begins preparing the CAD data at 8 am. Then the print job has to be prepared in Dental Cockpit, and 3D printing typically begins in the morning.

Once the parts are removed from the print bed, post processing is completed, and then a porcelain coating is added before the product is subjected to heat treatment and polishing. The completed bridge is then ready to go by 4 pm.

Dr. Mayerhofer noted that a dental lab’s ROI on the CREATOR 3D printing system is less than a year…typically about six months, in fact.

Then it was Ferracane’s turn to explain how her company, Oral 3D, makes 3D printing simple for dentists, even as it’s occurring at the industrial level.

“Our solution makes it extremely simple for dentists to bring 3D printing to their practice,” she said.

She presented a brief overview of the US dental market, noting that some of the major applications for 3D printing in the field include aligners, crowns, surgical guides, and soft tissue models, which dentists use to test procedures ahead of time.

“Usually today, the way most of these models are done is through intraoral scanning,” she explained.

Ferracane said that SLA technology makes it much easier to make these soft tissue models. But, even so, they can still only be used for testing purposes most of the time.

3D printed models of hard tissue – bone – are also fabricated, but she said that they’re not used often, as it’s difficult for dentists to come up with STL files of just the hard tissue.

She pulled up a slide that had the world “PROBLEM” across the top. The image appears to be scan data of bone, which looks pretty hard to read.

“It’s not easy for dentists to make this into something printable by cleaning up the images,” Ferracane explained. “So they can pay to outsource it to labs to clean it up. But our 3D printing software automatically does this. Just drag the CT scan, and we’ll take care of changing it from DICOM to STL. With one click, we can then convert STL to G-code.”

She said that while it’s obviously good to fabricate dental applications this way using Oral 3D’s printer, it will work with whatever system you’re already using.

These 3D printed models serve a variety of purposes – they can improve communication with patients, help in treatment planning, and even “broaden learning.” Ferracane mentioned that the company has partnerships with NYU and Harvard for this last.

Other applications include bone blocks, made-to-measure titanium membranes, and maxillofacial surgery. Additionally, she stated that Oral 3D recently began collaborating with dental surgeons, who use the company’s 3D printed dental models for planning and patient communication.

She finished by stating that the company believes FDM printing can “be a good value add for dentists.”

Vasques finished things by sharing her research into how things look, dental 3D printing-wise, from the point of view of clinicians.

“It’s common for most to be scared of using 3D printing,” she explained. “They think it’s plug and play, and it’s not.”

For her research, she divided users into two separate groups – high level experience (seniors), and innovation (early adopters and students).

“We are trying to figure out how these people understand the technology,” she said.

High level users expect accuracy, efficiency, high quality technology, and high-performance materials for the purposes of chairside 3D printing. Vasques said that these users “don’t want to wait 2-3 hours to make products by hand.”

“In university, we’re trying to establish protocols and research to help these people have the results they are expecting.

“We’re trying to solve problems, like mouthguards for sports.”

Vasques said that last year, she and her team published three articles about dental 3D printing topics, such as 3D printed occlusal devices and post-processing. She launched INNOV3D the same year, in order to help train professors in using dental 3D printing.

“We have an online training platform, educational materials, and 3D lab,” she stated.

Once she finished and sat back down, Davide Sher, the panel’s moderator, asked the other two panelists how they would address the challenges that Vasques listed, and how they would make dentists understand more about dental 3D printing.

Ferracane answered that most dentists aren’t buying 3D printers today, because they’re initially taught that the systems are really easy to use when they’re not. Once they run into issues with SLA technology, they get frustrated and just start outsourcing the work instead.

“Then they’re really dissatisfied, because they’re complicated and not just plug and play. We need to help them understand that they can bring the technology back to their office.”

Sher noted that dentists don’t really have the time to learn about the more advanced types, and so asked if the companies directed their technology to users in dental labs; Dr. Mayerhofer said yes.

After a short break, the next session, “Dental lab experiences with 3D printing,” began. While Les Kalman, an Assistant Professor for Restorative Dentistry at Western University’s Schulich School of Medicine, was unable to make AMS 2020, Arfona founder and CEO Justin Marks and Sam Wainwright, Dental Product Manager for Formlabs, were both ready to go.

Marks went first, explaining that Arfona, founded in 2017 by dental technicians and 3D printing enthusiasts on “the core belief that thermoplastic dental materials should not be substituted for inferior photopolymers,” has been working to “bring 3D printing into the world of dentistry.” The company’s flagship product is its 3D printed flexible nylon dentures.

He pulled up a slide that cited research stating that 36 million Americans are completely edentulous, meaning without teeth, and that 178 million are partially edentulous. But even so, Marks said that there’s an “astronomical” number of people who are still not wearing dentures.

“Most people don’t think about this until it happens to you or someone you know,” he said about missing a tooth. “It’s not always that easy or cheap to fix this with implants.”

According to a survey, only 8% of dentures are digitally fabricated, which means most are still made by hand using analog methods.

Marks said that even though 3D printing is “becoming more of a buzzword” in the dental industry, most of the materials “have largely stayed the same,” and based on the same technologies and principles. Extrusion-based AM is not used often in dentistry, and powder bed fusion (PBF) is mostly limited to metals, not polymers.

Marks went through a brief history of 3D printing in dentistry. Ubiquitous applications include impression trays, digital models, and resin patterns for casting, while digital dentures are currently happening and things like clear aligners, temporary and long-term crowns and bridges, and multimaterial printing are in development for use in the future.

He said that the ubiquitous ones have one thing in common – they’re used once and then thrown away.

“We’re still not doing much with crowns and bridges,” Marks said. “Clear aligners are the holy grail, and direct printing of the aligner is still a ways off, though all companies are probably working on it.”

Aronfa’s dental 3D printer is the r.Pod, which is a modified version of a Makerbot clone. The dual extrusion filament system is optimized for all of the company’s thermoplastic materials.

Then it was Wainwright’s turn to talk about dental 3D printing at Formlabs. He agreed with Marks that “FDM and thermoplastics have an incredible place” in the dental industry.

When the company was founded in 2012, its goal was to make professional-scale 3D printing accessible and affordable for everyone. Now Formlabs employs over 500 people at its multiple locations around the world, and has sold more than 50,000 3D printers.

Wainwright explained that the Form 3B desktop printer, optimized for biocompatible materials, has many dental-specific features, materials, and software, in addition to automated washing and post-curing systems “to help tie in end-to-end dental workflows.”

In addition, Formlabs offers dental materials, and launched its dental service plan (DSP) along with the Form 3B in 2019. Because there are high demands, the 3D printing process is complex, and the DSP offers support.

“We are committed to 3D printing for dental,” Wainwright stated. “We have over 20 people in the dental business unit. But we have the resources of a 500 person-plus company.”

While most are made overseas, Formlabs Dental is now developing photopolymers in my home state, since the company acquired its main material supplier, Ohio-based Spectra Photopolymers, last year. Formlabs’ biocompatible Surgical Guide Resin is the company’s first material made in an ISO-certified facility.

“It’s exciting to have intimate control over design aspects,” Wainwright said.

The image above is an example of the Surgical Guide material. Wainright explained that the light touch supports are very easy to remove, which means that there isn’t a lot of time wasted in post-processing.

He said that 36% of dental labs in the US use 3D printing technology, which makes them very “cutting edge.”

“There’s a ton of market opportunity for dental to go digital,” he said. “We have 30% of this market – we’re the biggest player in dental laboratories and will continue to grow, but compared to Invisalign, it’s not really that much.”

So far, Formlabs has 3D printed more than 10,000,000 parts for the dental industry. Wainwright predicts that in ten years or less, “everything in dental will be 3D printed.”

He reiterated to the room that Formlabs has “a whole host of materials” for dental applications, four of which are solely for fabricating models, which are “really critical to dentists.” As dental offices adopt intraoral scanning technology, it’s helpful to take the scan data and turn it into something physical. Wainwright mentioned that Formlabs’ Grey Resin can achieve fast, accurate prints, and that it’s good for thermoforming as well.

The company’s Draft material is “accurate enough to create models in less than 20 minutes,” which makes it perfect for creating retainers on the same day as a patient’s appointment. Model Resin is good for accurately restoring dental models, while the biocompatible Dental LT Clear Resin can be used to print occlusal splints in addition to models.

Formlabs’ Digital Dentures solution comes in multiple shades to match a patient’s teeth, and a full set can be 3D printed for less than $10, which Wainwright says is “really a game-changer.”

“We want to make treatments easier, better, and faster,” he said in conclusion.

“3D printing is still very early in dental, this is just the beginning. The materials will just keep getting better, it’s an exciting place to be.”

Then it was time to eat lunch and chat with other attendees…or, as I did, inhale food and then find a spot in the hallway near an outlet and get a little work done.

After the lunch break, I sat in on my last panel at AMS 2020, “3D materials for dental applications.” It was a panel of one – Gabi Janssen, Business Development Manager and Global Leader, Healthcare Segment Additive Manufacturing, for DSM Additive Manufacturing. She presented on digitalization in healthcare and dentistry.

She tried to play a short movie about what the company does, but due to technical difficulties there was no sound, so she narrated instead, explaining that DSM is “a material company” that also does a lot with nutrition – a brand behind the brands.

The company also has a biomedical department, which helps deliver advanced healing solutions for AM applications, including bioceramics, collagen, polyethylenes, polyurethanes, and hydrophilic coating.

“What we have on the market is filaments,” Janssen said, pulling up a list of the dental materials DSM offers.

Several of the company’s products are geared toward the healthcare market, such as Somos BioClear for dental guides and anatomical models.

“So how do we develop a new material?” Janssen asked. “We’ve discussed 510(k) clearance materials, and you have to work all together. We look at the application, and determine what we need – printer, software, material – to fit what the end user needs.”

She pulled up a slide of the major market drivers in 3D dental printing – performance, mass customization, and time-saving.

“What kind of applications do we have in dentistry?” she asked.

To answer her own question, she showed a brief history of digital dentistry, starting with the first 3D printed part in 1983, moving on to DSM’s 3D printing resin in 1988, the beginning of aligner manufacturing in 1997 and medical modeling in 2000, and DSM’s dental materials passing USP VI in 2008. For 2020 and beyond, hopefully we’ll see the availability of direct aligner materials.

“I think there’s still a lot of data needed to show it’s good,” Janssen said about where the industry currently stands. “Reimbursement is difficult, we need this data to back it up.”

The topic of FDA clearance obviously came up a lot at AMS 2020. Janssen said that DSM has a resin that’s certified for use in dental bite guards, and a general purpose resin that isn’t certified but can be used to make FDA-cleared aligners.

“The end device needs the clearance,” she reminded the room.

She brought up how Materialise was the first company to receive FDA clearance for software about 3D printing anatomical models for diagnostic use. Materialise Mimics inPrint translates the data for the model to the 3D printer. Then, combined with a specific printer and material, it’s possible to fabricate “the model they actually want within a certain safety margin.”

“But, if you want to print medical models, just for patient communication, it does not need to be cleared, because it’s not a medical device,” she explained.

The slide above explains what makes a medical device controlled, i.e. needs clearance, while the below slide lists some very useful definitions, including biocompatibility and risk.

Janssen then brought up the “sometimes confusing standards,” such as ISO standards.

“Depending on what we do with the material, and how long it goes in the mouth, there are different risk associations,” she explained.

In terms of product classification, Class I is the least risky. But, the higher you go up in class, the more research is required to show that the 3D printable material won’t harm patients.

She said that the regulatory industry is changing to have more focus on software, with higher regulations for that software, because it “needs to be validated in combination with the material and equipment.” Additionally, there is more of a focus these days on understanding and managing risks, as well as reducing animal testing…always good news!

When choosing the proper filaments for your workflow, you should start by working with the dentist on treatment planning. Then, once the patient’s mouth has been scanned, you can create the design in the software. Then the build has to be prepared, which takes some patience and precision – you need to enter the optimal print parameters, and add supports if they’re needed. Then, after the print is complete, it needs to be removed from the bed, supports (if there are any) need to be taken off, and there may even be grinding and painting involved before the final quality check.

“Many process variables can impact the safety of the final end product,” Janssen noted. “So you need to understand the effect the material can have on patients.”

Finally, there are also plenty of steps to follow to ensure material safety in development, so it’s important to follow the instructions your supplier gives you.

Then it was time for some questions. One attendee asked why dentists aren’t all adopting AM, since some products, like mouthguards, look pretty easy to make in the back office.

“This may look easy, but it’s actually not,” Janssen explained.

She went on to say that the product or device may not always “come out right the first time.” There are a lot of parameters to look at, and potentially tweak, in order to achieve the desired result. A lot of people can get frustrated if it doesn’t work right the first time.

“What we’re doing now – if you bring your design to us, we’ll do the tweaking for you, as our software has all of the maximum and minimum numbers needed for parameters,” she said.

3D printing thought leader and author John Hornick offered his take on the question, as he has some experience with the matter. He explained that most dental offices are private, though many dentists are consolidating their practices into larger ones, “and their appetite for spending money on these machines may go up.” But, SmarTech doesn’t think the average dentist will spend that much for larger, more expensive 3D printers. That’s why some companies, like Arfona, are working on simpler material extrusion systems.

Another attendee said that it seems like 3D printing companies are just throwing technology at various markets and praying that it sticks. Dentists want to be dentists, and not spend their time dealing with issues like print parameters and melted filament.

“We, as technology providers, need to raise our game and make this work for these people,” Janssen stated.

I think that’s a great note on which to end my AMS 2020 coverage – we, the AM technology providers, need to show the rest of the world how 3D printing can work for their industries.

We hope to see you next winter for Additive Manufacturing Strategies 2021!

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

The post AMS 2020: Panels on 3D Printing Materials and Applications for Dental Industry appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Dental College of Georgia: Examining Photoinitiator Types in 3D Printing Resins

Researchers from the Dental College of Georgia, Augusta University, are exploring better ways to perform dental restoration, detailing their findings in the recently published ‘Photoinitiator Types Among a Variety of 3D Printing Monomers.’

As 3D printers have begun to make significant and noticeable impacts in dental and orthodontic labs around the world, a variety of hardware, software, and materials have sprung up, allowing for the direct fabrication of items like:

  • Denture bases and teeth
  • Temporary restorations
  • Splints
  • Impression trays
  • Surgical guides
  • Casts
  • Try-in set-ups
  • Stents

Although there is a range of printers to choose from, the researchers are concerned with the quality of ‘the light-curing sources used for the printing and post-cure processes match the spectral absorption profiles of photo-initiators present in a variety of different types of dental 3D printing resins.’

So far, R&D from a variety of manufacturers and labs has yielded desktop 3D printers that offer great accuracy and surface feature details, providing much greater freedom for dental offices as they can create items on demand while enjoying all the benefits of 3D printing—from offering patient-specific treatment and products that can be greatly customized to enjoying greater affordability and speed in production.

“Contemporary dental 3D printing typically involves use of near or true ultraviolet radiation (405 nm & 385 nm, respectively) in order to fabricate the basic desired form from a vat of photo-polymerizable monomers,” explain the researchers.

“Subsequent to initial form fabrication, the specimen is alcohol-washed of excess surface monomer, and is then subjected to an additional exposure of strong near/UV light, in order to maximize the polymerization process and provide optimal physical properties, as well as to minimize cytotoxicity resulting from leaching of unreacted, residual monomer within the bulk of the as-printed item.”

For this study, the research team used six different photoinitiators for UV-photopolymerization of acrylates, to include:

  • OMNIRAD 2100 – mixture of TPO-L and Irgacure 819
  • TPO-L (not obtainable) – also known as Ethyl phenyl (2,4,6 trimethylbenzoly) phosphinate (an MAPO)
    CAS 84424-1 1-7
  • OMNIRAD 819 – 819 (formerly Irgacure 819)
  • Lucirin TPO – TPO ( a MAPO)
  • OMNIRAD 184D – D (formerly Irgacure 184D )
    also known as 1-hydroxycyclohexylphenyl ketone
    CAS 947-1 9-3
  • OMNIRAD 1173 – 3 (formerly Irgacure 1173) also known as 2-hydroxyl-2-methylpropiophenone CAS 7473-9 8-5

Overall, results showed that the content of most resins was identifiable, although there was no consistency found in photoinitiator content among the materials.

“Knowledge of spectral needs of photoinitiators will help 3D printer/post-cure operators better understand the light source needs of different resins and to fabricate polymer forms having optimal physical and biocompatible properties,” concluded the researchers. “There is more relative absorption of photoinitiator at 385 nm than at 405 nm. Initial printing and subsequent post-cure might be more efficient using 385 nm, provided 385 nm has low attenuation within the printed model.”

What do you think of this 3D printing news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source / Images: ‘Photoinitiator Types Among a Variety of 3D Printing Monomers’]

The post Dental College of Georgia: Examining Photoinitiator Types in 3D Printing Resins appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Laser Sintered Metal Restoration in Dentistry: Research Review

Amir S. Azer and Heidar Shahin explore topics in dental restoration, detailing their findings in the recently published ‘Fit of Laser Sintered Metal Restorations: A Systematic Review.’ As 3D printing becomes increasingly more popular in the area of dentistry, dental restoration, and orthodontics, the use of metal materials offers a host of advantages.

Fabrication of metal copings has received ‘a paradigm shift’ with the advent of 3D printing, allowing for the creation of complex geometries, faster turnaround time in production, and improved automation. For this review study, the authors examined a wide range of articles regarding the in vitro use of 3D printing for metal copings, crowns, and fixed partial dentures. They did not place a publication year limit on their search for information, which was mainly electronic but also included some manual discovery too.

Their search yielded 284 relevant studies to begin, although ultimately only 17 were deemed eligible for the review.

PRISMA flow chart of the systematic review

“Of the included 17 articles, 6 articles (35.3%) only assessed the marginal fit accuracy, one article (5.9%) only assessed the internal fit accuracy and 10 articles (58.84%) assessed both the marginal and internal fit accuracy,” explained Azer and Shahin. “Thirteen articles (76.5%) used single crown frameworks, 3 articles (17.6%) used fixed-partial-denture frameworks and only one article (5.9%) used both single crown and fixed partial-denture frameworks for the fit accuracy assessment.”

Cobalt – Chromium (Co-Cr) was used in all articles reviewed: a total of 14 studies employed direct metal laser sintering technique (DMLS), while 3 used selective laser sintering technique (SLS). Fabrication methods for comparing fit accuracy with laser sintering varied between:

  • Lost wax method
  • Wax pattern milling using CAD/CAM technology
  • 3D printing of wax/resin pattern

“Among other techniques, milling of Co-Cr metal frameworks using CAD/CAM technology was used in 7 articles,” stated the authors. “Only one article used CAD/CAM zirconia milling.”

Methods used for both marginal and internal fit evaluation included:

  • Silicone replica approach
  • 3D replica approach
  • Internal microscopic examination after cementation and sectioning of the specimen
  • External microscopic examination of the marginal area
  • Silicone impression weighing approach
  • Direct-sight approach

Marginal and internal fit are the critical elements for success in fixed restoration, while just ‘marginal’ inaccuracies may cause:

  • Gingival inflammation
  • Gingival recession
  • Secondary caries below crown margins

“According to American Dental Association (ADA) Specification No. 8, a gap width ranging between 25 to 40 μm has been suggested as a clinical goal,” explained the authors. “Sulaiman et al reported that 100 μm is an acceptable gap for clinical use. McLean and von Fraunhofer on the other hand have suggested that 120 μm should be the limit for clinical use. Moldovan et al reported that a gap of 200–300 μm is also acceptable. However, several researchers consider the value of 120 μm proposed by McLean and von Fraunhofer to be the most suitable limit for clinical use.”

Variations in the studies—even for the same system—were attributed to possible differences in fabrication technique, scanning, study designs—to include shape of casts, abutment teeth, and measurements. Such variations, however, rendered it impossible for the researchers to analyze the systems of rank them regarding accuracy.

“However, almost all the measurements were well within the clinically acceptable range suggested by McLean and von Fraunhofer. There was an agreement between the studies that the used systems have the ability to yield restorations with a clinically acceptable fit,” concluded the researchers.

“While further research is necessary to optimize the process parameters and clinical applications, the laser sintering procedure provides an efficient and rapid method for digitally designing and manufacturing complex metal structures for crowns and FPDs.”

3D printing in used in the dental industry today for projects such as making new crowns and bridges, new dental ecosystem materials, and scanning technology for dental arches. What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source / Images: ‘Fit of Laser Sintered Metal Restorations: A Systematic Review’]

 

The post Laser Sintered Metal Restoration in Dentistry: Research Review appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Align Technology Acquires exocad, Dental CAD/CAM Software Vendor in €376 Million Deal

Align Technology acquires Global Dental CAD/CAM software firm, exocad. Known for their dental CAD/CAM solutions, exocad will strengthen Align’s presence among dentists, labs, and partners around the globe.

The two companies have signed a cash deal for the purchase of the privately held company for around 376 million Euro, giving Align new access to the dental software market, integrated workflows, dental practice customers, and a wide array of new partners—plus connections to resellers in 150 countries. Many new features will complement the Align digital platform offering new tools for workflows critical to diagnostics, orthodontics, and more.

Invisalign and its iTero digital dental scanner solutions will be further reinforced, along with restorative dentistry, implantology, guided surgery, and “smile design (Aligns terminology for both the design element of its Invisalign process and its benefit to customers).” The two companies expect the acquisition to ‘pave the way for new, seamless cross-discipline dentistry in the lab and at chairside.’ This integration sees Align able to offer more products to existing clients and offer a more integrated solution to its installed base of customers.

exocad will continue operations, as usual, managing their large ecosystem of existing partners and software solutions. In a recent press release sent to 3DPrint.com, the two companies state that exocad co-founders Tillmann Steinbrecher and Maik Gerth and their current team will stay after the acquisition is final, reporting to John Morici, Align Technology, senior vice president and CFO.

“Dentistry today is evolving digitally, with technology advances and consumer awareness driving new opportunities in ortho-restorative and comprehensive treatment. Align is in a unique position to lead the digital transformation of dentistry by reimagining comprehensive treatment planning and by reinventing the way orthodontists and GPs practice with our digital platform for transforming smiles,” said Joe Hogan, Align Technology president and CEO.

“exocad allows us to broaden and deepen Align’s digital platform by addressing restorative needs in our end-to-end digital platform that facilitate ortho-restorative and comprehensive dentistry and accelerates adoption of Invisalign treatment among the more than 300 million potential patients worldwide.”

Align and exocad have been collaborating since 2017, so both companies see this as ‘a natural next step’ after their work together integrating Align’s iTero intraoral scanners and exocad Chairside CAD software. They then moved on to creating a new workflow that allows dentists to perform milling in-house for restoration practices. In 2020, Align and exocad were still going strong, announcing their exocad Connector.

“I am excited by the enormous growth opportunity for exocad and its customers that comes with being a part of Align Technology,” said Tillmann Steinbrecher, CEO and co-founder of exocad. “Together, we will further strengthen exocad’s position as a key technology provider for the dental CAD/CAM industry and drive continuous innovation with the open and integrated approach that is the foundation of our company.”

The financial transaction for the acquisition is expected to occur during the second quarter of 2020.

“The acquisition of exocad adds a talented and passionate team as well as a highly innovative, industry-leading product suite to our portfolio, providing an excellent complement to our current workflow solutions,” said John Morici, Align Technology, senior vice president and CFO.

“We will continue to invest in and build on exocad’s leadership in the dental CAD/CAM market and look to them to make significant contributions to Align’s overall strategy.”

Align has been an astute company from inception capturing immense value by taking a clunky invasive and (for teens) embarrassing high-cost process of braces and replacing it by a series of discrete molds. Through pioneering direct marketing of this treatment to consumers while courting the dental community the company has pursued and maintained worldwide growth. Align’s treatment uses 3D printed molds and the firm prints hundreds of thousands of these a day, each one verified in CAD software by an employee. One can assume that the company has a lot of experience and understanding of dental CAD by now. Coupled with the firm’s 3D scanners it seems that Align is not only vertically integrating and expanding its portfolio here but also moving towards a complete digital dentistry offering for chairside dentistry.

The dental industry continues to expand via 3D design and 3D printing today, with new technology, studies regarding dental prosthetics, improved dental implants, and much more. What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source / Images: Align Technology]

The post Align Technology Acquires exocad, Dental CAD/CAM Software Vendor in €376 Million Deal appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Arfona Announces New Dental 3D Printing Products and Services at LMT Lab Day

As SmarTech’s VP of Research Scott Dunham said at our recent Additive Manufacturing Strategies event in Boston, the healthcare portion of the AM market is truly the backbone of the industry; combining medical and dental applications, it’s worth a little more than $3 billion dollars. AMS 2020 keynote speaker Dr. Banu Gemici-Ozkan, Senior Market Intelligence Leader for GE Additive, said that dental is the most mature industry for metal AM. In its fifth Additive Manufacturing in Dentistry report, SmarTech notes that “an emerging dental industry transformation is taking place from converging forces,” with 3D printing right at the center.

(Photo by Sarah Saunders)

That’s why LMT Lab Day, which recently concluded in Chicago and is the largest gathering of the dental laboratory community in North America, is seeing more and more 3D printing innovations on the exhibition floor. Over the past week, lots of big announcements have come from the show – Prodways announced the development of its Clear Aligners Manufacturing Ecosystem, BEGO and Formlabs are partnering up for on-demand dental products, EnvisionTEC and dental CAD/CAM software developer exocad are integrating their products for a streamlined digital workflow, etc.

New York-based dental tech startup Arfona, which was founded in 2016 by several 3D printing enthusiasts and dental technicians, specializes in thermoplastic 3D printed dental prosthetics, and its products are available in over 30 countries around the world. The award-winning startup is actually the inventor of the 3D printed flexible partial denture, and was also at last week’s LMT Lab Day Chicago. Arfona had a few announcements of its own to make – it launched several new products and services at the event.

First off, Arfona will be relocating to a new state of the art 3D printing facility in New York. Once the relocation and expansion is complete, the startup’s service bureau department will then offer dental material manufacturer Valplast‘s 3D printing services to dental laboratories. In fact, its new 3D printing center will be completely focused on 3D printed Valplast partial dentures, and will be accepting all intraoral and model scans from dental labs. In addition, Arfona will also be offering 3D print services for custom impression trays, denture try-ins, and low-resolution dental models.

The most exciting of Arfona’s announcements is its new FILAdent material – a thermoplastic PMMA filament that can be used to 3D print denture teeth when combined with Valplast’s partial dentures. PMMA, or poly(methyl methacrylate), is inert, biocompatible, and easy to obtain, which is why it’s also been used to make cranial implants.

Arfona’s founder and CEO Justin Marks made the announcement about the startup’s new FILAdent material at LMT Lab Day.

“The combination of FILAdent and Valplast represents the dental industry’s first real use-case for multimaterial and multicolor printing,” stated Marks in a release sent to 3DPrint.com. “Our dual-extrusion r.Pod printer is now capable of producing a Valplast denture base with acrylic teeth in a single build. This revolutionary development for dental 3D printing further reduces the number of steps needed to produce a finished Valplast denture and brings us even closer to our goal of providing affordable tooth replacement for a growing edentulous population.”

FILAdent will come in multiple basic tooth shades, and will be made available to users of Arfona’s multimaterial, desktop r.Pod 3D printer in the second half of 2020.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

[Images: Arfona, unless otherwise noted]

The post Arfona Announces New Dental 3D Printing Products and Services at LMT Lab Day appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.