5 Benefits of Using 3D Printing in Facade Architecture and Construction

A building’s facade
is a challenging, multi-functional aspect of the structure that carries a lot
of responsibility and expectations. It acts as a barrier and protects the
inside from the elements, determines how much light enters the space and also
provides the overall aesthetic to the building. Find out how architects are
using 3D printing to streamline architectural design and construction
processes, freeing up more time and costs to continue innovating.

“Deep
Facade” from ETH Zurich Uses 3D Printing to Produce Complex Geometric Shapes

Deep Facade is a 6×4 meter aluminium structure composed of 26 sections of looping metal cast in a 3D printed open sand mold. It was created by students from the Digital Fabrication course at ETH Zurich in 2018 and evokes the folds of the cerebral cortex. This process makes use of the computational design method called topology optimization, where lightweight material can be used to create highly stable and efficient structures. They used binder jetting technology to fabricate the sand molds which allowed them substantial geometric freedom and sped up the fabrication process due to fast printing time, eliminating patternmaking and reducing material waste. The complexity of the geometric shapes of Deep Facade would not have been possible without the use of digital design and 3D printing. Each mold took under 12 hours to print and once printing began the facade itself was formed in less than half a week. The students’ work on Deep Facade demonstrated that the production of parts with 3D printed sand molds was faster and cheaper than traditional mold making methods, and also showed how efficiently one of a kind complex geometric designs could be produced.

FIT
Additive Manufacturing Group’s “Facade 3000” Demonstrates the Potential for
Mass Individualization with 3D Printing

In Lupburg Germany, FIT created a 3D printed aluminium facade for its boarding house made up of panels each with its own complex pattern of cavities to showcase how to use 3D printing in construction to favor economical individualization. The panels each have a unique arrangement of cavity shapes, each created using aluminium inserts in the molds. They were able to produce 20 different panels simultaneously in rotation. This method of producing unique panel pieces demonstrates that 3D printing is a key resource when it comes to the future of cost-effective mass-individualization and customization in construction.

1 South
First Building by COOKFOX Architects Finds Higher Productivity and Durability
with 3D Printed Molds

The new building at the site of the former Domino Sugar Factory in Brooklyn, NY. consists of two interlocking structures with facades of all-white concrete precast from 3D printed molds. The crystalline facades were designed to emulate sugar crystals and are self-shading with each piece shaped according to its solar orientation. The variations in the panels meant that over 100 different molds were needed, and creating each one took between 14-16 hours instead of taking 40-50 hours each if the molds were made traditionally. The efficiency of the molding process freed up substantial time and the 3D printed molds proved to be more durable than traditional wood and fiberglass molds (which can be used up to 10 times), as they were able to be reused 150-200 times.

Rainier
Square Tower in Seattle by 3Diligent Corp x Walters & Wolf Use 3D Printed
Parts for Better Accuracy and Reliability

In order to create an upward slope from the 4th to the 40th floor in the 59-story Rainier Square Tower in Seattle, Walters & Wolf and digital manufacturing company 3Diligent Corp printed aluminium nodes and wall curtains. 140 3D printed v-shaped nodes and square cut pieces of curtain wall were custom fabricated to geometrically accommodate a different angle for each section of the building. 3Diligent gave Walters & Wolf the option between investment casting and 3d printing and Walters & Wolf decided to use the 3D printed nodes because of their level of precision and structural integrity. Each node was created with varying dimensions up to a cubic foot, another testament to the efficiency and flexibility of 3d printing.

The
“Fluid Morphology” Project in Munich Make Use of Fast Prototyping to Develop
Functionally Integrated Facades

At the Technical University in Munich, Moritz Mungenast and Studio 3F began a project to create a 3D printed facade envelope that integrates ventilation, insulation and shading to become the new facade of the Deutsches Museum in 2020. The facade design is flowing and translucent, resembling Shapeways’ translucent material Accura 60. Studio 3F built a 1.6×2.8 meter section to test for a year to improve the design before making another polycarbonate prototype. The team was able to print 1:1 scale models and prototypes along the way with ease, meaning they were able to fully comprehend the viability of their design, determine production costs, communicate their ideas to their clients and continue developing what they hope to be a widely used facade technology that combines form and function.

In addition to these innovative projects, more and more architecture firms are utilizing 3D printing to achieve a higher level of freedom in design and as a way of making processes more time and cost efficient. 3D printed molds hold up better than traditional wood casts and have a higher range of possibility when it comes to complex geometric shapes. Because of the range of materials available, 3D printing also assures a level of structural reliability for the printing of end-use parts.

Shapeways can print with a variety of materials, including stainless steel, translucent and high strength plastics, and can help you get started with producing custom molds and parts.

The post 5 Benefits of Using 3D Printing in Facade Architecture and Construction appeared first on Shapeways Blog.

Making Injection Molding Cost-Effective: How Many Units Do You Need to Order?

Injection molding is typically described as a cost-effective manufacturing process… when ordering large quantities of parts.

The reason for this is simple: with injection molding, the initial tooling costs are very high, while the actual plastic molding costs are very low, which means the effective cost-per-unit becomes lower when more units are required.

For example, imagine that a stainless steel mold for a toy car costs $5,000, and each plastic toy car made with the mold costs $0.50. In this scenario, ordering 1x unit of the toy car would cost $5,000.50, ordering 2x units would cost $5,001, and ordering 1,000x units would cost $5,500.

In all of the scenarios, the mold accounts for the bulk of the cost, so the total cost does not vary greatly.

However, in these three scenarios, the effective cost-per-unit does vary greatly:

Scenario in which mold costs $5,000 and each molded part costs $0.50
Units Total cost ($) Cost-per-unit ($)
1 5,000.50 5,000.50
2 5,001.00 2,500.50
1,000 5,500.00 5.50

 

As you can see, there is a dramatic reduction in cost-per-unit when the unit quantity increases, since the extra units amortize the high cost of the mold.

Ordering more units of the toy car clearly represents better value for money. (In fact, ordering a single unit would appear to be a colossal waste of money.)

But just how “large” do we mean when we say that injection molding is suited to large quantities of parts? 100? 1,000? 10,000? A million? As a company deciding between multiple manufacturing processes for a medium-size order of prototypes or end-use parts, we want to know at what point injection molding becomes more cost-effective than the alternatives such as 3D printing.

And while there is no simple formula for determining the point at which injection molding becomes more cost-effective than 3D printing, there are certain factors we can take into account that will help us make the right decision.

3ERP, an expert in injection molding and other on-demand manufacturing services, here provides advice on choosing between injection molding 3D printing based on the required order size.

Injection molding vs 3D printing: First considerations

For companies looking to complete prototyping or production of plastic parts, both injection and 3D printing may seem like tempting options, and it may seem hard to weigh up the respective benefits of each.

However, before getting into any precise calculations, it’s worth pointing out some situations where one manufacturing process is clearly preferable to the other.

Let’s start with a scenario in which a company needs a very small number of prototypes (perhaps just one), and the material and aesthetic properties of the prototype(s) are of negligible importance. Perhaps the in-house R&D team simply wants to see, very loosely, how a yellow plastic casing looks on its new electronic device.

In such a scenario, 3D printing would be the obviously preferable choice: it would be significantly cheaper, and any technical deficiencies in the prototype would not matter.

Alternatively, imagine a scenario in which just a handful of prototypes (perhaps just one) are needed, but the company is looking to pitch its product to an investor, who needs to be convinced that the end-use part (to be made with injection molding during mass production) will function properly for its intended purpose.

In such a scenario, while 3D printing the prototype may be cheaper, it might still be worthwhile for the company to create an injection molded prototype in order to demonstrate the viability of its end-use product.

Key economic differences between injection molding & 3D printing

It is difficult to compare the costs of injection molding and 3D printing because the processes are fundamentally different — not just in terms of how they work, but in how their respective costs are determined.

In general terms, injection molding is a process with high startup costs: metal molds are expensive to make, and that preliminary step can be an insurmountable hurdle for some small businesses. However, once a mold has been fabricated, the cost of each injected “shot” of plastic is very low.

3D printing is different because, unlike injection molding, it is a one-step process. No tooling is needed, and the finished part comes straight out of the printer. This means there are no obstructive startup costs.

That being said, the cost of a single plastic 3D printed part is generally higher than a shot of injected plastic. This is because 3D printing filament (for FDM printers) is more expensive than plastic pellets, and because the sheer slowness of 3D printers means that service providers must charge more for their operation.

With that in mind, the most importance difference between the two processes is that the cost-per-unit of injection molding is dynamic: it decreases as the number of units increases. With 3D printing, on the other hand, the cost-per-unit is static: parts will usually cost the same amount whether you order one or 1,000 of them.

This means that 3D printing in small quantities is cheaper than injection molding, while injection molding in large quantities is cheaper than 3D printing. That also means, logically, that there is some specific quantity at which the “best value” option switches from 3D printing to injection molding.

Finding that quantity depends on several factors.

How many parts to be cost-effective: Factors to consider

The mold

When evaluating the potential costs of injection molding and 3D printing, it is worth starting with potentially the most expensive part of the project: the mold.

Molds can cost thousands of dollars, since they are machined from metal and need to last a long time — potentially hundreds of thousands of plastic shots. However, it is possible to drastically reduce the cost of molds through rapid tooling, the creation of prototype-grade molds with CNC machines or metal 3D printers.

The cost of molds can also be reduced by using aluminum instead of steel. Aluminum is less durable than tool steel, but is still capable of producing high-quality molded parts from non-corrosive materials.

If the cost of the mold can be reduced, the number of molded parts required to be cost-effective decreases.

As an example, imagine that a steel mold for a toy car costs $5,000, that an aluminum mold costs $1,000, and that the cost per plastic shot with either mold is $0.50. Imagine, also, that a 3D printed version of the toy car costs $20.

In this example, the potential costs of the project would be as follows:

Steel mold IM Aluminum mold IM 3D printing
Units Total cost ($) Cost-per-unit ($) Total cost ($) Cost-per-unit ($) Total cost ($) Cost-per-unit ($)
1 5,000.50 5,000.50 1,000.50 1,000.50 20 20
2 5,001.00 2,500.50 1,001 500.50 40 20
50 5,025.00 100.50 1,025 20.50 1,000 20
60 5,030.00 83.83 1,030 17.17 1,200 20
300 5,150.00 17.17 1,150 3.83 6,000 20

 

In this scenario, a 50-unit order is cheaper with 3D printing, but a 60-unit order is cheaper using injection molding with an aluminum mold. (Meanwhile, the more expensive steel mold becomes more cost-effective than 3D printing just above the 250-unit mark.)

Plastics

Another consideration that will affect the calculation is the plastic used to make the part, and there are several variables to consider here.

One factor to consider is that not all 3D printable plastics are moldable, and vice versa. Another is that 3D printing filament is by and large, more expensive than the plastic pellets used for injection molding, since it must be precisely shaped by the material manufacturer.

Importantly, the cost of plastics may not be consistent between pellet and filament formats: materials like Nylon and Polycarbonate, for example, remain relatively premium products in the 3D printing filament market, so a relatively small number of Nylon parts would be required to make injection molding more cost-effective than 3D printing. (A common 3D printing material like ABS, however, would require a much larger number.)

The type of plastic used to make the parts may therefore determine which manufacturing process is more economical for a given order volume.

Part shape and size

The design of the part may also affect its potential cost for injection molding and 3D printing. A part with overhangs, for example, may be significantly cheaper to 3D print, since injection molded parts with overhangs require more complex tooling.

In other words, if your part design is not suited to injection molding, you’ll probably need to order more parts to make injection molding cost-effective.

Manufacturing process

FDM remains the most common 3D printing process, but alternative options include Stereolithography and Selective Laser Sintering. These other processes are more expensive than FDM, which naturally affects their affordability in comparison with injection molding.

For example, 200 FDM parts may be cheaper than 200 equivalent injection molded parts, but 200 SLS parts may be more expensive than 200 injection molded parts.

Conclusion

Since the cost-per-unit of plastic parts is dynamic for injection molding and static for 3D printing, it can be difficult to assess which option is the best value for money for a given order.

Numerous factors, including mold creation, part material and part shape can affect the cost of the order — and to different degrees depending on the manufacturing process.

With that in mind, the best solution to the dilemma may be simply requesting a quote for both processes.

3ERP has expertise in both injection molding and 3D printing, and can assess projects on a case-by-case basis to see which represents the best value for money.

Get in touch and we’ll get your project up and running.

The post Making Injection Molding Cost-Effective: How Many Units Do You Need to Order? appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

DiveDesign & Bionic Pets: 3D Printing Custom Prosthetics for Dogs, Ducks, and More

New Jersey product development studio DiveDesign helps clients strategically build brands and products that will shape their industries, offering services such as industrial design, web development, engineering, design research and strategy, and prototyping. Recently, the studio’s co-founder and designer Adam Hecht reached out to us with an awesome feel-good story that involves using 3D printing and scanning to make prosthetics for animals.

Hecht told us about one of DiveDesign’s clients, Virginia-based Bionic Pets, which is one of the leading custom prosthetics and orthotics builders for animals around the globe.

“Bionic Pets is passionate about developing medical products that help animals lead better lives,” the website states. “Since the founding of the company, Bionic Pets has helped over 25,000 animals, and we’re just getting started. It is our mission to revolutionize rehabilitation and pain management in the animal world.”

Founder Derrick Campana began building orthotic and prosthetic devices for people in 2002, and started Animal Ortho Care three years later, after successfully making such a device for a dog in 2004. Bionic Pets was split into its own business when Animal Ortho Care kept growing.

Now, Bionic Pets offers custom prosthetics for, as the website states, “a variety of injuries and chronic conditions,” along with custom-fit braces and accessories, such as replacement straps and padding, a casting kit, and a KnitRite sock to be worn under the devices.

Hecht told 3DPrint.com that the Bionic Pets team makes custom prosthetic and orthotic devices for all kinds of animals, “from elephants, to dogs and even birds.”

“One of their popular dog prosthetic offerings is a full limb prosthesis for dogs who have had an entire front limb removed,” he explained. “These prosthetics are important because they take the strain off the dog’s good front leg. Without the prosthetic dogs are at a much greater risk for joint deterioration and injury.”

(Image: Bionic Pets)

To make a dog prosthetic using conventional methods of manufacturing, Campana would take a mold of the canine patient in order to fabricate a custom vest that would serve to mount the custom limb.

Adam Hecht

“However, making this type of prosthetic by hand is quite the process, requiring pouring and shaping plaster molds, forming thermoplastics, cutting, sanding, etc, adding up to nearly 15 hours of Derricks time per full limb prosthetic! Because of this, Derrick had to turn many dogs down as he simply could not keep up,” Hecht told us.

“After connecting with Derrick and learning of his challenges, we knew we had the team and resources to re-imagine this process with digital tools.”

DiveDesign collaborated with 3D digital design firm LANDAU Design+Technology to come up with a new prosthetic-making process that consisted of just four steps, starting with 3D scanning the mold of the limb. The data is uploaded to a computer, and the company uses a proprietary algorithm to generate the prosthetic from the scan, along with its mounting points, pattern, thicknesses, and more.

The DiveDesign team with Derrick Campana of Bionic Pets and Chris Landau of Landau Design after a day of filming for Derrick’s new show, Wizard of Paws.

“Then, we print it overnight out of TPU, on a large format FDM 3D printer. And finally, we screw the leg on and ship it out,” Hecht says. “This process cuts the 15 hours of handwork into an hour or so of prep and assembly, greatly increasing Bionic Pet’s capacity to help more animals than ever before.”

Hecht said DiveDesign has shipped out more than thirty 3D printed prosthetics in two months to Bionic Pets, “with many more on the way.”

Derrick Campana

Campana is also hosting his own TV show now, called The Wizard of Paws, which follows him as he travels around the US to provide life-saving, custom prosthetics and orthotics to animals in need. Recently, he visited the DiveDesign studio for an episode, and they worked together to build a 3D printed prosthetic for doggie Instagram star TurboRoo, a chihuahua we at 3DPrint.com are already familiar with due to his teeny 3D printed cart. You can check out the episode here; the DiveDesign team comes in at the 17:50 mark.

Hecht told us that the DiveDesign team “also made a 3D printed duck prosthetic for another episode (first 12 minutes or so)  tears were shed for this one!”

I am not ashamed to admit that I teared up a little watching Waddles the duck take his first steps on his new 3D printed prosthetic. There are few things I love more in my job than hearing about the many ways that 3D printing makes a positive difference in lives of both people and animals.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

(Images: DiveDesign, unless otherwise noted)

The post DiveDesign & Bionic Pets: 3D Printing Custom Prosthetics for Dogs, Ducks, and More appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Next Chapter Manufacturing: Redesigning Injection Molding with 3D Printing

Additive manufacturing (AM) is already making strong inroads into the injection molding industry due to its ability to reduce the cost and improve the performance of molds used in the process. What we are now starting to see is an increasing number of companies and services aimed specifically at leveraging AM and computer aided engineering to disrupt the injection molding market. One such company is Next Chapter Manufacturing (NXCMFG).

Prior to founding NXCMFG, Jason Murphy worked in the mold making industry, using traditional processes like CNC machines, milling and drilling to craft tooling for injection molding. He eventually established a mold making company that he ran for about 10 years before selling it. Murphy then moved onto the plastics side of the industry, where he worked in plastics processing for another 10 years. He believes that the mold making industry has become somewhat set in its ways, forgetting to look for innovation in the space. For that reason, he established NXCMFG.

NXCMFG is a tooling company that uses AM to produce metal inserts and tooling for use in plastic injection molding and metal die casting, as well as jigs, fixtures and other tools. While it may not perform high volume production itself, NXCMFG makes the parts that make the parts made through high volume production technologies. Clients range from small businesses to Fortune 500 injection molding companies.

The hardware consists of Farsoon metal Direct Metal Laser Sintering (DMLS) systems, which have the performance, resolution and the cost necessary for a relatively small businesses like Murphy’s to produce entirely new molds or inserts for existing molds. And, while typical projects consist of one-off prints, the firm typically builds multiple parts for multiple projects at a single time. According to Murphy, his is in the only company in the U.S. that is able to print H13 tool steel and 420 stainless steel using a metal DMLS process.

A mold with conformal cooling. Image courtesy of NXCMFG.

However, probably the most interesting aspect of NXCMFG’s work is the use of conformal cooling and generative design to optimize injection molds and inserts. Unlike traditional CNC processes used to integrate cooling channels into molds, NXCMFG is able to include channels that conform to the shape of the mold, which reduces the time it takes for the mold to cool and a new injection molding job to begin. According to Murphy, his company is able to introduce a 20 to 80 percent improvement in cycle time.

While conformal cooling is becoming increasingly deployed by a number of additive companies in the space, NXCMFG is designing cooling vents for molds. Murphy explained, “Before you inject the plastic in, there is air inside of the mold so that, when you inject the plastic, that air has to go somewhere. You can’t have a hole in the mold because all of the plastic would come out. So, you have these thin slots that are about one-third of the width of a human hair that all of that gas has to escape out of.”

A mold with conformal cooling. Image courtesy of NXCMFG.

Using AM, Murphy’s company can incorporate slits that measure up to one-thousandth of an inch. Moreover, NXCMFG is working on new methods of design that actually change the density of the steel molds they are printing so that the areas in contact with the liquid plastic are porous like a sponge. This would result in quick and even gas displacement, as well as more rapid cooling for improved cycle times. The firm also uses generative design to reduce the weight of molds, resulting in organic-looking tooling with material only where it needs to be for proper strength and performance.

A generative design study. Image courtesy of NXCMFG.

NXCMFG isn’t only utilizing these unique design features in new molds, but also inserts that can be used to modify older tooling. Murphy’s team is able to incorporate cooling channels and venting into a single mold insert, placing a porous steel design alongside a cooling channel for maximum performance with legacy tooling. This saves customers the money that would be used for creating an entirely new mold

A 3D-printed insert. Image courtesy of NXCMFG.

All of these features end up being profitable for their customers in a variety of ways. By cutting cycle times, injection molders can make more parts more quickly, thus reducing machine hours and labor. The process also reduces plastic scrap because conformal cooling and venting reduces defects in plastic parts.

“We’re the only people in the industry 3D printing molds with a million shot guarantee. We offer a guarantee that says, ‘Look, our tooling is so robust that it’ll last a million cycles in production, which is industry standard for traditional tooling,” Murphy said.

What NXCMFG demonstrates is that the tooling sector is only beginning to feel the impact of AM. As one of the most innovative firms in the space, Murphy’s is ahead of the curve in terms of where molds are headed. By the time others follow suit, NXCMFG may be on to even newer and more unique methods for improving mass manufacturing practices.

The post Next Chapter Manufacturing: Redesigning Injection Molding with 3D Printing appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

SLA 3D Printing: Chinese Researchers Create Strong Ceramic Molds with Non-Aqueous Gelcasting

In ‘Rapid Fabrication of High-Performance CaO-Based Integral Ceramic Mold by Stereolithography and Non-Aqueous Gelcasting,’ Chinese researchers from Xi’an Jiaotong University explore 3D printing of better ceramic molds for investment casting. These are extremely important tools in manufacturing for a variety of applications, and mainly for casting structures that are complex and require internal cavities. Most are produced out of silica or alumina with good results, but not when used with active alloys that result in an inferior finish. Here, the authors search for affordable, accessible materials to fabricate ceramic molds that still possess the thermal stability and collapsibility required.

Calcium oxide, or CaO, is the center of focus in this study for a material that would be suitable for the ceramic core of a mold. It offers:

  • Reaction-resistance to molten active alloys
  • Ease of dissolution
  • Similar thermal expansion coefficient to those of superalloys

Morphology and particle size distribution of the CaO powder.

Susceptibility to water is a major issue with CaO, however, limiting its uses, along with inferior mechanical properties and low density. The researchers experimented with SLA 3D printing and gelcasting, which offers a unique method for creating ceramics via in-situ solidification. The more typical aqueous gelcasting was not a possibility due to hydration issues, but the authors were aware of previous experiments with non-aqueous procedures.

“Tert-butyl alcohol (TBA) has been selected as the solvent due to its low surface tension and high saturation vapor pressure, and the green body can be dried easily and with little shrinkage,” reported the authors.

CaO powder was combined with a pre-mixed solution and then the slurry was poured into a resin mold 3D printed on a SPS600B Rapid Prototyping Machine.

“The green body was subsequently placed into a vacuum freeze-dryer (Beijing Songyuan Huaxing Technology Development Co., Ltd., Beijing, China) with a freezing temperature of −40 °C, shelf temperature of 0 °C, and pressure of 10 Pa for 48 h. Finally, an integral CaO-based ceramic mold was obtained after sintering at 1400 °C for 3 h.,” explained the researchers in their study.

 

Schematic diagram of the integral ceramic mould manufacturing process.

The researchers were able to create a stronger slurry with some adjustment, along with gelation. Cracks were a major concern too, so temperature and heating rate had to be managed accordingly:

“There were no cracks in the CaO-based ceramic crucibles when the heating rate was 0.5 °C/min or 1 °C/min, whereas there were obvious cracks in the crucibles when the heating rate was greater than 1.5 °C/min. Although the ceramic mold did not crack with a heating rate of 0.5 °C /min, the heating rate is too low to facilitate efficient and economical production rates. To balance the quality, efficiency and energy consumption of manufacturing, 1.0 °C/min was considered the most suitable heating rate for pre-sintering the CaO-based ceramic molds,” reported the researchers.

Pre-sintering and sintering were also rigorously managed to control shrinkage, resulting in a low rate of 0.6% and a relatively high high-temperature (1200 °C) bending strength of 8.22 MPa.

“Compared to the injection molding process, the process described in this paper is more efficient for the fabrication of molds with complex structures and cores. The fabrication process of the CaO-based ceramic mold developed in this study is ideal for the rapid manufacturing of active metal parts with complex cavities,” said the researchers. “The process is more suitable for the rapid manufacturing of single-piece or small-batch production than the mass production due to the low efficiency of SLA. The control mechanism and method of near-zero shrinkage and the casting performance of CaO-based mold still need to be considered in further study.”

In a world still held undeniably connected between conventional methods of manufacturing and the mind-blowing progressive, the two commonly intersect—and 3D printing is often used today for making molds so that users can go on to make multiple objects quickly, and often with materials not supported by 3D printing, yet. And although the innovations brought forth by 3D printing are often staggering in their novelty as well as functionality, users around the world have been on a steep learning curve, driven to make one powerful improvement over another.

Find out more about other 3D printed molds such as those used to make elaborate metal architectural structures, glass molds, and PDMS molds for microfluidic designs. What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

Images of CaO-based parts with different pre-sintering heating rates: (a) 0.5 °C/min, (b) 1.0 °C/min, (c) 1.5 °C/min, and (d) 2.0 °C/min.

[Source / Images: ‘Rapid Fabrication of High-Performance CaO-Based Integral Ceramic Mold by Stereolithography and Non-Aqueous Gelcasting’]

University researchers develop new method for making 3D printed molds

Researchers at the Institute of Science and Technology Austria & the Institute of Science and Information Technology in Italy have developed a new tool for creating 3D printed molds. The tool automatically finds the best method to design silicone molds, and delivers the templates for what the team are calling ‘metamolds’. Bernd Bickel, heading the […]

ETH Zurich Students Cast Elaborate Metal Architectural Structures with 3D Printed Molds

The innovative researchers at ETH Zurich in Switzerland are becoming quite well-known for their advanced design and construction techniques, especially when it comes to their work with molds. 3D printed molds can be used to help fabricate everything from jewelry and chess pieces to medical implants and wind turbines, but a group of masters students from the university’s Architecture and Digital Fabrication course are currently interested in creating 3D printed molds for the architecture field.

Together with ETH Zurich senior researcher Mania Aghaei Meibodi, they have developed a new method for casting complex metal architectural structures using 3D printed molds.

Aghaei Meibodi, who researches how 3D printing can help create bespoke metal building elements, said, “Cast metal parts have a long tradition in architecture due to their extraordinary structural properties and possible 3D form.

“Today the amount of manual labour involved, especially in the mould-making process makes them too expensive.

“With our approach using 3D-printed moulds, we make it possible and affordable again to fabricate bespoke structural metal parts — parts with unseen richness of detail and geometric complexity.

“This approach can unlock an entirely new vocabulary of shapes for metal structures in architecture, previously unavailable with traditional mould-making systems.”

The one-off aluminum structure created by the Digital Building Technologies (DBT) group, called Deep Facade, is the first metal facade to be cast in 3D printed molds. Standing six meters high and four meters wide, the structure features ribbons of metal organically looped in a way that resembles the human brain’s cerebral cortex folds, and is a follow-up to a project by last year’s students called the Digital Metal Pavilion.

Aghaei Meibodi told Dezeen that the aluminum Digital Metal Pavilion, a space-frame structure made up of 240 non-repetitive joints, was the very first architectural structure to use 3D printed molds.

It only took a week to make these joints, which Aghaei Meibodi, who also chairs the DBT group, explained is 80 times faster than the more conventional processes used to fabricate complex metal parts. Using 3D printing for this type of application is obviously a far more cost-effective way to produce complex structures and forms for custom architectural projects.



It is possible to 3D print metal directly, but it’s not always the best option – it can be expensive, and can only be used with a limited range of metals with limited material properties. That’s why the DBT group uses 3D printed sand molds in casting molten metal.

Aghaei Meibodi explained, “In this synergy we benefit from the geometric freedom offered by 3D printing and the structural stability of cast metal.”

The Deep Facade structure is made of 26 articulated panels. A differential growth algorithm, which replicates the development of some living organisms, was used to fabricate the structure, which features some sections that would have been too fragile to make with concrete or sandstone.

Topology optimization, which allows for designers to take advantage of the geometrical freedoms made possible through additive manufacturing, also came into play in the DBT group’s creative process.

“Computational techniques such as topology optimisation allow designers to design lightweight parts, but the parts optimised with this technique are often difficult to manufacture through traditional methods.

“Our proposed fabrication approach doesn’t encounter the same limits as traditional manufacturing methods and can go further with shape optimisation thanks to the ability of 3D printing to print complex moulds that could be used to fabricate more efficient structures,” said Aghaei Meibodi.

Aghaei Meibodi is hopeful that her student group’s new method can one day be applied to a unique, large-scale project.

“With this new approach of casting metal, one can imagine a return of 3D detailing and 3D articulation, perhaps a fusing of ornament and structure,” she said.

“My dream application of it would be in the building envelope and interior structure of large spaces as large-span supporting structures.”

Discuss this story and other 3D printing topics at 3DPrintBoard.com or let us know your thoughts in the Facebook comments below.

[Images via Dezeen]