3D Printing News Briefs, June 10, 2020: 3D Systems, nTopology, Jellypipe

We’re discussing an upcoming event and some business news in today’s 3D Printing News Briefs. 3D Systems is holding a virtual trade show next month. nTopology and Yamaichi have signed an agreement, and a 3D printing platform has announced the onboarding of Europe’s largest purchasing and marketing association for industrial B2B.

3D Systems Holding Virtual Trade Show

On Wednesday, July 8, 2020, 3D Systems will be holding an exclusive virtual trade show centered on helping manufacturers keep their competitive advantage by using digital manufacturing solutions to fix supply chain dependencies, streamline supplier distribution, reduce supply interruptions, and lower risk. By integrating both additive and subtractive technologies into the environment, businesses can improve their productivity and agility, and offer customers new innovations. 3D Systems’ own Phil Schultz, Executive Vice President, Operations, and Radhika Krishnan, Executive Vice President and General Manager – Software, will give the keynote address for the event.

“Phil Schultz and Radhika Krishnan outline the essence of agile manufacturing, explaining in practical terms how to transform your environment to deliver a digital end-to-end manufacturing workflow that is fit for today and perfect for tomorrow.”

The event will kick off at 9:30 am EST and, in addition to the keynote, will include live webinar presentations and a virtual exhibit hall. Register here. If you’re unavailable to attend on the day of, the virtual trade show will be available on demand for the 30 days following the event.

nTopology and Yamaichi Sign MoU

Software startup nTopology has signed a Memorandum of Understanding (MoU) with Yamaichi Special Steel (YSS) to bring its next-generation nTop software platform to Japan. YSS is part of the automotive and heavy industry manufacturing supply chain in Japan, and its additive division promotes 3D printing and DfAM in the aerospace, automotive, and medical industries. The two have set up a reseller and service agreement, where YSS will bring nTop to its Japanese customers, providing support and training to users. Then, the Cognitive Additive solution of YSS will be connected to the nTop platform, to help users predict cost and printability.

To kick off the partnership, the YSS Additive Manufacturing team used topology optimization to redesign a brake caliper. As the part is used in a high temperature and fatigue environment, YSS designed a TPMS-based heat exchanger for the caliper, and also added an oil circuit and shielding surfaces. The brake caliper was 3D printed out of aluminum alloy AlSi10 using laser powder bed fusion (L-PBF) technology.

Jellypipe Onboards PVH Future LAB and E/D/E

German 3D printing platform Jellypipe uses its Jellypipe Eco-system to help companies take their 3D business to the next level, and features a comprehensive marketplace and the largest 3D printing factory in the D-A-CH region. Now, it’s announced the onboarding of PVH Future LAB, an innovation platform for technology-driven business models, and Einkaufsbüro Deutscher Eisenhändler GmbH (E/D/E), which drives PVH and is the largest purchasing and marketing association for industrial B2B in Europe. Both will now connect to the Jellypipe Eco-system.

“With Jellypipe’s 3D ecosystem – the connection with 3D specialists and our partners is a most important step in the digital automation and supply of 3D printed parts,” said Thilo Brocksch and Frederik Diergarten, both General Managers at PVH FUTURE LAB GmbH. “We can now offer our customers a new and wide process range for 3D printed products.”

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

The post 3D Printing News Briefs, June 10, 2020: 3D Systems, nTopology, Jellypipe appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Climate Disrupted: Optimizing Designs for Better Efficiency

If industrialized society is determined to maintain its industrial activities, its engineers will need to completely rethink how parts are designed in order to improve energy efficiency. This is true regardless of whether or not this energy comes from fossil fuels (which must be phased out starting yesterday) or renewable sources.

For this reason, additive manufacturing (AM) may be the best technology suited for the production of these novel designs, given its ability to fabricate complex geometries impossible with other fabrication techniques. While flying will likely need to be reduced as much as possible in general, due to their contribution to energy usage, the use of AM in the aviation sector has demonstrated the outcomes possible with all energy intensive industries. 

Weight and Performance Optimization

GE has performed a great deal of work to reduce fuel consumption in aircraft using AM by optimizing the strength-to-weight ratio of aircraft parts. The paradigm-shifting part in this instance is the LEAP fuel nozzle, which consolidated what was previously an assembly of 18 parts into just one. This resulted in an estimated fuel savings of 15 percent in jet engines, translating to an estimated 15 percent reduction in CO2 emissions and 50 percent reduction in NOx emissions. 

The LEAP fuel nozzle designed and manufactured by GE and Safran via CFM International. Image courtesy of GE Aerospace.

In 2014, Airbus and EOS performed an environmental lifecycle analysis study that compared metal casting with AM, determining that AM used 25 percent less material. By cutting the weight of an aircraft bracket by 10 kilograms, the 3D-printed was estimated to reduce CO2 emissions of the plane by 40 percent. 

An aircraft bracket that was used as the subject of the EOS/Airbus study. Image courtesy of EOS.

GE went on to develop the Catalyst turboprop engine for the Cessna Denali made up of 35 percent 3D-printed parts, which include the accelerator, a combustor swirler, a gearbox, and a large gearbox case. All of this, along with other innovations, reduce fuel burn by 20 percent and fuel consumption by 1 percent. This only translates to one percent reduction in CO2 emissions. Unfortunately, test flights for the aircraft have yet to be performed because the test engine has not yet been delivered to the aircraft manufacturer. 

If successfully produced, the Catalyst engine will become a core part of a hybrid fuel system for XTI Aircraft TriFan 600 plane. Naturally, we should be skeptical of the real-world impact of these endeavors, in particular for private planes such as the TriFan 600 and the Cessna Denali, which are reserved for business use.

However, if somehow large same weight reductions could be applied across the entire structure of more commercial passenger and freight aircraft, it would be possible to see the aviation sector have a far less significant impact on our collapsing ecosystem than it currently has. Perhaps more importantly, we could see electric planes actually become viable. 

A rendering of a hybrid-electric aircraft designed by Airbus, with expected first flight in 2021. Airbus has a goal of achieving zero-emissions flights by 2040. Image courtesy of Airbus.

Boom Supersonic, which is investing in 3D printing for its supersonic planes, estimates that there are over 170 programs in place to create electric aircraft. Stepping stones along the way include hybrid electric planes, such as the E-Fan X from Airbus, and retrofitting existing aircraft with hybrid engines. 

The U.N.’s Intergovernmental Panel on Climate Change (IPCC) reports that we have until 2030 to halve global greenhouse gas emissions, but research suggests that even that projection is underestimating the scope of the problem. Therefore, building new planes may not be enough to solve the problem or may even worsen it, due to the emissions associated with manufacturing and flying even hybrid aircraft. 

Extrapolating Aerospace Lessons to Other Sectors

So, as electric aircraft are constructed and limited to only necessary flights or alternative modes of transportation are deployed, other industries may be able to learn lessons from the aviation sector and apply them to their own work. An increasing number of design and simulation tools are now available to more easily optimize part design for 3D printing, potentially reducing the weight of objects regardless of application. 

If the U.S. does finally deploy high-speed rail (HSR) under a Green New Deal-type infrastructure plan, for instance, there may be opportunities to lighten the load of trains through weight-optimization design techniques. Unfortunately, at the moment, the most advanced application for AM in the rail industry is for the fabrication of spare parts, though this includes parts for HSR.

In these graphics, demand for metal doesn’t stem from electric vehicle projections alone, but from renewable energy and electric vehicle projections. Images courtesy of Achieving the Paris Climate Agreement Goals.

As for electric vehicles, the authors of Achieving the Paris Climate Agreement Goals project that, “The cumulative demand for cobalt from renewable energy and transport exceeds the current reserves in all scenarios, and for lithium, the cumulative demand is exceeded in all scenarios, except the ‘potential recycling scenario’.” 

In other words, we might not have enough cobalt or lithium to meet the demand currently expected, meaning that, unless we can develop alternative battery solutions within 10 years, the promise of electric vehicles is tenuous. For those vehicles that are necessary to maintain some semblance of industrialized society, lightweighting will help extend their range. 

Transportation accounts for about 19.5 percent of global greenhouse gas emissions, according to the IPCC. Energy production accounts for about 30 percent, general industrial processes and construction account for 19 percent. 

Because a large part of construction emissions come from the fabrication of concrete, it’s possible that additive construction could reduce the sector’s CO2 footprint by using less material and unique recycled materials. Other sources of GHG emissions from this sector include combustion of fossil fuels for heat and power as well as the use of fossil fuels for non-energy use and metallurgical production. As we covered in our series on the use of AM in the general industry and tooling sector, minor efficiencies could potentially be gained in industrial manufacturing processes.

By far the biggest impact we could have to cut emissions is to replace fossil fuel energy generation with renewables. AM can be used to improve the production of wind turbines, whether that is for prototyping, molds, or production. It has been used, for instance, to create small-scale systems for low amounts of power generation. 

In some cases, AM has been used to improve the efficiency of solar systems, as well. Sandia National Laboratories was able to 3D print fractal-like, concentrating solar power receivers for small to medium-scale use that were up to 20 percent more effective at absorbing sunlight than traditional designs. Lawrence Livermore National Laboratories formerly studied the ability to 3D print microfluidic devices used for sun tracking in solar power technologies.  

The above graphic related to metal supply and demand, the researchers indicate that we do not have enough lithium or cobalt to reach the goals set out by the Paris Climate Agreement. This is not only the case for building electric vehicles, but for renewable energy as a whole. These authors and the authors of the IPCC reports, however, maintain a steady increase in economic growth and, therefore, do not consider potentially more dramatic and realistic cuts to emissions that don’t rely wholly on technological developments.

In these areas, AM may only play a small role due to the fact that our existing, centralized manufacturing system relies on mass production technologies to ship items globally from disparate locations. As we are now seeing with supply chain disruption caused by the global coronavirus pandemic, however, centralized production may not be the long-term method for manufacturing. If we move to a distributed manufacturing model, AM may be the production technology of choice and, therefore, could play a larger role. There may be ecological benefits to such a model as well. We will explore distributed production in our next section in this series. 

The post Climate Disrupted: Optimizing Designs for Better Efficiency appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Additive Flow Goes Adds Additive Awareness to Generative Design

A new startup has emerged from stealth mode promising a software capable of aiding designers in enhancing their parts for additive manufacturing (AM) in ways that go beyond generative design and topology optimization. Additive Flow’s newly announced FormFlow software is meant to allow engineers to quickly modify their models for AM in ways that maximize their performance characteristics along a variety of criteria.

Founded in 2017 Alexander Pluke and Charles Fried, Additive Flow is made up of a team of artificial intelligence and architecture specialists. Its FormFlow software is meant to aid in the parametric design of parts for AM by allowing users to define multiple parameters to optimize a printed object in terms of geometry, process and material.

For instance, users can simultaneously simulate a model demonstrating physical properties equal in all directions (isotropic), as well as with physical properties maximized in the vertical and horizontal directions (orthotropic). This will then inform the direction in which a part is printed, sideways or standing upright.

The model can also be simulated as made from different materials. Other details the software can generate include productivity, cost, and performance outcomes based on design and process recommendations. As Additive Flow describes it, FormFlow “puts the right material, with the right properties, in the right place.”

A comparison of design optimizations depending on print orientation.

In the design of a bridge with Royal HaskoningDHV and DSM, Additive Flow generated designs that were isotropic and orthotropic, printed upright and sideways. The resulting design was seven times lighter than a solid object, with the orthotropic solvers improving performance by 20 percent compared to an isotropic model. Additive Flow also worked with Royal HaskoningDHV to establish a repeatable workflow for performing model optimization in a shorter period of time.

By including all of this information, FormFlow seems to go beyond typical generative design tools. Typical generative design software generates a number of design options based on such characteristics as weight and the ability to carry a certain load. However, these tools may not account for the anisotropic properties of 3D printing, in which the vertical axis is weaker than other axes. In turn, depending on the software, the printed geometries may not perform as simulated. Additive Flow describes the solvers within its software, however, as “additive aware.”

Multiple materials compared within a part.

Designing for additive is no easy task. Of course, this is coming from someone with absolutely no CAD experience, beyond some free and open source tools. However, even professional engineers don’t necessarily know what it takes to make a design right for 3D printing. In part, this is because manufacturing engineers have long been taught to ready their ideas for traditional production technologies.

This means keeping in mind certain constraints, such as limiting complexity in order to reduce the cost of molds and minimizing defects or integrating the gate location in injection molded products. In many ways, engineers have to unlearn a lot of design features they take for granted with traditionally made parts and replace them with a whole new set of design features.

While FormFlow doesn’t seem to address everything that someone would need to know in order to begin applying AM to their product design practice, it may make achieving high-performance, 3D printable designs easier. For instance, Evonik’s new software is able to determine if a host of parts would make good candidates for 3D printing in the first place. It would also be helpful to have a software that can automatically turn a multi-unit assembly into a single printable object. However, once those design decisions are made, FormFlow could further optimize their geometry for the best performance in the best material.

FormFlow certainly seems to have some benefits over existing generative design software, such as Netfabb from Autodesk and Siemens NX, which do not provide as much information as FormFlow seems to at the moment. However, those CAD developers are much, much, much larger, so there’s no telling when Netfabb or Siemens’ Frustum kernel will be able to offer the same capabilities. Who knows, maybe we’ll even see Additive Flow snatched up by some CAD giant in the coming years or even months.

At the moment, Additive Flow is taking FormFlow to market on a project consultancy basis, with the software customized depending on the customer’s needs. The company plans to deliver a license model for its software later this year.

The post Additive Flow Goes Adds Additive Awareness to Generative Design appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

How Repeatable Workflows Allow Engineers to Automate and Optimize Designs

Advanced modeling platforms enable engineers to produce the highest-performing parts in the shortest amount of time

In the world of advanced manufacturing, a project’s path from beginning to end never follows a straight line. Parts need to be designed, tested, and redesigned, often requiring multiple iterations before they can finally hit the manufacturing floor. As a result, the process can slow innovation and require extensive low-value work.

Design engineers know all too well that many frustrating obstacles typically emerge when attempting to resolve more complex designs.  Though some pose as more of a showstopper than others, the biggest frustrations can include:

  • Having to redesign an entire model after one small parameter has been modified
  • Needing to utilize multiple software suites in order to complete a single idea-to-manufacture process
  • Manually iterating input parameters for a desired output, such as changing the density of a lattice until a target volume reduction is achieved 

Developers of advanced modeling platforms recognize that design-process issues such as these are quite commonplace when leveraging the power of new and evolving manufacturing systems such as additive manufacturing and precision CNC.  By implementing the appropriate modeling platforms—and supplement legacy authoring software with the capability for intelligent, repeatable workflows–engineers can start eliminating productivity losses related to redundant and low-value tasks. The significance of repeatable workflows becomes even more evident as throughput of higher-performing parts increases in contrast to past projects of lesser scale.

Today’s reinvented modeling platforms enable engineers to leverage very complex geometries, quickly iterate on designs, and automate common but demanding operations. These sophisticated, new systems integrate with data from any existing CAD, simulation, or manufacturing software package, allowing engineers to efficiently streamline their workflows in a repeatable and reliable manner.

Engineers have long been in need of a way to capture and share knowledge that allows them to innovate more quickly and automate trivial modeling tasks. Design operations such as filleting the interface between a lattice and its adjacent shell often demand the full attention of the engineer to manually select every edge.  With the repeatability and customization of a proven platform’s workflows, the process of blending these lattice beams to a structural solid can be developed once and leveraged endlessly. 

A constant fillet radius of 0.5mm applied to each connection between the lattice and exterior shell

By utilizing a unique and easy-to-use block-based tree to perform complex modeling operations, connected workflows can be created, with broad design parameters that can be defined as controllable inputs. Not only does a nested system allow for configuration and packageability, it is automatically responsive to changes in upstream design parameters and external inputs.

The level of configurability the software provides enables the designer to create and distribute robust algorithms that are capable of automatically running numerous design iterations to converge on an objective-oriented result. Design exercises such as lightweighting through topology optimization or lattice propagation allows a user to define their solution upfront.

Topology-optimization workflow running through design iterations for a bracket and an updated model

The resultant complex geometry seen above can be exported as a classic surface mesh (STL) or sliced directly in the platform, avoiding the need for additional software before manufacturing. This, too, is an example of a type of common repeatable workflow that today is not streamlined in the stack of traditional engineering design tools.  The most effective modeling platforms are architected to receive upstream changes and propagate them through the block system to produce a manufacture-ready model every time.

Optimized model ready to be 3D printed

A robust platform should include the ability to access prebuilt toolkits or configure repeatable workflows into toolkits that offer step-change advancements in the way engineers can collaborate across teams and organizations. The ability to lightweight components and generate complex geometries through rapid design iterations allows engineers to optimize part design faster than ever before.

By Sam Kratky, Application Engineer at nTopology.

The post How Repeatable Workflows Allow Engineers to Automate and Optimize Designs appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Refining Macro and Microscopic Topology Optimization for AM Processes

Researchers from Italy and Germany continue along the path so many are following in refining and perfecting 3D printing processes. In the recently published ‘Structural multiscale topology optimization with stress constraint for additive manufacturing,’ authors Ferdinando Auricchio, Elena Bonetti, Massimo Carraturo, Dietmar Hömberg, Alessandro Realik, and Elisabetta Rocca are experimenting with ways to improve topology with new algorithms, parameters, and workflows in FDM 3D printing and additive manufacturing for industrial production.

Better functionality in parts is the goal as the authors examined methods for optimizing geometries, analyzing stress constraints, and exploring further ways to create functionally graded material structures (FGMs), along with the potential for using homogenization methods. In using FGMs, they expect to also be able to create structures that are multi-material graded also, and in allowing for a constraint on the stress σ they can improve AM processes—especially for ‘lightweight structures with small material volume.’

“As it is known, one of the main characteristics of AM technology is the possibility to construct objects with prescribed macroscopic and microscopic structure,” stated the researchers. “We aim to introduce a model to get a combined optimization of the two scales of this structure: a macroscopic scale corresponding either to the presence of material or to the presence of no material (i.e. voids), and a microscopic scale corresponding to the microscopic density of the material.”

The authors created a model of double phase-fields, with two sets of ‘positive measure’ meant to offer optimization of both the macroscopic and microscopic scales of the structure. The new model defines both material presence, and density.

Cantilever beam: Reference structure obtained using a single material.

Cantilever beam: Sensitivity study of the graded-material structure with respect to the parameter κ2 . χ value distribution.

Cantilever beam: Sensitivity study of the graded-material structure with respect to the parameter κ2 . Von Mises stress value distribution.

As a sample for their project, the authors manufactured an optimized cantilever beam on an FDM 3D printer at the University of Pavia ProtoLab. They were able to use two different polymer filaments, employing an ‘extremely intuitive approach,’ with an χ distribution threshold, separating structures into two regions for multi-material production. And while they found that this technique did not allow them to vary material density as hoped, they are working on more complex methods for the future.

FDM machine at ProtoLab and 3D printed cantilever beam

Description of possible workflow to obtain from a continuous χ distribution a 3D printed object: In the first step the continuous χ distribution (a) is split in two parts and the corresponding .STL files are generate (b), in a second step the 2D geometries are extruded to obtain a printable file (c) which can be directly sent to the FDM machine to obtain the printed structure (d).

The team was successful in creating the FGM structures they were striving for, through intense analysis and the creation of a numerical algorithm, along with the introduction of a ‘simple but effective’ workflow allowing for 3D printing of samples in their research.

“As further outlooks for the present contribution we plan to investigate the influence of the microstructure on the material model and to extend the numerical algorithm to 3D problems,” concluded the researchers.

Optimization of topology is ongoing within 3D printing, from streamlining workflow in creating orthotics to considering fields and implicit geometry, to improving components for the automotive industry, and more. What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source / Images: ‘Structural multiscale topology optimization with stress constraint for additive manufacturing’]

The post Refining Macro and Microscopic Topology Optimization for AM Processes appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Betatype and nTopology Use Metal 3D Printing and Intelligent Design to Increase Productivity

3D printing consultancy company Betatype specializes in optimizing metal AM production applications to deliver functional components for customers in many industries, including consumer goods, automotive, and medical. Recently, the company, based in London, published a new case study that explains how it teamed up with software company nTopology to create and manufacture a functionally optimized, 3D printed part for a rocket nozzle.

Betatype recognizes that collaborating with companies in industrial sectors, as well as the AM industry, can help produce better project results, with higher standards, than companies working alone can sometimes manage. Its recent partnership with nTopology is a perfect example of how collaboration was able to increase productivity in metal 3D printing.

“For serial production in additive manufacturing to work, it must make business sense. Through the partnership between nTopology and Betatype, and our shared belief in solving engineering problems by linking design, simulation, and manufacturing processes directly, we are able to present a strong business case for additive manufacturing,” said Brad Rothenberg, the Founder and CEO of nTopology. “We enable our customers to design and manufacture complex parts with speed, efficiency and reliability. We could not be happier with the results of this rocket nozzle case study and are looking forward to working on more joint projects.”

The project at the center of this collaboration was a test part for a rocket nozzle, and was created specifically to show how companies can integrate different solutions through partnerships. nTopology used its own nTop Platform software to help design the rocket nozzle part’s base mechanical structure, converting the part’s 3D model into an implicit one. Then, the design was optimized through the use of nTopology’s advanced simulation and topology optimization tools. Finally, Betatype’s software technology was applied to great effect, before the part was 3D printed.

Additive manufacturing offers material, shape, and structure control in one process, and Betatype’s Engine data processing platform helps maximize these capabilities to the fullest extent. The platform helps users manage, manipulate, and generate CAD and CAM data for multi-scale 3D design, in order to create higher fidelity for complex parts – not easily manufactured with conventional technology – at each scale of 3D design.

By combining technology from both nTopology and Betatype, the two companies were able to optimize the design of the complex rocket nozzle part for metal laser powder bed fusion 3D printing. Together, they achieved a major increase in part productivity – a 28% reduction in build time, down from 25 hours to 18.

“Betatype’s partnership with nTopology is an excellent demonstration of how we can work with talented designers to make additive manufacturing perform,” said Betatype’s Founder and CEO Sarat Babu. “The application clearly shows the benefits of combining the functional design and optimization skills of our partner with process optimization through our technology to achieve productivity levels that would not otherwise be possible with a standard metal LPBF platform.”

Rocket Nozzle: As built onto the base plate in Grade 23 Titanium (190 x 190 x 200).

Betatype fabricated the rocket nozzle test part out of titanium on a Renishaw AM250 3D printer. The nTop Platform’s capabilities highlighted how applying intelligent design can improve a part’s functionality, while also making sure that it is fit for its ultimate purpose. But the input from Betatype showed that design alone only gets you part of the way, and that metal 3D printing, complex functionality, and intelligent design is a winning combination.

Discuss this news and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

[Source/Images: Betatype]

The post Betatype and nTopology Use Metal 3D Printing and Intelligent Design to Increase Productivity appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

ParaMatters Introduces CogniCAD 2.0 Topology Optimizer at CES 2019

It’s almost time again for CES, the biggest tech show of the year where companies from all corners of the technology sector will be bringing out their latest products. For ParaMatters, that means the first time the company will be showcasing its CogniCAD 2.0 Topology Optimization software in North America. ParaMatters, which manufactures autonomous topology optimization, parts consolidation and lightweighting software, introduced the original CogniCAD software at CES last year, and now it will be showcasing the second generation.

“We are thrilled to announce the first North American showcase of CogniCAD 2.0 at CES,” said ParaMatters Co-Founder and Chief Technology Officer Dr. Michael Bogomolny. “After over a year of working with industry leaders to fine tune this second-generation technology, we are now able to provide the most powerful agnostic CAD-to-CAD generative design and lightweighting tool available on the market today.”

CogniCAD 2.0 builds on their cloud-based, cognitive design computational platform. The software is capable of automatically generating ready-to-3D-print, high-performance, lightweight structures for automotive, aerospace and other mission-critical applications.

“We are transforming the entire design-to-manufacturing process by making it possible for our cloud service to autonomously generate high-quality, CAD-agnostic and ready-to-manufacture, optimized lightweighted designs in minutes to a few hours,” said Dr. Bogomolny. “Our proprietary generative engine automatically delivers high performance and quality designs with minimal user input. As a result, the entire design cycle is compressed from weeks to hours and raises the quality of generative designs compared to what can be achieved manually.”

The new software speeds up development and features new, advanced algorithms to enhance overall digital thread and additive manufacturing capabilities, including a new cloud-based, generative design platform that automatically compiles lightweight and metamaterial lattice structures on demand, based on specifications entered by designers and engineers. These include size, weight, cost, strength, style and materials.

The software also offers as a design service meso-structural capabilities that deliver biomimicry design for optimal structural infills that are mission-critical for certain additive manufacturing processes.

“We are taking full advantage of the convergence of advanced topology optimization techniques, computational geometry, artificial intelligence and infinite cloud computing power to deliver the most powerful, affordable and impactful tool that unleashes the full potential of design for additive manufacturing,” said Avi Reichental, ParaMatters Co-Founder and Executive Chairman.

CogniCAD 2.0 is available through ParaMatters’ website as a cloud-based, pay-per-design service. Several subscription and enterprise-based models are available. The software works by first importing CAD files into the platform, then defining loading and design criteria. Users can obtain generative designs within minutes, verified by built-in Finite-Element Analysis and ready for 3D printing in both STL and STEP formats. All ParaMatters-generated designs can be directly 3D printed.

ParaMatters will be at CES 2019 at the Techniplas booth, LVCC, North Hall – 9320. Interested attendees can stop by and learn more about what’s new in CogniCAD 2.0.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

 

3D Printing an Improved DMLS Automotive Component Using Topology Optimization and DfAM

Engineers frequently use topology optimization to optimize the design and layout of parts to create lightweight and optimized structures. The technology often results in organic, complex shapes, however, which can be difficult to produce using traditional manufacturing methods. That’s why 3D printing pairs so well with topology optimization – it allows for the kind of freedom of design necessary to create those complex shapes. In a paper entitled “Application of Topology Optimization and Design for Additive Manufacturing Guidelines on an Automotive Component,” a group of researchers uses topology optimization to create a lightweight automotive component “while conforming to additive manufacturing constraints related to overhanging features and unsupported surfaces when using metallic materials.”

Specifically, the researchers use Design for Additive Manufacturing (DfAM) along with topology optimization to study the tradeoffs between the weight of the part, support requirements, manufacturing costs, and mechanical performance. They redesign an upright on the SAE Formula student race car to reduce support structures and manufacturing cost while using Direct Metal Laser Sintering (DMLS).

The upright is responsible for transferring loads from the ground to the chassis, and is an important component of the race car. The initial optimized design had a theoretical weight of 1.62 lbs. (735 grams). The model was analyzed for two orientations: flat on the build platform and on its side. A costing tool was used to calculate the overall manufacturing costs of the build. The calculated costs of the part printed flat and on its side were $2015 and $2995, respectively. FEM simulations were carried out to ensure that the mechanical performance of the final parts satisfied the loading conditions.

The researchers then worked to improve the design using a program called OPTISTRUCT, with the original design as a reference.

“Since the optimization problem involves multiple loading cases, a weighted compliance approach is used to determine the optimized layout while considering four different loading cases,” the researchers explain. “The objective function is defined as minimize compliance response subjected to 20% volume fraction as the optimization constraint.”

The aim of the redesign was to reduce the need for supports, and the researchers were able to do so, although the weight of the part was increased. After reviewing the FEM analysis, the part was redesigned once again to reduce the weight. The final part required 91.7% less support structure, and the total manufacturing cost is reduced by 51.7%.

“Future work entails formalizing an approach that integrates topology optimization, FEM, support design, and DfAM rules into a more coherent framework,” the researchers conclude. “We also plan to fabricate and test Redesign 2 using EOS M280 machine and collect actual fabrication data similar to Design 0 to get a more accurate measure of the support requirement and trapped powder. Also, geometry affects the residual stresses and deflections caused by frequent heating and cooling cycles in a laser-based additive manufacturing process. Hence, for functional parts like this, it is important to know the performance of the design during the AM process. Thermo-mechanical simulations will be carried out to estimate the deflections in the part and this data will be used to redesign, if required.”

Authors of the paper include Nithin Reddy, Vincent Maranan, Timothy W. Simpson, Todd Palmer and Corey J. Dickman.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

 

 

3D Printing News Briefs: November 17, 2018

Continuing with the week’s second edition of 3D Printing News Briefs, or rather formnext 2018 News Briefs, we’ve got more announcements coming from the huge trade fair, which just ended today in Frankfurt. 3D Systems introduced two new 3D printers and a new material, while Solvay showcased its two new medical grade filaments. ViscoTec revealed its new two-component print head, and Additive Industries announced a partnership with Air Liquide on the show floor. Finally, Honeywell FM&T engineers are using topology optimization to shorten the design process at the DOE’s Kansas City National Security Campus.

3D Systems Showcases Two New 3D Printers 

DMP Factory 350

This week at formnext, 3D printing leader 3D Systems announced two additions to its DMP metal 3D printing platform, along with a new aluminum alloy material. This platform allows customers to scale from the new DMP Flex 350 – successor to the ProX DMP 320 – all the way up to the new DMP Factory 350 as their production needs shift. These 3D printers were built to provide repeatable, robust metal parts production 24/7. The $575,000 Flex 350 offers an improved print productivity of 15% over previous models, comes with improved gas flow technology for uniform part quality, and allows for more efficient production of very dense, pure metal parts. The $763,000 Factory 250 combines all of these advantages and features with a little something extra – integrated powder management. An in-unit viewing panel allows for a visual inspection of the ultrasonic sieve, and also includes real-time process monitoring. In addition to its two new DMP 3D printers, 3D Systems also introduced a new aluminum alloy material, LaserForm AlSi7Mg0.6 (A), which offers electrical ductility, corrosion resistance, and high-thermal conductivity.

“At Formnext 2017, I announced 3D Systems’ intent to bring 3D printing to the factory floor with a new generation of additive manufacturing solutions. Today I am happy to report that over the last year we have brought to market an unrivalled series of plastic and metal 3D printers, materials and software that are optimizing workflows, enabling new design innovations, and reducing costs,” said Vyomesh Joshi, the President and CEO of 3D Systems. “The new innovations we are announcing today – DMP Flex 350, DMP Factory 350, and LaserForm material– further expand 3D System’s customer-first, solution approach to drive the transformation of manufacturing.”

The DMP Flex 350 and DMP Factory 350 should be available in late Q4 2018.

Solvay Introduces New Medical-Grade Filaments

Global specialty polymer supplier Solvay was also at formnext this week to launch new products. The company introduced three new additions to its high-performance 3D printing filament portfolio – KetaSpire PEEK (NT1 HC), a 10% carbon fiber-reinforced KetaSpire (CF10 HC), and Radel PPSU (NT1 HC), which are Solvay’s first medical-grade materials for limited contact applications in the healthcare industry. The KetaSpire PEEK filaments enable high part density, achieve great printed layer fusion, and provide excellent part strength, along the z-axis in particular. Radel PPSU delivers the same exceptional fusion, and also has toughness, transparency, and high elongation. These three new grades are available immediately in both North America and Europe through Solvay’s e-commerce platform.

“The healthcare industry is quickly emerging as a leading market to benefit from AM technology which makes customized parts for single use or low volumes possible. However, there is still a very limited choice of high-performance filaments that meet the stringent regulatory requirements in healthcare and this is the gap we want to close with our new selection of medical grade products,” said Christophe Schramm, Additive Manufacturing Business Manager at Solvay’s Specialty Polymers global business unit.

VisctoTec Launches New Two-Component Print Head

This spring, Germany-based ViscoTec, which is well known for its innovative 3D print heads, introduced the vipro-HEAD, a print head with an optional heating function for viscous fluids. The vipro-HEAD 3 and vipro-HEAD 5 allow the company’s 3D printing customers to process viscous fluids and pastes, and now ViscoTec has delivered again. At formnext this week, the company launched its new two-component print head, vipro-HEAD 3/3 and 5/5, which allows for the 3D printing of two-component viscous fluids and pastes.

The print head, which comes in two sizes, has parallel, independently running motors, which receive direct signals from the 3D printer itself. Bleeding screws can be adapted to the vipro-HEAD 3/3 and 5/5 for venting during start-up, and optional integrated pressure sensors can monitor the output pressure at the static mixer, so dosing is automatically stopped if any pressure fluctuations occur so the rotor and stator aren’t damaged. With ViscoTec’s new print head, nearly all two-component viscous fluids and pastes can be dispensed continuously and gently.

Additive Industries and Air Liquide Announce Partnership

The last piece of formnext 2018 news to share with you today is the newly announced partnership for industrial 3D printing between France-based Air Liquide and Netherlands company Additive Industries. The two have long enjoyed a working relationship, and decided to increase this into a professional partnership, in order to develop a dedicated infrastructure for gasses. Air Liquide will add its solutions for supplying and storing shielding gasses, and an infrastructure blueprint for Additive Industries’ MetalFAB1 3D printer will allow customers in demanding markets to increase the safety, quality, and post-processing of 3D printing.

“On our continuous quest to improve the performance of our systems while offering our users a fully integrated solution, we have identified the gas infrastructure for argon and nitrogen as an often overlooked but important piece of the puzzle,” said Daan Kersten, CEO of Additive Industries. “Because of our partnership with Air Liquide, we now can offer a blueprint to our customers to guarantee a reliable gas storage and supply as well as a higher level of safety, our number one priority.”

Topology Optimization Used by Honeywell FM&T Engineers

Honeywell FM&T, an engineering, manufacturing and sourcing enterprise that’s part of the aerospace company Honeywell, manages and operates the Kansas City National Security Campus for the US Department of Energy. It used to take the engineers months to design and produce materials to use for tooling and testing purposes. But Honeywell FM&T is now saving time by using digital manufacturing technology, which allows the engineers to bring their ideas to fruition in days, instead of months.

Topology optimization, or TO, shortens the normal design process by creating a prototype based on the functional and physical requirements, and then simulating production with it. 3D products designed with TO are less expensive, more lightweight, and stronger, and the Honeywell FM&T team recently used the technology to redesign a part that would meet structural requirements, but also weighs 46% less as well.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

FEM Simulation Used to Test Mechanical Performance of SLS PA 12 3D Printed Objects

In a paper entitled “Mechanical performance of polymer powder bed fused objects – FEM simulation and verification,” a group of researchers discusses the importance of accommodating anisotropic behavior in 3D printed objects. Geometrical optimization is needed so that the object meets pre-set strength and quality requirements. For the study, a material description for polymer powder bed fused or selective laser sintered PA12 was investigated using the Finite Element Method (FEM).

Test specimens in the shape of dumbbells or dog bones were 3D printed, and material tests were carried out. The model was then used to simulate and predict the mechanical performance of SLS 3D printed lower leg prosthetic components: a pylon and a support.

“It was found that the FEM simulations, together with the Material Model, gave good estimations for the location of a failure and its load,” the researchers state. “It was also noted that there were significant variations among individual SLS printed test specimens, which impacted on the material parameters and the FEM simulations. Hence, to enable reliable FEM simulations for the designing of 3D printed products, better control of the SLS process with regards to porosity, pore morphology and pore distribution is needed.”

Two parts of a lower leg prosthesis were 3D printed: a pylon and a support. For the FEM analysis, ANSYS software was used. Topology optimization was carried out to find the optimal geometry of the two parts.

“For topology optimisation, the two load cases were created and linked to a topology optimisation module,” the researchers explain. “Since the topology optimiser cannot handle non-linear effects, the behaviour of the linear elastic anisotropic material together with the analysis of the small deflections was used in this stage. The goal of the optimisation was set to minimise the mass.”

The pylon was investigated first, and was then tested in load case II, according to an ISO standard. The test results were compared with the FEM simulations. The second object investigated was the support. FEM analyses and the optimization of two different designs were carried out: topology optimisation for the vertical and horizontal printing directions of a support with a wall thickness of 7 mm, and shape optimisation of the wall and base thickness of the support printed vertically, based on the existing geometry.

The pylons were horizontally and vertically 3D printed and tested in load case II, combining compression with the bending and twisting of each part. The test results were compared with the FEM simulations, and the two corresponded well. The supports were then tested and the results compared to the FEM simulations.

“It was shown that the Material Model gave a good prediction of the location of a failure and it even yielded reasonable estimates of the loads at failure when tested, according to ISO Standards. Hence, an FEM simulation can be a useful tool, when it comes to the optimal design of 3D printed objects and in predicting how they perform mechanically,” the researchers conclude. “Nevertheless, it needs to be considered that there may be large variations among 3D printed pieces, including dog bones, from which the mechanical properties were obtained or derived. The variations in the material properties (inputs to FEM simulation), e.g. Young’s modulus, yield limit and tensile strength etc., could possibly make an FEM simulation less reliable. Therefore, it is essential to have better control of the 3D printing process, which leads to reduced porosity and a variation in the 3D printed objects, in order for an FEM simulation of 3D printed objects to be reliable.”

Authors of the paper include Anders Linberg, Johan Alfthan, Henrik Pettersson, Göran Flodberg and Li Yang.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.